NASA managers have just made the difficult but unavoidable decision to scrub the planned March 2016 launch of the InSight lander, the agency’s next mission to Mars, by at least two years because of a vacuum leak that was just detected in the probes flawed seismometer instrument which cannot be fixed in time.
NASA has just received a significant boost in the agency’s current budget after both chambers of Congress passed the $1.1 Trillion 2016 omnibus spending bill this morning, Friday, Dec. 18, which funds the US government through the remainder of Fiscal Year 2016.
As part of the omnibus bill, NASA’s approved budget amounts to nearly $19.3 Billion – an outstandingly magnificent result and a remarkable turnaround to some long awaited good news from the decidedly negative outlook earlier this year. Continue reading “NASA Receives Significant Budget Boost for Fiscal Year 2016”
After many months of painstaking driving, NASA’s Curiosity Mars rover has reached the edge of a massive field of spectacular rippled sand dunes located at the base of Mount Sharp that range up to two stories tall. And she has now begun humanity’s first up-close investigation of currently active sand dunes anywhere beyond Earth.
Mars represents something of a conundrum for scientists. In many respects, it is significantly different from Earth. It’s cold, it’s dry, there is little atmosphere or precipitation to speak of, and nothing grows there. By our standards, that makes it an incredibly inhospitable place. And yet, in many other respects, it is quite similar to our world.
For instance, Mars’ internal structure is differentiated between a metallic core and a silicate mantle and crust. It also has plenty of water, though the majority of it is concentrated in the polar regions as water ice (and as a permanent layer of permafrost under much of the surface). But perhaps most striking of all, a day on Mars is almost the same as a day here on Earth.
In fact, a day on Mars is roughly 40 minutes longer than a day is here on Earth. Compared to other bodies in our Solar System where a day is either incredibly short (Jupiter’s rotates once on its axis every 9 hours, 55 minutes and 29.69 seconds) or incredibly long (a day on Venus lasts for 116 days and 18 hours), this similarity is quite astounding.
However, there are some things that need to be addressed before we go about declaring just how long a day is on another planet. In fact, there are two ways to determine the length of a day on a celestial body, the sidereal day and the solar day; both of which are used by astronomers for determining the passage on time.
Sidereal vs. Solar:
By definition, a sidereal day on Mars is the length of time that it takes the planet to rotate once on its axis so that stars appear in the same place in the night sky. On Earth, this takes exactly 23 hours, 56 minutes and 4.1 seconds. In comparison, on Mars, a sidereal day lasts 24 hours, 37 minutes, and 22 seconds.
The solar day, by contrast, is the time it takes for the Earth to rotate on its axis so that the Sun appears in the same position in the sky. This position changes slightly each day, but on Earth, a mean solar day works out to being 24 hours long. On Mars, a solar day lasts 24 hours, 39 minutes, and 35 seconds. Rounding that out, we say that a day here on Earth works out to an even 24 hours while on Mars, a day lasts 24 hours and 40 minutes.
Want to know about some other interesting similarities Mars has with Earth? Read on!
Seasonal Changes:
Mars also has a seasonal cycle that is similar to that of Earth’s. This is due in part to the fact that Mars also has a tilted axis, which is inclined 25.19° to its orbital plane (compared to Earth’s axial tilt of approx. 23.44°). It’s also due to Mars orbital eccentricity, which mean that it ranges in distance from 206.7 million to249.2 million kilometers from the Sun.
This change in distance causes significant variations in temperature. While the planet’s average temperature is -46 °C (51 °F), this ranges from a low of -143 °C (-225.4 °F) during the winter at the poles to a high of 35 °C (95 °F) during summer and midday at the equator. This high in temperatures is what allows for liquid water to still flow, albeit intermittently, on the surface of Mars.
It also snows on Mars. In 2008, NASA’s Phoenix Landerfound water ice in the polar regions of the planet. This was an expected finding, but scientists were not prepared to observe snow falling from clouds. The snow, combined with soil chemistry experiments, led scientists to believe that the landing site had a wetter and warmer climate in the past.
And then in 2012, data obtained by the Mars Reconnaissance Orbiter revealed that carbon-dioxide snowfalls occur in the southern polar region of Mars. For decades, scientists have known that carbon-dioxide ice is a permanent part of Mars’ seasonal cycle and exists in the southern polar caps. But this was the first time that such a phenomena was detected, and it remains the only known example of carbon-dioxide snow falling anywhere in our solar system.
For starters, soil samples and orbital observation have demonstrated conclusively that roughly 3.7 billion years ago, the planet had more water on its surface than is currently in the Atlantic Ocean. Similarly, atmospheric studies conducted on the surface and from space have proven that Mars also had a viable atmosphere at that time, one which was slowly stripped away by solar wind.
Weather Patterns:
Like Earth, Mars can have some pretty extreme weather. In the Red Planet’s case, this takes the form of dust storms that can dominated the surface from time to time. These storms have been known to grow to be thousands of kilometers across, occasionally encircling the entire planet and covering everything in a thick haze of dust. When these storms become that large, they prevent direct observation of the Martian surface.
Case in point: when the Mariner 9 orbiter became the first spacecraft to orbit Mars in 1971, it sent pictures back to Earth of a world consumed in haze. The entire planet was covered by a dust storm so massive that only Olympus Mons, the giant Martian volcano that measures 24 km high, could be seen above the clouds. This storm lasted for a full month, and delayed Mariner 9‘s attempts to photograph the planet in detail.
And then on June 9th, 2001, the Hubble Space Telescope spotted a dust storm in the Hellas Basin on Mars. By July, the storm had died down, but then grew again to become the largest storm in 25 years. So big was the storm that amateur astronomers using small telescopes were able to see it from Earth. And the cloud raised the temperature of the frigid Martian atmosphere by a stunning 30° Celsius.
Therein lies another thing Mars has in common with Earth – global warming! Much like warming trends here on Earth, warming on Mars is caused by the presence of particulate matter in the air that absorbs energy from the Sun and radiates it outward into the atmosphere. causing average temperatures to rise.
These storms tend to occur when Mars is closest to the Sun, and are the result of temperatures rising and triggering changes in the air and soil. As the soil dries, it becomes more easily picked up by air currents, which are caused by pressure changes due to increased heat. The dust storms cause temperatures to rise even further, so you could say Mars has a “greenhouse effect” of its own!
As you have probably concluded from all the facts listed above, Mars can be a harsh and volatile planet. Just knowing the answer to ”how long is a day on Mars?” only provides a small glimpse of what is going on there. At the end of the day (no pun intended!) there is plenty happening on Mars that makes it similar enough to Earth that many people are actually contemplating living there someday. And knowing exactly what sets Mars apart, and what we can work with, will be intrinsic to making that happen!
Many of the planets in our Solar System have a system of moons. But among the rocky planets that make up the inner Solar System, having moons is a privilege enjoyed only by two planets: Earth and Mars. And for these two planets, it is a rather limited privilege compared to gas giants like Jupiter and Saturn which each have several dozen moons.
Whereas Earth has only one satellite (aka. the Moon), Mars has two small moons in orbit around it: Phobos and Deimos. And whereas the vast majority of moons in our Solar System are large enough to become round spheres similar to our own Moon, Phobos and Deimos are asteroid-sized and misshapen in appearance.
At one time, astronomers believed the surface of Mars was crisscrossed by canal systems. This in turn gave rise to speculation that Mars was very much like Earth, capable of supporting life and home to a native civilization. But as human satellites and rovers began to conduct flybys and surveys of the planet, this vision of Mars quickly dissolved, replaced by one in which the Red Planet was a cold, desiccated and lifeless world.
However, over the past few decades, scientists have come to learn a great deal about the history of Mars that has altered this view as well. We now know that though Mars may currently be very cold, very dry, and very inhospitable, this wasn’t always the case. What’s more, we have come to see that even in its current form, Mars and Earth actually have a lot in common.
Between the two planets, there are similarities in size, inclination, structure, composition, and even the presence of water on their surfaces. That being said, they also have a lot of key differences that would make living on Mars, a growing preoccupation among many humans (looking at you, Elon Musk and Bas Lansdorp!), a significant challenge. Let’s go over these similarities and the difference in an orderly fashion, shall we?
Sizes, Masses and Orbits:
In terms of their size and mass, Earth and Mars are quite different. With a mean radius of 6371 km and a mass of 5.97×1024 kg, Earth is the fifth largest and fifth most-massive planet in the Solar System, and the largest of the terrestrial planets. Mars, meanwhile, has a radius of approximately 3,396 km at its equator (3,376 km at its polar regions), which is the equivalent of roughly 0.53 Earths. However, it’s mass is just 6.4185 x 10²³ kg, which is around 10.7% that of Earth’s.
Similarly, Earth’s volume is a hefty 1.08321 x 1012 km3, which works out 1,083 billion cubic kilometers. By comparison, Mars has a volume of 1.6318 x 10¹¹ km³ (163 billion cubic kilometers) which is the equivalent of 0.151 Earths. Between this difference in size, mass, and volume, Mars’s surface gravity is 3.711 m/s², which works out to 37.6% of Earths (0.376 g).
In terms of their orbits, Earth and Mars are also quite different. For instance, Earth orbits the Sun at an average distance (aka. semi-major axis) of 149,598,261 km – or one Astronomical Unit (AU). This orbit has a very minor eccentricity (approx. 0.0167), which means its orbit ranges from 147,095,000 km (0.983 AU) at perihelion to 151,930,000 km (1.015 AU) at aphelion.
At its greatest distance from the Sun (aphelion), Mars orbits at a distance of approximately 249,200,000 km (1.666 AU). At perihelion, when it is closest to the Sun, it orbits at a distance of approximately 206,700,000 km (1.3814 AU). At these distances, the Earth has an orbital period of 365.25 days (1.000017 Julian years) while Mars has an orbital period of 686.971 days (1.88 Earth years).
However, in terms of their sidereal rotation (time it takes for the planet to complete a single rotation on its axis) Earth and Mars are again in the same boat. While Earth takes precisely 23h 56m and 4 s to complete a single sidereal rotation (0.997 Earth days), Mars does the same in about 24 hours and 40 minutes. This means that one Martian day (aka. Sol) is very close to single day on Earth.
Mars’s axial tilt is very similar to Earth’s, being inclined 25.19° to its orbital plane (whereas Earth’s axial tilt is just over 23°). This means that Mars also experiences seasons and temperature variations similar to that of Earth (see below).
Structure and Composition:
Earth and Mars are similar when it comes to their basic makeups, given that they are both terrestrial planets. This means that both are differentiated between a dense metallic core and an overlying mantle and crust composed of less dense materials (like silicate rock). However, Earth’s density is higher than that of Mars – 5.514 g/cm3 compared to 3.93 g/cm³ (or 0.71 Earths) – which indicates that Mars’ core region contains more lighter elements than Earth’s.
Earth’s core region is made up of a solid inner core that has a radius of about 1,220 km and a liquid outer core that extends to a radius of about 3,400 km. Both the inner and outer cores are composed of iron and nickel, with trace amounts of lighter elements, and together, they add to a radius that is as large as Mars itself. Current models of Mars’ interior suggest that its core region is roughly 1,794 ± 65 kilometers (1,115 ± 40 mi) in radius, and is composed primarily of iron and nickel with about 16-17% sulfur.
Both planets have a silicate mantle surrounding their cores and a surface crust of solid material. Earth’s mantle – consisting of an upper mantle of slightly viscous material and a lower mantle that is more solid – is roughly 2,890 km (1,790 mi) thick and is composed of silicate rocks that are rich in iron and magnesium. The Earth’s crust is on average 40 km (25 mi) thick, and is composed of rocks that are rich in iron and magnesium (i.e. igneous rocks) and granite (rich in sodium, potassium, and aluminum).
Comparatively, Mars’ mantle is quite thin, measuring some 1,300 to 1,800 kilometers (800 – 1,100 mi) in thickness. Like Earth, this mantle is believed to be composed of silicate rock that are rich in minerals compared to the crust, and to be partially viscous (resulting in convection currents which shaped the surface). The crust, meanwhile, averages about 50 km (31 mi) in thickness, with a maximum of 125 km (78 mi). This makes it about three times as hick as Earth’s crust, relative to the sizes of the two planets.
Ergo, the two planets are similar in composition, owing to their common status as terrestrial planets. And while they are both differentiated between a metallic core and layers of less dense material, there is some variance in terms of how proportionately thick their respective layers are.
Surface Features:
When it comes to the surfaces of Earth and Mars, things once again become a case of contrasts. Naturally, it is the differences that are most apparent when comparing Blue Earth to the Red Planet – as the nicknames would suggest. Unlike other planet’s in our Solar System, the vast majority of Earth is covered in liquid water, about 70% of the surface – or 361.132 million km² (139.43 million sq mi) to be exact.
The surface of Mars is dry, dusty, and covered in dirt that is rich iron oxide (aka. rust, leading to its reddish appearance). However, large concentrations of ice water are known to exist within the polar ice caps – Planum Boreum and Planum Australe. In addition, a permafrost mantle stretches from the pole to latitudes of about 60°, meaning that ice water exists beneath much of the Martian surface. Radar data and soil samples have confirmed the presence of shallow subsurface water at the middle latitudes as well.
As for the similarities, Earth and Mars’ both have terrains that varies considerably from place to place. On Earth, both above and below sea level, there are mountainous features, volcanoes, scarps (trenches), canyons, plateaus, and abyssal plains. The remaining portions of the surface are covered by mountains, deserts, plains, plateaus, and other landforms.
Mars is quite similar, with a surface covered by mountain ranges, sandy plains, and even some of the largest sand dunes in the Solar System. It also has the largest mountain in the Solar System, the shield volcano Olympus Mons, and the longest, deepest chasm in the Solar System: Valles Marineris.
Earth and Mars have also experienced many impacts from asteroids and meteors over the years. However, Mars’ own impact craters are far better preserved, with many dating back billions of years. The reason for this is the low air pressure and lack of precipitation on Mars, which results in a very slow rate of erosion. However, this was not always the case.
Mars has discernible gullies and channels on its surface, and many scientists believe that liquid water used to flow through them. By comparing them to similar features on Earth, it is believed that these were were at least partially formed by water erosion. Some of these channels are quite large, reaching 2,000 kilometers in length and 100 kilometers in width.
So while they look quite different today, Earth and Mars were once quite similar. And similar geological processes occurred on both planets to give them the kind of varied terrain they both currently have.
Atmosphere and Temperature:
Atmospheric pressure and temperatures are another way in which Earth and Mars are quite different. Earth has a dense atmosphere composed of five main layers – the Troposphere, the Stratosphere, the Mesosphere, the Thermosphere, and the Exosphere. Mars’ is very thin by comparison, with pressure ranging from 0.4 – 0.87 kPa – which is equivalent to about 1% of Earth’s at sea level.
Earth’s atmosphere is also primarily composed of nitrogen (78%) and oxygen (21%) with trace concentrations of water vapor, carbon dioxide, and other gaseous molecules. Mars’ is composed of 96% carbon dioxide, 1.93% argon and 1.89% nitrogen along with traces of oxygen and water. Recent surveys have also noted trace amounts of methane, with an estimated concentration of about 30 parts per billion (ppb).
Because of this, there is a considerable difference between the average surface temperature on Earth and Mars. On Earth, it is approximately 14°C, with plenty of variation due to geographical region, elevation, and time of year. The hottest temperature ever recorded on Earth was 70.7°C (159°F) in the Lut Desert of Iran, while the coldest temperature was -89.2°C (-129°F) at the Soviet Vostok Station on the Antarctic Plateau.
Because of its thin atmosphere and its greater distance from the Sun, the surface temperature of Mars is much colder, averaging at -46 °C (-51 °F). However, because of its tilted axis and orbital eccentricity, Mars also experiences considerable variations in temperature. These can be seen in the form of a low temperature of -143 °C (-225.4 °F) during the winter at the poles, and a high of 35 °C (95 °F) during summer and midday at the equator.
The atmosphere of Mars is also quite dusty, containing particulates that measure 1.5 micrometers in diameter, which is what gives the Martian sky a tawny color when seen from the surface. The planet also experiences dust storms, which can turn into what resembles small tornadoes. Larger dust storms occur when the dust is blown into the atmosphere and heats up from the Sun.
So basically, Earth has a dense atmosphere that is rich in oxygen and water vapor, and which is generally warm and conducive to life. Mars, meanwhile, is generally very cold, but can become quite warm at times. It’s also quite dry and very dusty.
Magnetic Fields:
When it comes to magnetic fields, Earth and Mars are in stark contrast to each other. On Earth, the dynamo effect created by the rotation of Earth’s inner core, relative to the rotation of the planet, generates the currents which are presumed to be the source of its magnetic field. The presence of this field is of extreme importance to both Earth’s atmosphere and to life on Earth as we know it.
Essentially, Earth’s magnetosphere serves to deflect most of the solar wind’s charged particles which would otherwise strip away the ozone layer and expose Earth to harmful radiation. The field ranges in strength between approximately 25,000 and 65,000 nanoteslas (nT), or 0.25–0.65 Gauss units (G).
Today, Mars has weak magnetic fields in various regions of the planet which appear to be the remnant of a magnetosphere. These fields were first measured by the Mars Global Surveyor, which indicated fields of inconsistent strengths measuring at most 1500 nT (~16-40 times less than Earth’s). In the northern lowlands, deep impact basins, and the Tharsis volcanic province, the field strength is very low. But in the ancient southern crust, which is undisturbed by giant impacts and volcanism, the field strength is higher.
This would seem to indicate that Mars had a magnetosphere in the past, and explanations vary as to how it lost it. Some suggest that it was blown off, along with the majority of Mars’ atmosphere, by a large impact during the Late Heavy Bombardment. This impact, it is reasoned, would have also upset the heat flow in Mars’ iron core, arresting the dynamo effect that would have produced the magnetic field.
Another theory, based on NASA’s MAVEN mission to study the Martian atmosphere, has it that Mars’ lost its magnetosphere when the smaller planet cooled, causing its dynamo effect to cease some 4.2 billion years ago. During the next several hundred million years, the Sun’s powerful solar wind stripped particles away from the unprotected Martian atmosphere at a rate 100 to 1,000 times greater than that of today. This in turn is what caused Mars to lose the liquid water that existed on its surface, as the environment to become increasing cold, desiccated, and inhospitable.
Satellites:
Earth and Mars are also similar in that both have satellites that orbit them. In Earth’s case, this is none other than The Moon, our only natural satellite and the source of the Earth’s tides. It’s existence has been known of since prehistoric times, and it has played a major role in the mythological and astronomical traditions of all human cultures. In addition, its size, mass and other characteristics are used as a reference point when assessing other satellites.
The Moon is one of the largest natural satellites in the Solar System and is the second-densest satellite of those whose moons who’s densities are known (after Jupiter’s satellite Io). Its diameter, at 3,474.8 km, is one-fourth the diameter of Earth; and at 7.3477 × 1022 kg, its mass is 1.2% of the Earth’s mass. It’s mean density is 3.3464 g/cm3 , which is equivalent to roughly 0.6 that of Earth. All of this results in our Moon possessing gravity that is about 16.54% the strength of Earth’s (aka. 1.62 m/s2).
The Moon varies in orbit around Earth, going from 362,600 km at perigee to 405,400 km at apogee. And like most known satellites within our Solar System, the Moon’s sidereal rotation period (27.32 days) is the same as its orbital period. This means that the Moon is tidally locked with Earth, with one side is constantly facing towards us while the other is facing away.
Thanks to examinations of Moon rocks that were brought back to Earth, the predominant theory states that the Moon was created roughly 4.5 billion years ago from a collision between Earth and a Mars-sized object (known as Theia). This collision created a massive cloud of debris that began circling our planet, which eventually coalesced to form the Moon we see today.
Mars has two small satellites, Phobos and Deimos. These moons were discovered in 1877 by the astronomer Asaph Hall and were named after mythological characters. In keeping with the tradition of deriving names from classical mythology, Phobos and Deimos are the sons of Ares – the Greek god of war that inspired the Roman god Mars. Phobos represents fear while Deimos stands for terror or dread.
Phobos measures about 22 km (14 mi) in diameter, and orbits Mars at a distance of 9,234.42 km when it is at periapsis (closest to Mars) and 9,517.58 km when it is at apoapsis (farthest). At this distance, Phobos is below synchronous altitude, which means that it takes only 7 hours to orbit Mars and is gradually getting closer to the planet. Scientists estimate that in 10 to 50 million years, Phobos could crash into Mars’ surface or break up into a ring structure around the planet.
Meanwhile, Deimos measures about 12 km (7.5 mi) and orbits the planet at a distance of 23,455.5 km (periapsis) and 23,470.9 km (apoapsis). It has a longer orbital period, taking 1.26 days to complete a full rotation around the planet. Mars may have additional moons that are smaller than 50- 100 meters (160 to 330 ft) in diameter, and a dust ring is predicted between Phobos and Deimos.
Scientists believe that these two satellites were once asteroids that were captured by the planet’s gravity. The low albedo and the carboncaceous chondrite composition of both moons – which is similar to asteroids – supports this theory, and Phobos’ unstable orbit would seem to suggest a recent capture. However, both moons have circular orbits near the equator, which is unusual for captured bodies.
So while Earth has a single satellite that is quite large and dense, Mars has two satellites that are small and orbit it at a comparatively close distance. And whereas the Moon was formed from Earth’s own debris after a rather severe collision, Mars’ satellites were likely captured asteroids.
Conclusion:
Okay, let’s review. Earth and Mars have their share of similarities, but also some rather stark differences.
Mean Radius: 6,371 km 3,396 km
Mass: 59.7×1023 kg 6.42 x 10²³ kg
Volume: 10.8 x 1011 km3 1.63 x 10¹¹ km³
Semi-Major Axis: 0.983 – 1.015 AU 1.3814 – 1.666 AU
Air Pressure: 101.325 kPa 0.4 – 0.87 kPa
Gravity: 9.8 m/s² 3.711 m/s²
Avg. Temperature: 14°C (57.2 °F) -46 °C (-51 °F)
Temp. Variations: ±160 °C (278°F) ±178 °C (320°F)
Axial Tilt: 23° 25.19°
Length of Day: 24 hours 24h 40m
Length of Year: 365.25 days 686.971 days
Water: Plentiful Intermittent (mostly frozen)
Polar Ice Caps: Yep Yep
In short, compared to Earth, Mars is a pretty small, dry, cold, and dusty planet. It has comparatively low gravity, very little atmosphere and no breathable air. And the years are also mighty long, almost twice that of Earth, in fact. However, the planet does have its fair share of water (albeit mostly in ice form), has seasonal cycles similar to Earth, temperature variations that are similar, and a day that is almost as long.
All of these factors will have to be addressed if ever human beings want to live there. And whereas some can be worked with, others will have to be overcome or adapted to. And for that, we will have to lean pretty heavily on our technology (i.e. terraforming and geoengineering). Best of luck to those who would like to venture there someday, and who do not plan on coming home!
When humans finally blast off for another world, where will we be going? Will we return to the Moon, and take over where the Apollo astronauts left off, or will we press onto Mars, and set foot on a whole new planet?
Humanity is going to need to make a difficult choice in the next few years. One that will have implications for the very future of space exploration: classic Star Wars or the new Trilogy? Star Trek fans feel your pain.
But also, we’ll need to figure out whether we should push on with the human exploration of Mars, so that Mark Watney can fulfill his potato destiny, or return to the Moon and build Moonbase Alpha. It’s surprisingly difficult to choose.
First, the case for the Moon. Obviously, the Moon is close. It’s just a few hundred thousand kilometers away, and it only takes astronauts a few days to get there, land on the surface and continue our scientific exploration of this world – which we still know very little about.
Why is the far side so different from the near side? Are there lava tubes and even vast underground caverns that future colonists could live in? It would be great to get more geologist boots on the regolith to find out.
Although it’s expensive, going to the Moon could eventually pay for itself. There are vast reserves of Helium-3 just sitting on the surface of the Moon. This material is rare on Earth, and could be used for future fusion energy planets. Not to mention other valuable minerals and elements that might just be lying around, ready for collection and used for space-based manufacturing.
The Moon makes sense as a testing ground, for humanity to perfect the techniques of surviving and thriving off planet Earth. If we can make it there, then we stand a chance of going the distance as a true interplanetary species.
The big problem with the Moon is that it’s completely inhospitable to human life. There’s no atmosphere, no protection from the Sun’s radiation, enormous temperature variations and a gravity so low it could be lethal over the long term.
The lunar regolith is like tiny shards of glass that would get everywhere, into everything, and be a constant danger to anyone living on the Moon.You couldn’t imagine a worse place to live.
The Moon is close but it sucks, what about Mars? Mars is much much farther than the Moon; the average distance to Mars is about 225 million kilometers.
This means that a journey to Mars with even a short visit to the surface will take the better part of 2 years. Astronauts will be beyond any kind of rescue and completely reliant on their spacecraft and supplies for that entire journey.
During their voyage, they’ll be bombarded with radiation from the Sun and there’ll be no protection on the surface on the planet either, because Mars doesn’t have a global magnetosphere like Earth.
But once they do get to Mars, they’ll have a world that’s much more earthlike. The temperatures are extreme, but can be reasonable at the equator, in the middle of the day. There’s a slight atmosphere, and stronger gravity – maybe your bones won’t waste away if you spend too long there.
To say there’s science to be done on Mars is an understatement. There are so many different terrains, with different geologic features. There’s the outstanding question of whether there was ever life on Mars, and if it’s there now. We’d really like to know the answer.
The Martian regolith is smoother and safer than the lunar version, having been weathered down by wind over millennia. It would still get everywhere, but it wouldn’t give you lung disease.
We now know there are vast reserves of water under the surface of Mars, and astronauts will be able to use this for all kinds of projects, like growing plants, drinking water, breathable atmosphere and even rocket fuel.
Sending humans to Mars is much more complicated and expensive than sending them to the Moon, and the level of space-based infrastructure would be much greater. Assuming we did this right, we’d have much more technology and a stronger presence in space.
Both Mars and the Moon have their pros and cons, but there’s another world that you might want to consider: Venus.
Although Venus is mostly a terrible hellscape, completely worthless down on the surface, where it’s hot enough to melt lead, and the atmospheric pressure is as bad as being a kilometer under the ocean. Did I mention it rains sulphuric acid?
But high up in the cloud tops of Venus, around 50 km altitude, the evil planet becomes downright habitable. You wouldn’t need to wear a spacesuit to regulate the delightful room temperature atmosphere. And you wouldn’t need a pressure suit, because it’s already perfect Earth pressure. You would, however, still need to worry about the sulphuric acid rain. And unless you’ve evolved to breathe carbon dioxide, you’ll need to keep a supply of oxygen handy.
NASA has already proposed sending dirigibles to Venus, filled with our breathable atmosphere for buoyancy, to explore. So maybe the next planet we set foot on, will be the one that we can never set foot on. Hmm, that sounded better in my brain.
You know what, I can’t choose. We should go back to the Moon, we should send humans to Mars, and we should explore Venus too. No matter where we go in the Solar System, it’s going to be an enormous undertaking. We’re going to need to develop new technologies, and risk the lives of everyone involved. But the rewards will be great, moving us one huge leap towards becoming a true interplanetary species.
So now it’s time for you to decide. The fate of humanity rests on your shoulders. Should we press on to Mars, or focus our energy on the Moon or even Venus? Give us your suggestions in the comments below.
First the quick facts: Our Solar System has eight “official” planets which orbit the Sun. Here are the planets listed in order of their distance from the Sun:
If you add in the dwarf planets, Ceres is located in the asteroid belt between Mars and Jupiter, while the remaining dwarf planets are in the outer Solar System and in order from the Sun are Pluto, Haumea, Makemake, and Eris. There is, as yet, a bit of indecision about the Trans-Neptunian Objects known as Orcus, Quaoar, 2007 O10, and Sedna and their inclusion in the dwarf planet category.
A mnemonic for this list would be “My Very Educated Mother Could Just Serve Us Noodles, Pie, Ham, Muffins, and Eggs” (and Steak, if Sedna is included.) You can find more tricks for remembering the order of the planets at our detailed article here.
Now, let’s look at a few details including the definition of a planet and a dwarf planet, as well as details about each of the planets in our Solar System.
What is a Planet?
In 2006, the International Astronomical Union (IAU) decided on the definition of a planet. The definition states that in our Solar System, a planet is a celestial body which:
is in orbit around the Sun,
has sufficient mass to assume hydrostatic equilibrium (a nearly round shape),
has “cleared the neighborhood” around its orbit.
is not a moon.
This means that Pluto, which was considered to be the farthest planet since its discovery in 1930, now is classified as a dwarf planet. The change in the definition came after the discovery three bodies that were all similar to Pluto in terms of size and orbit, (Quaoar in 2002, Sedna in 2003, and Eris in 2005).
With advances in equipment and techniques, astronomers knew that more objects like Pluto would very likely be discovered, and so the number of planets in our Solar System would start growing quickly. It soon became clear that either they all had to be called planets or Pluto and bodies like it would have to be reclassified.
With much controversy then and since, Pluto was reclassified as a dwarf planet in 2006. This also reclassified the asteroid Ceres as a dwarf planet, too, and so the first five recognized dwarf planets are Ceres, Pluto, Eris, Makemake and Haumea. Scientists believe there may be dozens more dwarf planets awaiting discovery.
Later, in 2008, the IAU announced the subcategory of dwarf planets with trans-Neptunian orbits would be known as “plutoids.” Said the IAU, “Plutoids are celestial bodies in orbit around the Sun at a distance greater than that of Neptune that have sufficient mass for their self-gravity to overcome rigid body forces so that they assume a hydrostatic equilibrium (near-spherical) shape, and that have not cleared the neighborhood around their orbit.”
This subcategory includes Ceres, Pluto, Haumea, Makemake, and Eris.
The Planets in our Solar System:
Having covered the basics of definition and classification, let’s get talking about those celestial bodies in our Solar System that are still classified as planets (sorry Pluto!). Here is a brief look at the eight planets in our Solar System. Included are quick facts and links so you can find out more about each planet.
Mercury: Mercury is the closest planet to our Sun, at just 58 million km (36 million miles) or 0.39 Astronomical Unit (AU) out. But despite its reputation for being sun-baked and molten, it is not the hottest planet in our Solar System (scroll down to find out who that dubious honor goes go!)
Mercury is also the smallest planet in our Solar System, and is also smaller than its largest moon (Ganymede, which orbits Jupiter). And being equivalent in size to 0.38 Earths, it is just slightly larger than the Earth’s own Moon. But this may have something to do with its incredible density, being composed primarily of rock and iron ore. Here are the planetary facts:
Diameter: 4,879 km (3,032 miles)
Mass: 3.3011 x 1023 kg (0.055 Earths)
Length of Year (Orbit): 87.97 Earth days
Length of Day: 59 Earth days.
Mercury is a rocky planet, one of the four “terrestrial planets” in our Solar System. Mercury has a solid, cratered surface, and looks much like Earth’s moon.
If you weigh 45 kg (100 pounds) on Earth, you would weigh 17 kg (38 pounds) on Mercury.
Mercury does not have any moons.
Temperatures on Mercury range between -173 to 427 degrees Celcius (-279 to 801 degrees Fahrenheit)
Just two spacecraft have visited Mercury: Mariner 10 in 1974-75 and MESSENGER, which flew past Mercury three times before going into orbit around Mercury in 2011 and ended its mission by impacting the surface of Mercury on April 30, 2015. MESSENGER has changed our understanding of this planet, and scientists are still studying the data.
Venus:
Venus is the second closest planet to our Sun, orbiting at an average distance of 108 million km (67 million miles) or 0.72 AU. Venus is often called Earth’s “sister planet,” as it is just a little smaller than Earth. Venus is 81.5% as massive as Earth, and has 90% of its surface area and 86.6% of its volume. The surface gravity, which is 8.87 m/s², is equivalent to 0.904 g – roughly 90% of the Earth standard.
And due to its thick atmosphere and proximity to the Sun, it is the Solar Systems hottest planet, with temperatures reaching up to a scorching 735 K (462 °C). To put that in perspective, that’s over four and a half times the amount of heat needed to evaporate water, and about twice as much needed to turn tin into molten metal (231.9 °C)!
Diameter: 7,521 miles (12,104 km)
Mass: 4.867 x 1024 kg (0.815 Earth mass)
Length of Year (Orbit): 225 days
Length of day: 243 Earth days
Surface temperature: 462 degrees C (864 degrees F)
Venus’ thick and toxic atmosphere is made up mostly of carbon dioxide (CO2) and nitrogen (N2), with clouds of sulfuric acid (H2SO4) droplets.
Venus has no moons.
Venus spins backwards (retrograde rotation), compared to the other planets. This means that the sun rises in the west and sets in the east on Venus.
If you weigh 45 kg (100 pounds) on Earth, you would weigh 41 kg (91 pounds) on Venus.
Venus is also known and the “morning star” or “evening star” because it is often brighter than any other object in the sky and is usually seen either at dawn or at dusk. Since it is so bright, it has often been mistaken for a UFO!
More than 40 spacecraft have explored Venus. The Magellan mission in the early 1990s mapped 98 percent of the planet’s surface. Find out more about all the missions here.
Earth: Our home, and the only planet in our Solar System (that we know of) that actively supports life. Our planet is the third from the our Sun, orbiting it at an average distance of 150 million km (93 million miles) from the Sun, or one AU. Given the fact that Earth is where we originated, and has all the necessary prerequisites for supporting life, it should come as no surprise that it is the metric on which all others planets are judged.
Whether it is gravity (g), distance (measured in AUs), diameter, mass, density or volume, the units are either expressed in terms of Earth’s own values (with Earth having a value of 1) or in terms of equivalencies – i.e. 0.89 times the size of Earth. Here’s a rundown of the kinds of
Diameter: 12,760 km (7,926 miles)
Mass: 5.97 x 1024 kg
Length of Year (Orbit): 365 days
Length of day: 24 hours (more precisely, 23 hours, 56 minutes and 4 seconds.)
Surface temperature: Average is about 14 C, (57 F), with ranges from -88 to 58 (min/max) C (-126 to 136 F).
Earth is another terrestrial planet with an ever-changing surface, and 70 percent of the Earth’s surface is covered in oceans.
Earth has one moon.
Earth’s atmosphere is 78% nitrogen, 21% oxygen, and 1% various other gases.
Mars: Mars is the fourth planet from the sun at a distance of about 228 million km (142 million miles) or 1.52 AU. It is also known as “the Red Planet” because of its reddish hue, which is due to the prevalence of iron oxide on its surface. In many ways, Mars is similar to Earth, which can be seen from its similar rotational period and tilt, which in turn produce seasonal cycles that are comparable to our own.
The same holds true for surface features. Like Earth, Mars has many familiar surface features, which include volcanoes, valleys, deserts, and polar ice caps. But beyond these, Mars and Earth have little in common. The Martian atmosphere is too thin and the planet too far from our Sun to sustain warm temperatures, which average 210 K (-63 ºC) and fluctuate considerably.
Diameter: 6,787 km, (4,217 miles)
Mass: 6.4171 x 1023 kg (0.107 Earths)
Length of Year (Orbit): 687 Earth days.
Length of day: 24 hours 37 minutes.
Surface temperature: Average is about -55 C (-67 F), with ranges of -153 to +20 °C (-225 to +70 °F)
Mars is the fourth terrestrial planet in our Solar System. Its rocky surface has been altered by volcanoes, impacts, and atmospheric effects such as dust storms.
Mars has a thin atmosphere made up mostly of carbon dioxide (CO2), nitrogen (N2) and argon (Ar).If you weigh 45 kg (100 pounds) on Earth, you would weigh 17 kg (38 pounds) on Mars.
Mars has two small moons, Phobos and Deimos.
Mars is known as the Red Planet because iron minerals in the Martian soil oxidize, or rust, causing the soil to look red.
Jupiter: Jupiter is the fifth planet from the Sun, at a distance of about 778 million km (484 million miles) or 5.2 AU. Jupiter is also the most massive planet in our Solar System, being 317 times the mass of Earth, and two and half times larger than all the other planets combined. It is a gas giant, meaning that it is primarily composed of hydrogen and helium, with swirling clouds and other trace gases.
Jupiter’s atmosphere is the most intense in the Solar System. In fact, the combination of incredibly high pressure and coriolis forces produces the most violent storms ever witnessed. Wind speeds of 100 m/s (360 km/h) are common and can reach as high as 620 km/h (385 mph). In addition, Jupiter experiences auroras that are both more intense than Earth’s, and which never stop.
Diameter: 428,400 km (88,730 miles)
Mass: 1.8986 × 1027 kg (317.8 Earths)
Length of Year (Orbit): 11.9 Earth years
Length of day: 9.8 Earth hours
Temperature: -148 C, (-234 F)
Jupiter has 67 known moons, with an additional 17 moons awaiting confirmation of their discovery – for a total of 67 moons. Jupiter is almost like a mini solar system!
Jupiter has a faint ring system, discovered in 1979 by the Voyager 1 mission.
If you weigh 45 kg (100 pounds) on Earth, you would weigh 115 kg (253) pounds on Jupiter.
Jupiter’s Great Red Spot is a gigantic storm (bigger than Earth) that has been raging for hundreds of years. However, it appears to be shrinking in recent years.
Many missions have visited Jupiter and its system of moons, with the latest being the Juno mission will arrive at Jupiter in 2016. You can find out more about missions to Jupiter here.
Saturn: Saturn is the sixth planet from the Sun at a distance of about 1.4 billion km (886 million miles) or 9.5 AU. Like Jupiter, it is a gas giant, with layers of gaseous material surrounding a solid core. Saturn is most famous and most easily recognized for its spectacular ring system, which is made of seven rings with several gaps and divisions between them.
Diameter: 120,500 km (74,900 miles)
Mass: 5.6836 x 1026 kg (95.159 Earths)
Length of Year (Orbit): 29.5 Earth years
Length of day: 10.7 Earth hours
Temperature: -178 C (-288 F)
Saturn’s atmosphere is made up mostly of hydrogen (H2) and helium (He).
If you weigh 45 kg (100 pounds) on Earth, you would weigh about 48 kg (107 pounds) on Saturn
Saturn has 53 known moons with an additional 9 moons awaiting confirmation.
Five missions have gone to Saturn. Since 2004, Cassini has been exploring Saturn, its moons and rings. You can out more about missions to Saturn here.
Uranus: Uranus is the seventh planet from the sun at a distance of about 2.9 billion km (1.8 billion miles) or 19.19 AU. Though it is classified as a “gas giant”, it is often referred to as an “ice giant” as well, owing to the presence of ammonia, methane, water and hydrocarbons in ice form. The presence of methane ice is also what gives it its bluish appearance.
Uranus is also the coldest planet in our Solar System, making the term “ice” seem very appropriate! What’s more, its system of moons experience a very odd seasonal cycle, owing to the fact that they orbit Neptune’s equator, and Neptune orbits with its north pole facing directly towards the Sun. This causes all of its moons to experience 42 year periods of day and night.
Diameter: 51,120 km (31,763 miles)
Mass:
Length of Year (Orbit): 84 Earth years
Length of day: 18 Earth hours
Temperature: -216 C (-357 F)
Most of the planet’s mass is made up of a hot dense fluid of “icy” materials – water (H2O), methane (CH4). and ammonia (NH3) – above a small rocky core.
Uranus has an atmosphere which is mostly made up of hydrogen (H2) and helium (He), with a small amount of methane (CH4). The methane gives Uranus a blue-green tint.
If you weigh 45 kg (100 pounds) on Earth, you would weigh 41 kg (91 pounds) on Uranus.
Uranus has 27 moons.
Uranus has faint rings; the inner rings are narrow and dark and the outer rings are brightly colored.
Voyager 2 is the only spacecraft to have visited Uranus. Find out more about this mission here.
Neptune: Neptune is the eighth and farthest planet from the Sun, at a distance of about 4.5 billion km (2.8 billion miles) or 30.07 AU. Like Jupiter, Saturn and Uranus, it is technically a gas giant, though it is more properly classified as an “ice giant” with Uranus.
Due to its extreme distance from our Sun, Neptune cannot be seen with the naked eye, and only one mission has ever flown close enough to get detailed images of it. Nevertheless, what we know about it indicates that it is similar in many respects to Uranus, consisting of gases, ices, methane ice (which gives its color), and has a series of moons and faint rings.
Diameter: 49,530 km (30,775 miles)
Mass: 1.0243 x 1026 kg (17 Earths)
Length of Year (Orbit): 165 Earth years
Length of day: 16 Earth hours
Temperature: -214 C (-353 F)
Neptune is mostly made of a very thick, very hot combination of water (H2O), ammonia (NH3), and methane (CH4) over a possible heavier, approximately Earth-sized, solid core.
Neptune’s atmosphere is made up mostly of hydrogen (H2), helium (He) and methane (CH4).
Neptune has 13 confirmed moons and 1 more awaiting official confirmation.
Neptune has six rings.
If you weigh 45 kg (100 pounds) on Earth, you would weigh 52 kg (114 pounds) on Neptune.
Neptune was the first planet to be predicted to exist by using math.
Voyager 2 is the only spacecraft to have visited Neptune. You can find out more about this mission here.
Find out more about Neptune at this series of articles on Universe Today and this NASA webpage. We have written many articles about the planets for Universe Today. Here are some facts about planets, and here’s an article about the names of the planets.If you’d like more info on the Solar System planets, dwarf planets, asteroids and more, check out NASA’s Solar System exploration page, and here’s a link to NASA’s Solar System Simulator.We’ve also recorded a series of episodes of Astronomy Cast about every planet in the Solar System. Start here, Episode 49: Mercury.Venus is the second planet from the Sun, and it is the hottest planet in the Solar System due to its thick, toxic atmosphere which has been described as having a “runaway greenhouse effect” on the planet.
Now you know! And if you find yourself unable to remember all the planets in their proper order, just repeat the words, “My Very Educated Mother Just Served Us Noodles.” Of course, the Pie, Ham, Muffins and Eggs are optional, as are any additional courses that might be added in the coming years!
NASA took another big step on the path to propel our astronauts back to deep space and ultimately on to Mars with the long awaited decision to formally restart production of the venerable RS-25 engine that will power the first stage of the agency’s mammoth Space Launch System (SLS) heavy lift rocket, currently under development.
Aerojet Rocketdyne was awarded a NASA contract to reopen the production lines for the RS-25 powerplant and develop and manufacture a certified engine for use in NASA’s SLS rocket. The contract spans from November 2015 through Sept. 30, 2024.
The SLS is the most powerful rocket the world has ever seen and will loft astronauts in the Orion capsule on missions back to the Moon by around 2021, to an asteroid around 2025 and then beyond on a ‘Journey to Mars’ in the 2030s – NASA’s overriding and agency wide goal. The first unmanned SLS test flight is slated for late 2018.
The core stage (first stage) of the SLS will initially be powered by four existing RS-25 engines, recycled and upgraded from the shuttle era, and a pair of five-segment solid rocket boosters that will generate a combined 8.4 million pounds of liftoff thrust, making it the world’s most powerful rocket ever.
The newly awarded RS-25 engine contract to Sacramento, California based Aerojet Rocketdyne is valued at 1.16 Billion and aims to “modernize the space shuttle heritage engine to make it more affordable and expendable for SLS,” NASA announced on Nov. 23. NASA can also procure up to six new flight worthy engines for later launches.
“SLS is America’s next generation heavy lift system,” said Julie Van Kleeck, vice president of Advanced Space & Launch Programs at Aerojet Rocketdyne, in a statement.
“This is the rocket that will enable humans to leave low Earth orbit and travel deeper into the solar system, eventually taking humans to Mars.”
The lead time is approximately 5 or 6 years to build and certify the first new RS-25 engine, Van Kleek told Universe Today in an interview. Therefore NASA needed to award the contract to Aerojet Rocketdyne now so that its ready when needed.
The RS-25 is actually an upgraded version of former space shuttle main engines (SSMEs) originally built by Aerojet Rocketdyne.
The reusable engines were used with a 100% success rate during NASA’s three decade-long Space Shuttle program to propel the now retired shuttle orbiters to low Earth orbit.
Those same engines are now being modified for use by the SLS on missions to deep space starting in 2018.
But NASA only has an inventory of 16 of the RS-25 engines, which is sufficient for a maximum of the first four SLS launches only. Although they were reused numerous times during the shuttle era, they will be discarded after each SLS launch.
And since the engines cannot be recovered and reused as during the shuttle era, a brand new set of RS-25s will have to be manufactured from scratch.
Therefore, the engine manufacturing process can and will be modernized and significantly streamlined – using fewer part and welds – to cut costs and improve performance.
“The RS-25 engines designed under this new contract will be expendable with significant affordability improvements over previous versions,” added Jim Paulsen, vice president, Program Execution, Advanced Space & Launch Programs at Aerojet Rocketdyne. “This is due to the incorporation of new technologies, such as the introduction of simplified designs; 3-D printing technology called additive manufacturing; and streamlined manufacturing in a modern, state-of-the-art fabrication facility.”
“The new engines will incorporate simplified, yet highly reliable, designs to reduce manufacturing time and cost. For example, the overall engine is expected to simplify key components with dramatically reduced part count and number of welds. At the same time, the engine is being certified to a higher operational thrust level,” says Aerojet Rocketdyne.
The existing stock of 16 RS-25s are being upgraded for use in SLS and also being run through a grueling series of full duration hot fire test firings to certify them for flight, as I reported previously here at Universe Today.
Among the RS-25 upgrades is a new engine controller specific to SLS. The engine controller functions as the “brain” of the engine, which checks engine status, maintains communication between the vehicle and the engine and relays commands back and forth.
Each of the RS-25’s engines generates some 500,000 pounds of thrust. They are fueled by cryogenic liquid hydrogen and liquid oxygen. For SLS they will be operating at 109% of power, compared to a routine usage of 104.5% during the shuttle era. They measure 14 feet tall and 8 feet in diameter.
They have to withstand and survive temperature extremes ranging from -423 degrees F to more than 6000 degrees F.
The maiden test flight of the SLS is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) version with a liftoff thrust of 8.4 million pounds. It will boost an unmanned Orion on an approximately three week long test flight beyond the Moon and back.
NASA plans to gradually upgrade the SLS to achieve an unprecedented lift capability of 130 metric tons (143 tons), enabling the more distant missions even farther into our solar system.
The first SLS test flight with the uncrewed Orion is called Exploration Mission-1 (EM-1) and will launch from Launch Complex 39-B at the Kennedy Space Center.
Orion’s inaugural mission dubbed Exploration Flight Test-1 (EFT) was successfully launched on a flawless flight on Dec. 5, 2014 atop a United Launch Alliance Delta IV Heavy rocket Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Learn more about SLS, Orion, SpaceX, Orbital ATK Cygnus, ISS, ULA Atlas rocket, Boeing, Space Taxis, Mars rovers, Antares, NASA missions and more at Ken’s upcoming outreach events:
Dec 1 to 3: “Orbital ATK Atlas/Cygnus launch to the ISS, ULA, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
Dec 8: “America’s Human Path Back to Space and Mars with Orion, Starliner and Dragon.” Amateur Astronomers Assoc of Princeton, AAAP, Princeton University, Ivy Lane, Astrophysics Dept, Princeton, NJ; 7:30 PM.
NASA’s Curiosity rover is on the Martian road to soon start the first ever study of currently active sand dunes anywhere beyond Earth. The dunes are located nearby, at the foothills of Mount Sharp, and Curiosity is due to arrive for an up close look in just a few days to start her unique research investigations.
The eerily dark dunes, named the “Bagnold Dunes,” skirt the northwestern flank of Mount Sharp. Ascending and diligently exploring the sedimentary layers of Mount Sharp is the primary goal of the mission.
“The ‘Bagnold Dunes’ are tantalizingly close,” says Ken Herkenhoff, Research Geologist at the USGS Astrogeology Science Center and an MSL science team member, in a mission update on Wednesday, Nov. 18.
The “Bagnold Dunes” have been quite noticeable in numerous striking images taken from Marsorbit, during the vehicles nail biting ‘7 Minutes of Terror’ descent from orbit, as well as in thousands upon thousands of images taken by Curiosity herself as the robot edged ever closer during her over three year long traverse across the floor of the Gale Crater landing site.
Curiosity must safely cross the expansive dune field before climbing Mount Sharp.
Although multiple NASA rovers, including Curiosity, have studied much smaller Martian sand ripples or drifts, none has ever visited and investigated up close these types of large dunes that range in size as tall as a two story building or more and as wide as a football field or more.
Moreover the Martian dunes are shifting even today.
“Shifting sands lie before me,” Curiosity tweeted. “Off to image, scoop and scuff active dunes on Mars. I’ll be the first craft to visit such dunes beyond Earth!”
“The Bagnold Dunes are active: Images from orbit indicate some of them are migrating as much as about 3 feet (1 meter) per Earth year. No active dunes have been visited anywhere in the solar system besides Earth,” notes NASA.
Curiosity is currently only some 200 yards or meters away from the first dune she will investigate, simply named “Dune 1.”
As the rover approaches closer and closer, the dune research campaign is already in progress as she snaps daily high resolution images and gathers measurements of the area’s wind direction and speed.
“We’ve planned investigations that will not only tell us about modern dune activity on Mars but will also help us interpret the composition of sandstone layers made from dunes that turned into rock long ago,” said Bethany Ehlmann of the California Institute of Technology and NASA’s Jet Propulsion Laboratory, in Pasadena, California, in a statement.
After arriving at the dune, the team will command Curiosity to scoop up samples for analysis by the rover’s pair of miniaturized chemistry instruments inside its belly. It will also scuff the dune with a wheel to examine and compare the surface and interior physical characteristics.
The dark dunes are informally named after British military engineer Ralph Bagnold (1896-1990), who conducted pioneering studies of the effect of wind on motion of individual particles in dunes on Earth. Curiosity will carry out “the first in-place study of dune activity on a planet with lower gravity and less atmosphere.”
Although the huge Bagnold dunes are of great scientific interest, the team will also certainly exercise caution in maneuvering the car sized six wheel robot.
Recall that NASA’s smaller golf cart Spirit Mars rover perished a few years back – albeit over 6 years into her 3 month mission – when the robot became unexpectedly mired in a nearly invisible sand ripple from which she was unable to escape.
Likewise, sister Opportunity got stuck in a sand ripple earlier in her mission that took the engineering team weeks of painstaking effort to extricate from a spot subsequently named ‘Purgatory’ that resulted in many lessons learned for future operations.
Opportunity is still hard at work – currently exploring Marathon Valley – nearly a dozen years into her planned 3 month mission.
Based on orbital observations by the CRISM and HiRISE instruments aboard NASA’s Mars Reconnaissance Orbiter, the science team has concluded that the Bagnold Dunes are mobile and also have an uneven distribution of minerals, such as olivine.
“We will use Curiosity to learn whether the wind is actually sorting the minerals in the dunes by how the wind transports particles of different grain size,” Ehlmann said.
“If the Bagnold campaign finds that other mineral grains are sorted away from heavier olivine-rich grains by the wind’s effects on dune sands, that could help researchers evaluate to what extent low and high amounts of olivine in some ancient sandstones could be caused by wind-sorting rather than differences in alteration by water,” say researchers.
“These dunes have a different texture from dunes on Earth,” said team member Nathan Bridges, of the Johns Hopkins University’s Applied Physics Laboratory, Laurel, Maryland.
“The ripples on them are much larger than ripples on top of dunes on Earth, and we don’t know why. We have models based on the lower air pressure. It takes a higher wind speed to get a particle moving. But now we’ll have the first opportunity to make detailed observations.”
Last month Curiosity conducted her eighth drill campaign for sample chemical analysis at the ‘Big Sky’ site, before moving on to ‘Greenhorn’. Big Sky was an area of cross-bedded sandstone rock in the Stimson geological unit on the lower slopes of Mount Sharp.
Curiosity has already accomplished her primary objective of discovering a habitable zone on the Red Planet – at the Yellowknife Bay area – that contains the minerals necessary to support microbial life in the ancient past when Mars was far wetter and warmer billions of years ago.
As of today, Sol 1168, November 19, 2015, she has driven over 6.9 miles (11.1 kilometers) kilometers and taken over 282,100 amazing images.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Learn more about Orbital ATK Cygnus, ISS, ULA Atlas rocket, SpaceX, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:
Dec 1 to 3: “Orbital ATK Atlas/Cygnus launch to the ISS, ULA, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
Dec 8: “America’s Human Path Back to Space and Mars with Orion, Starliner and Dragon.” Amateur Astronomers Assoc of Princeton, AAAP, Princeton University, Ivy Lane, Astrophysics Dept, Princeton, NJ; 7:30 PM.