Weekly Space Hangout – April 17, 2015: Amy Shira Teitel and “Breaking the Chains of Gravity”

Host: Fraser Cain (@fcain)
Special Guest: Amy Shira Teitel (@astVintageSpace) discussing space history and her new book Breaking the Chains of Gravity
Guests:
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )

This Week’s Stories:
Falcon 9 launch and (almost!) landing
NASA Invites ESA to Build Europa Piggyback Probe
Bouncing Philae Reveals Comet is Not Magnetised
Astronomers Watch Starbirth in Real Time
SpaceX Conducts Tanking Test on In-Flight Abort Falcon 9
Rosetta Team Completely Rethinking Comet Close Encounter Strategy
Apollo 13 Custom LEGO Minifigures Mark Mission’s 45th Anniversary
LEGO Launching Awesome Spaceport Shuttle Sets in August
New Horizons Closes in on Pluto
Work Platform to be Installed in the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida.
Watching the Sunsets of Mars Through Robot Eyes: Photos
NASA Invites ESA to Build Europa Piggyback Probe
ULA Plans to Introduce New Rocket One Piece at a Time
Two Mysterious Bright Spots on Dwarf Planet Ceres Are Not Alike
18 Image Montage Show Off Comet 67/P Activity
ULA’s Next Rocket To Be Named Vulcan
NASA Posts Huge Library of Space Sounds And You’re Free to Use Them
Explaining the Great 2011 Saturn Storm
Liquid Salt Water May Exist on Mars
Color Map Suggests a Once-Active Ceres
Diverse Destinations Considered for New Interplanetary Probe
Paul Allen Asserts Rights to “Vulcan” Trademark, Challenging Name of New Rocket
First New Horizons Color Picture of Pluto and Charon
NASA’s Spitzer Spots Planet Deep Within Our Galaxy
Icy Tendrils Reaching into Saturn Ring Traced to Their Source
First Signs of Self-Interacting Dark Matter?
Anomaly Delays Launch of THOR 7 and SICRAL 2
Nearby Exoplanet’s Hellish Atmosphere Measured
The Universe Isn’t Accelerating As Fast As We Thought
Glitter Cloud May Serve As Space Mirror
Cassini Spots the Sombrero Galaxy from Saturn
EM-1 Orion Crew Module Set for First Weld Milestone in May
Special Delivery: NASA Marshall Receives 3D-Printed Tools from Space
The Roomba for Lawns is Really Pissing Off Astronomers
Giant Galaxies Die from the Inside Out
ALMA Reveals Intense Magnetic Field Close to Supermassive Black Hole
Dawn Glimpses Ceres’ North Pole
Lapcat A2 Concept Sup-Orbital Spaceplane SABRE Engine Passed Feasibility Test by USAF Research Lab
50 Years Since the First Full Saturn V Test Fire
ULA CEO Outlines BE-4 Engine Reuse Economic Case
Certification Process Begins for Vulcan to Carry Military Payloads
Major Advance in Artificial Photosynthesis Poses Win/Win for the Environment
45th Anniversary [TODAY] of Apollo 13’s Safe Return to Earth
Hubble’s Having A Party in Washington Next Week (25th Anniversary of Hubble)

Don’t forget, the Cosmoquest Hangoutathon is coming soon!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

You can join in the discussion between episodes over at our Weekly Space Hangout Crew group in G+, and suggest your ideas for stories we can discuss each week!

Lunar ‘Fountain of Youth’ Challenge / Mercury Returns with Gusto

A day-old Moon floats over the Spirit Mountain ski hill in Duluth, Minn. this past January. Credit: Bob King

16th century Spanish explorer Juan Ponce de León looked and looked but never did find the Fountain of Youth, a spring rumored to restore one’s youth if you bathed or drank from its waters.  If he had, I might have interviewed him for this story.

Sunday night, another symbol of youth beckons skywatchers the world over. A fresh-faced, day-young crescent Moon will hang in the western sky in the company of the planets Mars and Mercury. While I can’t promise a wrinkle-free life, sighting it may send a tingle down your spine reminding you of why you fell in love with astronomy in the first place. 

Look low in the west-northwest sky Sunday evening April 19 to spot the day-old crescent Moon alongside Mars and returning Mercury. Source: Stellarium
Look low in the west-northwest sky Sunday evening April 19 to spot the day-old crescent Moon alongside Mars and returning Mercury. Brilliant Venus will help you get oriented. This map shows the sky around 40 minutes after sunset but you can start as early as 30 minutes especially if you’re using binoculars. Source: Stellarium

The Moon reaches New Moon phase on Saturday, April 18 during the early afternoon for North and South America. By sunset Sunday, the fragile crescent will be about 29 hours old as seen from the East Coast, 30 for the Midwest, 31 for the mountain states and 32 hours for the West Coast. Depending on where you live, the Moon will hover some 5-7° (three fingers held at arm’s length) above the northwestern horizon 40 minutes after sunset. To make sure you see it, find a location with a wide-open view to the west-northwest.

Earthshine gets easier to see once the Moon moves a little further from the Sun and into a dark sky. Our planet provides enough light to spot some of the larger craters. Credit: Bob King
Earthshine gets easier to see as the Moon moves further from the Sun and the crescent fills out a bit. Our planet provides enough light to spot some of the larger craters. Credit: Bob King

While the crescent is illuminated by direct sunlight, you’ll also see the full outline of the Moon thanks to earthshine. Sunlight reflected off Earth’s globe faintly illuminates the portion of the Moon not lit by the Sun. Because it’s twice-reflected, the light looks more like twilight. Ghostly. Binoculars will help you see it best.

Now that you’ve found the dainty crescent, slide your eyes (or binoculars) to the right. That pinpoint of light just a few degrees away is Mars, a planet that’s lingered in the evening sky longer than you’ve promised to clean out the garage. The Red Planet shone brightly at opposition last April but has since faded and will soon be in conjunction with the Sun. Look for it to return bigger and brighter next May when it’s once again at opposition.

Diagram showing Mercury's position and approximate altitude above the horizon during the current apparition. Also shown are the planet's phases, which are visible in a telescope. Credit: Stellarium, Bob King
Diagram showing Mercury’s position and approximate altitude above the horizon during the current apparition. Also shown are the planet’s changing phases, which are visible in a telescope. Credit: Stellarium, Bob King

To complete the challenge, you’ll have to look even lower in the west to spot Mercury. Although brighter than Vega, it’s only 3° high 40 minutes after sunset Sunday. Its low altitude makes it Mercury is only just returning to the evening sky in what will become its best appearance at dusk for northern hemisphere skywatchers in 2015.

As an inner planet, Mercury goes through phases just like Venus and the Moon. We see it as everything from a crescent to a "full moon" as it angle to the Sun changes during its 88-day orbit. Credit: ESO
As an inner planet, Mercury goes through phases just like Venus and the Moon. We see it morph from crescent to “full moon” as its angle to the Sun changes during its revolution of the Sun. Credit: ESO

Right now, because of altitude, the planet’s a test of your sky and observing chops, but let the Moon be your guide on Sunday and you might be surprised. In the next couple weeks, Mercury vaults from the horizon, becoming easier and easier to see.  Greatest elongation east of the Sun occurs on the evening of May 6. Although the planet will be highest at dusk on that date, it will have faded from magnitude -0.5 to +1.2. By the time it leaves the scene in late May, it will become very tricky to spot at magnitude +3.5.

Mercury’s a bit different from Venus, which is brighter in its crescent phase and faintest at “full”. Mercury’s considerably smaller than Venus and farther from the Earth, causing it to appear brightest around full phase and faintest when a crescent, even though both planets are largest and closest to us when seen as crescents.

Not to be outdone by Venus earlier this month, Mercury passes a few degrees south of the Pleiades star cluster on April 29. The map shows the sky facing northwest about 50 minutes after sunset. Source: Stellarium
Not to be outdone by the Venus-Pleiades conjunction earlier this month, Mercury passes a few degrees south of the star cluster on April 29. The map shows the sky facing northwest about 50 minutes after sunset. Source: Stellarium

Venus makes up for its dwindling girth by its size and close proximity to Earth. It also doesn’t hurt that it’s covered in highly reflective clouds. Venus reflects about 70% of the light it receives from the Sun; Mercury’s a dark world and gives back just 7%. That’s dingier than the asphalt-toned Moon!

Good luck in your mercurial quest. We’d love to hear your personal stories of the hunt — just click on Comments.

SpaceX Dragon Launches on Science Supply Run to Station, Booster Hard Lands on Barge

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – After a 24 hour delay due to threatening clouds, a SpaceX Falcon 9 rocket soared spectacularly to orbit from the Florida Space coast today, April 14, carrying a Dragon on a science supply run bound for the the International Space Station that will help pave the way for deep space human missions to the Moon, Asteroids and Mars.

Meanwhile, SpaceX’s bold attempt to land and recover the 14 story tall first stage of the Falcon 9 rocket successfully reached a tiny ocean floating barge in the Atlantic Ocean, but tilted over somewhat over in the final moments of the approach, and tipped over after landing and broke apart. Here’s a Vine video posted on Twitter by Elon Musk:

See the video of the launch, below.

SpaceX will continue with attempt to soft land and recover the rocket on upcoming launches, which was a secondary goal of the company. SpaceX released some imagery and video with a few hours of the landing attempt.

“Looks like Falcon landed fine, but excess lateral velocity caused it to tip over post landing,” tweeted SpaceX CEO Elon Musk.

Falcon 9 first stage approaches Just Read the Instructions. Image of SpaceX Falcon 9 first start booster in final moments of hard landing on ocean going barge after CRS-6 launch. Credit: SpaceX
Falcon 9 first stage approaches Just Read the Instructions. Image of SpaceX Falcon 9 first start booster in final moments of hard landing on ocean going barge after CRS-6 launch. Credit: SpaceX

The Falcon 9 first stage was outfitted with four landing legs and grid fins to enable the landing attempt, which is a secondary objective of SpaceX.

The top priority was to safely launch the Falcon 9 and deliver critical supplies to the station with the Dragon cargo vessel.

“Five years ago this week, President Obama toured the same SpaceX launch pad used today to send supplies, research and technology development to the ISS,” said NASA Administrator Charles Bolden.

“Back then, SpaceX hadn’t even made its first orbital flight. Today, it’s making regular flights to the space station and is one of two American companies, along with The Boeing Company, that will return the ability to launch NASA astronauts to the ISS from U.S. soil and land then back in the United States. That’s a lot of progress in the last five years, with even more to come in the next five.”

“Looks like Falcon landed fine, but excess lateral velocity caused it to tip over post landing,” tweeted SpaceX CEO Elon Musk.

A chase plane captured dramatic footage of the landing on the ocean going platform known as the ‘autonomous spaceport drone ship’ (ASDS).

It was pre-positioned some 200 to 250 miles offshore of the Carolina coast in the Atlantic Ocean along the rockets flight path flying along the US Northeast coast to match that of the ISS.

The ASDS measures only 300 by 100 feet, with wings that extend its width to 170 feet.

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission. to the International Space Station. Credit: Ken Kremer/kenkremer.com

Overall CRS-6 is the sixth SpaceX commercial resupply services mission and the seventh trip by a Dragon spacecraft to the station since 2012.

CRS-6 marks the company’s sixth operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s original Commercial Resupply Services (CRS) contract.

The SpaceX Falcon 9 with the Dragon vessel for the CRS-6 launch lifts off for the International Space Station at 4:10 PM eastern time on 4/14/15 from Cape Canaveral.  Credit: Alex Polimeni/AmericaSpace
The SpaceX Falcon 9 with the Dragon vessel for the CRS-6 launch lifts off for the International Space Station at 4:10 PM eastern time on 4/14/15 from Cape Canaveral. Credit: Alex Polimeni/AmericaSpace

Dragon is packed with more than 4,300 pounds (1915 kilograms) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear for the six person Expedition 43 and 44 crews serving aboard the ISS.

After a three day orbital chase, the Dragon spacecraft with rendezvous with the million post Earth orbiting outpost Friday morning April 17.

After SpaceX engineers on the ground maneuver the Dragon close enough to the station, European Space Agency (ESA) astronaut Samantha Cristoforetti will use the station’s 57.7-foot-long (17-meter-long) robotic arm to reach out and capture Dragon at approximately 7 a.m. EDT on April 17.

Cristoforetti will be assisted by fellow Expedition 43 crew member and NASA astronaut
Terry Virts, as they work inside the stations seven windowed domed cupola to berth Dragon at the Earth-facing port of the Harmony module.

The series of images shows the journey the SpaceX Falcon 9 rocket and Dragon spacecraft from its launch at 4:10 p.m. EDT on Tuesday April 14, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, to solar array deployment. Credit: NASA TV
The series of images shows the journey the SpaceX Falcon 9 rocket and Dragon spacecraft from its launch at 4:10 p.m. EDT on Tuesday April 14, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, to solar array deployment. Credit: NASA TV

Watch for Ken’s continuing onsite coverage of the CRS-6 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, Mars rovers, Orion, Antares, MMS, NASA missions and more at Ken’s upcoming outreach events:

Apr 18/19: “Curiosity explores Mars” and “NASA Human Spaceflight programs” – NEAF (NorthEast Astronomy Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club

This Mountain on Mars Is Leaking

Seasonal flows spotted by HiRISE on northwestern slopes in Hale Crater. (NASA/JPL/University of Arizona)

As the midsummer Sun beats down on the southern mountains of Mars, bringing daytime temperatures soaring up to a balmy 25ºC (77ºF), some of their slopes become darkened with long, rusty stains that may be the result of water seeping out from just below the surface.

The image above, captured by the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter on Feb. 20, shows mountain peaks within the 150-km (93-mile) -wide Hale Crater. Made from data acquired in visible and near infrared wavelengths the long stains are very evident, running down steep slopes below the rocky cliffs.

These dark lines, called recurring slope lineae (RSL) by planetary scientists, are some of the best visual evidence we have of liquid water existing on Mars today – although if RSL are the result of water it’s nothing you’d want to fill your astro-canteen with; based on the first appearances of these features in early Martian spring any water responsible for them would have to be extremely high in salt content.

According to HiRISE Principal Investigator Alfred McEwen “[t]he RSL in Hale have an unusually “reddish” color compared to most RSL, perhaps due to oxidized iron compounds, like rust.”

See a full image scan of the region here, and watch an animation of RSL evolution (in another location) over the course of a Martian season here.

Perspective view of Hale crater made from data acquired by ESA's Mars Express. Credit: ESA/DLR/FU Berlin (G. Neukum)
Perspective view of Hale crater made from data acquired by ESA’s Mars Express. Credit: ESA/DLR/FU Berlin (G. Neukum)
Channels in the southeastern ejecta of Hale crater. Credit: NASA/JPL-Caltech/Arizona State University. (Source.)
THEMIS image of channels in the southeastern ejecta of Hale crater. Credit: NASA/JPL-Caltech/Arizona State University. (Source.)

Hale Crater itself is likely no stranger to liquid water. Its geology strongly suggests the presence of water at the time of its formation at least 3.5 billion years ago in the form of subsurface ice (with more potentially supplied by its cosmic progenitor) that was melted en masse at the time of impact. Today carved channels and gullies branch within and around the Hale region, evidence of enormous amounts of water that must have flowed from the site after the crater was created. (Source.)

The crater is named after George Ellery Hale, an astronomer from Chicago who determined in 1908 that sunspots are the result of magnetic activity.

Read more on the University of Arizona’s HiRISE site here.

Sources: NASA, HiRISE and Alfred McEwen

UPDATE April 13: Conditions for subsurface salt water (i.e., brine) have also been found to exist in Gale Crater based on data acquired by the Curiosity rover. Gale was not thought to be in a location conducive to brine formation, but if it is then it would further strengthen the case for such salt water deposits in places where RSL have been observed. Read more here.

How Dense is the Asteroid Belt?

How Dense is the Asteroid Belt?

We’ve seen way too many science fiction episodes that show asteroid belts as dense fields of tumbling boulders. How dense is the asteroid belt, and how to spacecraft survive getting through them?

For the purposes of revenue, lazy storytelling, and whatever it is Zak Snyder tells himself to get out of bed in the morning, when it comes to asteroids, Science fiction and video games creators have done something of disservice to your perception of reality.

Take a fond trip down sci-fi memory lane, and think about the time someone, possibly you, has had to dogfight or navigate through yet another frakkin’ asteroid belt. Huge space rocks tumbling dangerously in space! Action! Adventure! Only the skilled pilot, with her trusty astromecha-doplis ship can maneuver through the dense cluster of space boulders, dodging this way and that, avoiding certain collision.

And then she shoots her pew pew laser breaking up larger asteroids up into smaller ones, possibly obliterating them entirely depending on the cg budget. Inevitably, there’s bobbing and weaving. Pursuit craft will clip their wings on asteroids, spinning off into nearby tango. Some will fly straight into a space boulder.

Finally you’ll thread the needle on a pair of asteroids and the last ship of the whatever they’re called clicky clacky mantis Zorak bug people will try and catch you, but he/it won’t be quite so lucky. Poetically getting squashed like… a… bug. Sackhoff for the win, pilot victorious.

Okay, you probably knew the laser part is totally fake. I mean, everybody knows you can’t hear sounds in space. Outside of Starbuck being awesome, is that at all realistic? And if so, how does NASA maneuver unmanned spacecraft through that boulder-strewn grand canyon death trap to reach the outer planets?

The asteroid belt is a vast region between the orbits of Mars and Jupiter. Our collection of space rocks starts around 300 million kilometers from the Sun and ends around 500 million kilometers. The first asteroid, the dwarf planet Ceres which measures 950 km across, was discovered in 1801, with a “That’s funny.”. Soon after astronomers turned up many more small objects orbiting in this region at the “Oooh neat!” stage.

Artist’s concept of Dawn in its survey orbit at dwarf planet Ceres. Credit: NASA/JPL-Caltech
Artist’s concept of Dawn in its survey orbit at dwarf planet Ceres. Credit: NASA/JPL-Caltech

They realized it was a vast belt of material orbiting the Sun, with I suspect a “We’re all gonna die.”. To date, almost half a million asteroids have been discovered, most of which are in the main belt.

As mentioned in a another video, gathering up all the material in the asteroid belt and gluing it together makes a mass around 4% of the Moon. So, in case one of your friends gets excited and suggests it was a failed planet, you can bust out that stat and publicly shame them for being so 1996, Goodwill Hunting style. You like asteroids? How about them asteroids?

There’s a few hundred larger than 100 km across, and tens of millions of rocks a hundred meters across. Any one of these could ruin a good day, or bring a bad day to a welcome firey close for either a depressed wayfaring spacecraft or a little bluegreen speck of a planet. Which sounds dangerous all the way around.

Fortunately, our asteroid belt is a vast region of space. Let’s wind up the perspective-o-meter. If you divide the total number of objects in the field by the volume of space that asteroid belt takes up, each space rock is separated by hundreds of thousands of kilometers. Think of it as gravity’s remarkably spacious zen rock garden.

Ceres compared to asteroids visited to date, including Vesta, Dawn's mapping target in 2011. Image by NASA/ESA. Compiled by Paul Schenck.
Ceres compared to asteroids visited to date, including Vesta, Dawn’s mapping target in 2011. Image by NASA/ESA. Compiled by Paul Schenck.

As a result, when NASA engineers plot a spacecraft’s route through the asteroid belt, they don’t expect to make a close encounter with any asteroids – in fact, they’ll change its flight path to intercept asteroids en route. Because hey look, asteroid!

Even though Ceres was discovered in 1801, it’s never been observed up close, until now. NASA’s Dawn spacecraft already visited Asteroid Vesta, and by the time you’re watching this video, it will have captured close-up images of the surface of Ceres.

Once again, science fiction creatives sold us out to drama over hard science. If you’re passing through an asteroid belt, you won’t need to dodge and weave to avoid the space rocks. In fact, you probably wouldn’t even know you were passing through a belt at all. You’d have to go way the heck over there to even get a nearby look at one of the bloody things. So we’re safe, our speck is safe, and all the little spacecraft are safe…. for now.

Which dramatic version of “asteroids” are you most fond of? Tell us in the comments below.

Weekly Space Hangout – March 27, 2015: Dark Matter Galaxy “X” with Dr. Sukanya Chakrabarti

Host: Fraser Cain (@fcain)
Special Guest: Dr. Sukanya Chakrabarti, Lead Investigator for team that may have discovered Dark Matter Galaxy “X”.

Guests:
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )
Dave Dickinson (@astroguyz / www.astroguyz.com)
Brian Koberlein (@briankoberlein)
Continue reading “Weekly Space Hangout – March 27, 2015: Dark Matter Galaxy “X” with Dr. Sukanya Chakrabarti”

Helicopter Drones on Mars

Mars helicopter drone
A small drone helicopter currently being developed by engineers at NASA's Jet Propulsion Laboratory could serve as a reconnaissance scout for future Mars rovers, greatly enhancing their effectiveness. Credit NASA JPL

NASA’s Jet Propulsion Laboratory recently announced that it is developing a small drone helicopter to scout the way for future Mars rovers. Why would Mars rovers need such a robotic guide? The answer is that driving on Mars is really hard.

Here on Earth, robots exploring volcanic rims, or assisting rescuers, can be driven by remote control, with a joystick. This is because radio signals reach the robot from its control center almost instantly. Driving on the moon isn’t much harder. Radio signals traveling at the speed of light take about two and half seconds to make the round trip to the moon and back. This delay isn’t long enough to seriously interfere with remote control driving. In the 1970’s Soviet controllers drove the Lunokhod moon rovers this way, successfully exploring more than 40 km of lunar terrain.

Driving on Mars is much harder, because it is so much further away. Depending on its position with respect to Earth, signals can take between 8 and 42 minutes for the round trip. Pre-programmed instructions must be sent to the rover, which it then executes on its own. Each Martian drive takes hours of careful planning. Stereo images taken by the rover’s navigation cameras are carefully scrutinized by engineers. Images from spacecraft orbiting Mars sometimes provide additional information.

A rover can be programmed either to simply execute a list of driving commands sent from Earth, or it can use images taken by its navigation cameras and processed by its on-board computers to measure speed and detect obstacles or hazards by itself. It can even plot its own safe path to a specified goal. Drives based on instructions from the ground are the fastest.

The Mars Exploration Rovers Spirit and Opportunity could drive up to 124 meters in an hour this way. This corresponds to about the length of an American football field. But this mode was also the least safe.

When the rover actively guides itself with its cameras, progress is safer, but much slower because of all the image processing needed. It may progress by as little as 10 meters an hour, which is about the distance from the goal line to the 10 yard line on an American football field. This method must be used whenever the rover doesn’t have a clear view of the route ahead, which is often the case due to rough and hilly terrain.

As of early 2015, the farthest Curiosity has driven in a single day is 144 meters. Opportunity’s longest daily drive was 224 meters, a distance the length of two American football fields.

If ground controllers could get a better view of the path ahead, they could devise instructions allowing a future rover to safely drive much further in a day.

That’s where the idea of a drone helicopter comes in. The helicopter could fly out ahead of the rover every day. Images made from its aerial vantage point would be invaluable to ground controllers for identifying points of scientific interest, and planning driving routes to get there.

Flying a helicopter on Mars poses special challenges. One advantage is that Martian gravity is only 38% as strong as that of Earth, so that the helicopter wouldn’t need to generate as much lift as one of the same mass on Earth. A helicopter’s propeller blades generate lift by pushing air downward. This is harder to do on Mars than on Earth, because the Martian atmosphere is on hundred times thinner. To displace enough air, the propeller blades would need to spin very quickly, or to be very large.

The copter must be capable of flying on its own, using prior instructions, maintaining stable flight along a pre-specified route. It must land and take off repeatedly in rocky Martian terrain. Finally it must be capable of surviving the harsh conditions of Mars, where the temperature plummets to 100 degrees Fahrenheit or lower every night.

The JPL engineers designed a copter with a mass of 1 kilogram; a tiny fraction of the 900 kg mass of the Curiosity rover. Its propeller blades span 1.1 meters from blade tip to blade tip, and are capable of spinning at 3400 rotations per minute. The body is about the size of a tissue box.

The copter is solar powered, with a disk of solar cells gathering enough power every day to power a flight of two to three minutes and to heat the vehicle at night. It can fly about half a kilometer in that time, gathering images for transmission to ground control as it goes. Engineers expect that the reconnaissance that the drone copter gathers will be invaluable in planning a rover’s drives, tripling the distance that can be traveled in a day.

References and further reading:
Thanks to Mark Maimone of NASA Jet Propulsion Laboratory for information about the daily driving distances of Curiosity and Opportunity.

J.J. Biesiadecki, P. C. Leger, and M.W. Maimone (2007), ‘tradeoffs between directed and autonomous driving on the Mars exploration rovers’, The International Journal of Robotics Research, 26(1), 91-104

E. Howell, Opportunity Mars rover treks past 41 kilometers towards ‘Marathon Valley’, Universe Today, Dec. 2014.

T. Reyes, An incredible journey, Mars Curiosity rover reaches base of Mount Sharp. Universe Today, Sept. 2014.

Helicopter could be ‘scout’ for Mars rovers. NASA Jet Propulsion Laboratory Press release. January 22, 2015.

Crazy Engineering: The Mars helicopter. NASA Jet Propulsion Laboratory video.

Curiosity- Mars Science Laboratory, NASA.

Mars- Future rover plans. NASA