How Far Back Are We Looking in Time?

How Far Back Are We Looking in Time?

When we look out into space, we’re also looking back into time. Just how far back can we see?

The Universe is a magic time window, allowing us to peer into the past. The further out we look, the further back in time we see. Despite our brains telling us things we see happen at the instant we view them, light moves at a mere 300,000 kilometers per second, which makes for a really weird time delay at great distances.

Let’s say that you’re talking with a friend who’s about a meter away. The light from your friend’s face took about 3.336 nanoseconds to reach you. You’re always seeing your loved ones 3.336 nanoseconds into the past. When you look around you, you’re not seeing the world as it is, you’re seeing the world as it was, a fraction of a second ago. And the further things are, the further back in time you’re looking.

The distance to the Moon is, on average, about 384,000 km. Light takes about 1.28 seconds to get from the Moon to the Earth. If there was a large explosion on the Moon of a secret Nazi base, you wouldn’t see it for just over a second. Even trying to communicate with someone on the Moon would be frustrating as you’d experience a delay each time you talked.

Let’s go with some larger examples. Our Sun is 8 minutes and 20 seconds away at the speed of light. You’re not seeing the Sun as it is, but how it looked more than 8 minutes ago.

On average, Mars is about 14 light minutes away from Earth. When we were watching live coverage of NASA’s Curiosity Rover landing on Mars, it wasn’t live. Curiosity landed minutes earlier, and we had to wait for the radio signals to reach us, since they travel at the speed of light.

When NASA’s New Horizons spacecraft reaches Pluto next year, it’ll be 4.6 light hours away. If we had a telescope strong enough to watch the close encounter, we’d be looking at events that happened 4.6 hours ago.

A Hubble Space Telescope image of Proxima Centauri, the closest star to Earth. Credit: ESA/Hubble & NASA
A Hubble Space Telescope image of Proxima Centauri, the closest star to Earth. Credit: ESA/Hubble & NASA

The closest star, Proxima Centauri, is more than 4.2 light-years away. This means that the Proxima Centurans don’t know who won the last US Election, or that there are going to be new Star Wars movies. They will, however, as of when this video was produced, be watching Toronto make some questionable life choices regarding its mayoral election.

The Eagle Nebula with the famous Pillars of Creation, is 7,000 light-years away. Astronomers believe that a supernova has already gone off in this region, blasting them away. Take a picture with a telescope and you’ll see them, but mostly likely they’ve been gone for thousands of years.

The core of our own Milky Way galaxy is about 25,000 light-years away. When you look at these beautiful pictures of the core of the Milky Way, you’re seeing light that may well have left before humans first settled in North America.

The Andromeda Galaxy will collide with the Milky Way in the future. Credit: Adam Evans
The Andromeda Galaxy. Credit: Adam Evans

And don’t get me started on Andromeda. That galaxy is more than 2.5 million light-years away. That light left Andromeda before we had Homo Erectus on Earth. There are galaxies out there, where aliens with powerful enough telescopes could be watching dinosaurs roaming the Earth, right now.

Here’s where it gets even more interesting. Some of the brightest objects in the sky are quasars, actively feeding supermassive black holes at the cores of galaxies. The closest is 2.5 billion light years away, but there are many much further out. Earth formed only 4.5 billion years ago, so we can see quasars shining where the light had left before the Earth even formed.

The Cosmic Microwave Background Radiation, the very edge of the observable Universe is about 13.8 billion light-years away. This light left the Universe when it was only a few hundred thousand years old, and only now has finally reached us. What’s even stranger, the place that emitted that radiation is now 46 billion light-years away from us.

So crack out your sonic screwdrivers and enjoy your time machine, Whovians. Your ability to look out into space and peer into the past. Without a finite speed of light, we wouldn’t know as much about the Universe we live in and where we came from. What moment in history do you wish you could watch? Express your answer in the form of a distance in light-years.

Why Don’t We Search for Different Life?

Why Don’t We Search for Different Life?

If we really want to find life on other worlds, why do we keep looking for life based on carbon and water? Why don’t we look for the stuff that’s really different?

In the immortal words of Arthur C. Clarke, “Two possibilities exist: either we are alone in the Universe or we are not. Both are equally terrifying.”

I’m seeking venture capital for a Universal buffet chain, and I wondering if I need to include whatever the tentacle equivalent of forks is on my operating budget. If there isn’t any life, I’m going to need to stop watching so much science fiction and get on with helping humanity colonize space.

Currently, astrobiologists are hard at work searching for life, trying to answer this question. The SETI Institute is scanning radio signals from space, hoping to catch a message. Since humans use radio waves, maybe aliens will too. NASA is using the Curiosity Rover to search for evidence that liquid water existed on the surface of Mars long enough for life to get going. The general rule is if we find liquid water on Earth, we find life. Astronomers are preparing to study the atmospheres of extrasolar planets, looking for gasses that match what we have here on Earth.

Isn’t this just intellectually lazy? Do our scientists lack imagination? Aren’t they all supposed to watch Star Trek How do we know that life is going to look anything like the life we have on Earth? Oh, the hubris!

Who’s to say aliens will bother to communicate with radio waves, and will transcend this quaint transmission system and use beams of neutrinos instead. Or physics we haven’t even discovered yet? Perhaps they talk using microwaves and you can tell what the aliens are saying by how your face gets warmed up. And how do we know that life needs to depend on water and carbon? Why not silicon-based lifeforms, or beings which are pure energy? What about aliens that breathe pure molten boron and excrete seahorse dreams? Why don’t these scientists expand their search to include life as we don’t know it? Why are they so closed-minded?

Viking Lander
In 1976, two Viking spacecraft landed on Mars. The image is of a model of the Viking lander, along with astronomer and pioneering astrobiologist Carl Sagan. Each lander was equipped with life detection experiments designed to detect life based on its metabolic activities.
Credits: NASA/Jet Propulsion Laboratory, Caltech

The reality is they’re just being careful. A question this important requires good evidence. Consider the search for life on Mars. Back in the 1970s, the Viking Lander carried an experiment that would expose Martian soil to water and nutrients, and then try to detect out-gassing from microbes. The result of the experiment was inconclusive, and scientists still argue over the results today. If you’re going to answer a question like this, you want to be conclusive. Also, getting to Mars is pretty challenging to begin with. You probably don’t want to “half-axe” your science.

The current search for life is incremental and exhaustive. NASA’s Spirit and Opportunity searched for evidence that liquid water once existed on the surface of Mars. They found evidence of ancient water many times, in different locations. The fact that water once existed on the surface of Mars is established. Curiosity has extended this line of research, looking for evidence that water existed on the surface of Mars for long periods of time. Long enough that life could have thrived. Once again, the rover has turned up the evidence that scientists were hoping to see. Mars was once hospitable for life, for long periods of time. The next batch of missions will actually search for life, both on the surface of Mars and bringing back samples to Earth so we can study them here.

The search for life is slow and laborious because that’s how science works. You start with the assumption that since water is necessary for life on Earth, it makes sense to just check other water in the Solar System. It’s the low hanging fruit, then once you’ve exhausted all the easy options, you get really creative.

An illustration of a Titanic lake by Ron Miller. All rights reserved. Used with permission.
An illustration of a Titanic lake by Ron Miller. All rights reserved. Used with permission.

Scientists have gotten really creative about how and where they could search for life. Astrobiologists have considered other liquids that could be conducive for life. Instead of water, it’s possible that alternative forms of life could use liquid methane or ammonia as a solvent for its biological processes. In fact, this environment exists on the surface of Titan. But even if we did send a rover to Titan, how would we even know what to look for?

We understand how life works here, so we know what kinds of evidence to pursue. But kind of what evidence would be required to convince you there’s life as you don’t understand it? Really compelling evidence.
Go ahead and propose some alternative forms of life and how you think we’d go searching for it in the comments.

Thanks for watching! Never miss an episode by clicking subscribe. Our Patreon community is the reason these shows happen. We’d like to thank Kuri the Vegan Traveller and Craig Hayes, and the rest of the members who support us in making great space and astronomy content. Members get advance access to episodes, extras, contests, and other shenanigans with Jay, myself and the rest of the team. Want to get in on the action? Click here.

What is Mars Made Of?

Artist's impression of the interior of Mars. Credit: NASA/JPL

For thousands of years, human beings have stared up at the sky and wondered about the Red Planet. Easily seen from Earth with the naked eye, ancient astronomers have charted its course across the heavens with regularity. By the 19th century, with the development of powerful enough telescopes, scientists began to observe the planet’s surface and speculate about the possibility of life existing there.

However, it was not until the Space Age that research began to truly shine light on the planet’s deeper mysteries. Thanks to numerous space probes, orbiters and robot rovers, scientists have learned much about the planet’s surface, its history, and the many similarities it has to Earth. Nowhere is this more apparent than in the composition of the planet itself.

Structure and Composition:

Like Earth, the interior of Mars has undergone a process known as differentiation. This is where a planet, due to its physical or chemical compositions, forms into layers, with denser materials concentrated at the center and less dense materials closer to the surface. In Mars’ case, this translates to a core that is between 1700 and 1850 km (1050 – 1150 mi) in radius and composed primarily of iron, nickel and sulfur.

This core is surrounded by a silicate mantle that clearly experienced tectonic and volcanic activity in the past, but which now appears to be dormant. Besides silicon and oxygen, the most abundant elements in the Martian crust are iron, magnesium, aluminum, calcium, and potassium. Oxidation of the iron dust is what gives the surface its reddish hue.

Composite image showing the size difference between Earth and Mars. Credit: NASA/Mars Exploration
Composite image showing the size difference between Earth and Mars. Credit: NASA/Mars Exploration

Magnetism and Geological Activity:

Beyond this, the similarities between Earth and Mars’ internal composition ends. Here on Earth, the core is entirely fluid, made up of molten metal and is in constant motion. The rotation of Earth’s inner core spins in a direction different from the outer core and the interaction of the two is what gives Earth it’s magnetic field. This in turn protects the surface of our planet from harmful solar radiation.

The Martian core, by contrast, is largely solid and does not move. As a result, the planet lacks a magnetic field and is constantly bombarded by radiation. It is speculated that this is one of the reasons why the surface has become lifeless in recent eons, despite the evidence of liquid, flowing water at one time.

Despite there being no magnetic field at present, there is evidence that Mars had a magnetic field at one time. According to data obtained by the Mars Global Surveyor, parts of the planet’s crust have been magnetized in the past. It also found evidence that would suggest that this magnetic field underwent polar reversals.

This observed paleomagnetism of minerals found on the Martian surface has properties that are similar to magnetic fields detected on some of Earth’s ocean floors. These findings led to a re-examination of a theory that was originally proposed in 1999 which postulated that Mars experienced plate tectonic activity four billion years ago. This activity has since ceased to function, causing the planet’s magnetic field to fade away.

Map from the Mars Global Surveyor of the current magnetic fields on Mars. Credit: NASA/JPL
Map from the Mars Global Surveyor of the current magnetic fields on Mars. Credit: NASA/JPL

Much like the core, the mantle is also dormant, with no tectonic plate action to reshape the surface or assist in removing carbon from the atmosphere. The average thickness of the planet’s crust is about 50 km (31 mi), with a maximum thickness of 125 km (78 mi). By contrast, Earth’s crust averages 40 km (25 mi) and is only one third as thick as Mars’s, relative to the sizes of the two planets.

The crust is mainly basalt from the volcanic activity that occurred billions of years ago. Given the lightness of the dust and the high speed of the Martian winds, features on the surface can be obliterated in a relatively short time frame.

Formation and Evolution:

Much of Mars’ composition is attributed to its position relative to the Sun. Elements with comparatively low boiling points, such as chlorine, phosphorus, and sulphur, are much more common on Mars than Earth. Scientists believe that these elements were probably removed from areas closer to the Sun by the young star’s energetic solar wind.

After its formation, Mars, like all the planets in the Solar System, was subjected to the so-called “Late Heavy Bombardment.” About 60% of the surface of Mars shows a record of impacts from that era, whereas much of the remaining surface is probably underlain by immense impact basins caused by those events.

The North Polar Basin is the large blue low-lying area at the northern end of this topographical map of Mars. Its elliptical shape is partially obscured by volcanic eruptions (red, center left). Credit: NASA/JPL/USGS
The North Polar Basin is the large blue low-lying area at the northern end of this topographical map of Mars. Credit: NASA/JPL/USGS

These craters are so well preserved because of the slow rate of erosion that happens on Mars. Hellas Planitia, also called the Hellas impact basin, is the largest crater on Mars. Its circumference is approximately 2,300 kilometers, and it is nine kilometers deep.

The largest impact event on Mars is believed to have occurred in the northern hemisphere. This area, known as the North Polar Basin, measures some 10,600 km by 8,500 km, or roughly four times larger than the Moon’s South Pole – Aitken basin, the largest impact crater yet discovered.

Though not yet confirmed to be an impact event, the current theory is that this basin was created when a Pluto-sized body collided with Mars about four billion years ago. This is thought to have been responsible for the Martian hemispheric dichotomy and created the smooth Borealis basin that now covers 40% of the planet.

Scientists are currently unclear on whether or not a huge impact may be responsible for the core and tectonic activity having become dormant. The InSight Lander, which is planned for 2018, is expected to shed some light on this and other mysteries – using a seismometer to better constrain the models of the interior.

Hellas Planitia extends across about 50° in longitude and more than 20° in latitude. From data from the Mars Orbiter LaserAltimeter (MOLA). Credit: NASA

Other theories claim that Mars lower mass and chemical composition caused it to cool more rapidly than Earth. This cooling process is therefore believed to be what arrested convection within the planet’s outer core, thus causing its magnetic field to disappear.

Mars also has discernible gullies and channels on its surface, and many scientists believe that liquid water used to flow through them. By comparing them to similar features on Earth, it is believed these were were at least partially formed by water erosion.  Some of these channels are quite large, reaching 2,000 kilometers in length and 100 kilometers in width.

Yes, Mars is much like Earth in many respects. It’s a rocky planet, has a crust, mantle, and core, and is composed of roughly the same elements. As our exploration of the Red Planet continues, we are learning more and more about its history and evolution. Someday, we may find ourselves settling on that rock, and relying on its similarities to create a “backup location” for humanity.

We have many interesting articles on the subject of Mars here at Universe Today. Here’s How Long Does it Take to Get to Mars?, How Far is Mars from Earth?, How Strong is the Gravity on Mars?, What is the Weather like on Mars?, The Orbit of Mars. How Long is a Year on Mars?, How Do We Colonize Mars?, and How Do We Terraform Mars?

Ask a Scientist answered the question about the composition of Mars, and here’s some general information about Mars from Nine Planets.

Finally, if you’d like to learn more about Mars in general, we have done several podcast episodes about the Red Planet at Astronomy Cast. Episode 52: Mars, and Episode 91: The Search for Water on Mars.

Source:

How to Photograph Tonight’s Spectacular Triple-Play Conjunction

Last night's one-day-old Moon photographed a half-hour after sunset. Details: handheld camera ISO 400, f/2.8, 1/15". Credit: Bob King

Tonight the thin, 2-day-old crescent Moon will join Venus and Mars in the western sky at dusk for one of the most striking conjunctions of the year. The otherworldly trio will fit neatly with a circle about 1.5° wide or just three times the diameter of the full moon. No question, this will catch a lot of eyes around the world. Why not take a picture and share it with your friends? Here are a few tips to do just that.

Moon, Mars and Venus around 6:45 p.m. (CST) on Feb. 20 in the western sky. Be sure to look for the darkly-lit part of the moon illuminated by sunlight reflecting off Earth called earthshine. It’s a beautiful sight in binoculars. Source: Stellarium
Moon, Mars and Venus around 6:45 p.m. (CST) on Feb. 20 in the western sky. Be sure to look for the darkly-lit part of the moon illuminated by sunlight reflecting off Earth called earthshine. Source: Stellarium, author

You won’t need much for an easy snapshot. In bright twilight, point your mobile phone toward the Moon and tap off a few shots, taking care not to touch the screen too hard lest you shake the phone and blur the image. The phone’s autoexposure and autofocus settings should be adequate to capture both the Moon and Venus. Mars is fainter and may only show if you can steady your phone against something to allow for a longer exposure without blurring. Assuming you use your phone in its default wide view, the Moon, Venus and Mars will form a tight, small group in a larger scene.

Last night, Feb. 19, Venus and Mars were 1 degree apart. Tonight they'll be even closer at just over 1/2° with the Moon a degree or so to their right. Credit: Bob King
Last night, Feb. 19, Venus and Mars were 1°apart. Tonight they’ll be even closer at just over 1/2° with the Moon about 1° to their right. Details: 65 minutes after sunset (mid-twilight), camera on tripod, 35mm lens at f/2.8, ISO 400 and 6 second exposure. Credit: Bob King

Phones provide the highest resolution in their wide setting. If you zoom in, the Moon will be bigger but resolution or sharpness will suffer. Someday phones will be as good as digital single lens reflex cameras (DSLRs) but until then, you’ll need one of these or their cousins, the point-and-shoot cameras, to get the best images of astronomical objects.

You’ll also need a tripod to keep the camera still and stable during the longer exposures you’ll need during the optimum time for photography which begins about 30 minutes after sunset. That’s when your photos will capture all three objects without overexposing the Moon and making it look washed-out. Ideally, you want to see the bright crescent contrasting with the dim glow of the earthshine.

Venus and Mars photographed in mid-twilight with a 100mm telephoto lens at f/2.8. To prevent trailing of the planets, I cut the exposure in half to 4 seconds and increased the camera's ISO to 800. Credit: Bob King
Venus and Mars photographed in mid-twilight with a 100mm telephoto lens at f/2.8. To prevent trailing of the planets, I cut the exposure in half to 4 seconds and increased the camera’s ISO to 800. Credit: Bob King

Lucky for us, the Moon’s sharp form makes an ideal target for the camera’s autofocus. Frame an attractive landscape or ask a friend to stand in the foreground. Set your lens to its widest open setting (usually f/2.8-3.5) and the ISO (your camera’s sensitivity to light) to 800. The higher the ISO, the shorter the exposure you can use to capture an image, but high ISOs introduce unwanted noise and graininess. 800’s a good compromise. If you can manually set your exposure, start at 4 seconds.

Compose your photo and then focus on the Moon and gently press the shutter button. Check the image on the back screen. Are you on target or is it too dark? If so, double the time. If too bright, half it. As the sky gets darker, you’ll need to gradually increase your exposure. That’s when the Moon will start to wash out and the beautiful deep blue sky turn black or the color of your local light pollution. Around here, that’s pinkish-orange. I’ve got lots of orange sky photos to prove it!

The key to good photos in twilight is balancing the different types of lighting - dusk, the sunlit crescent, the earth-lit portion and the planets. Shoot pictures at a variety of exposures between about 30-60 minutes after sunset when the western sky is still aglow but the Moon is bright and obvious. Credit: Bob King
Mercury and the Moon on Jan. 31, 2014. Besides finding a scene you like, the key to good photos in twilight is balancing the different types of lighting – dusk, the sunlit crescent, the earth-lit outline and the planets. Shoot pictures at a variety of exposures starting about 35 minutes after sunset when the western sky is still aglow but the Moon is bright and obvious. Credit: Bob King

All told, you can use a mobile phone to shoot from about 25-40 minutes after sunset and a DSLR from 25 minutes to 75 minutes after. If you’re shooting with a standard 24-35mm lens, keep your exposures under 20 seconds or the Moon and planets will start to streak or trail. The Rule of 500 is a great way to remember how long a time exposure you can make with any lens before celestial objects start trailing. So, 500/24mm = 20.8 seconds and 500/200mm (telephoto) = 2.5 seconds. That means if you plan to shoot the conjunction with a longer lens, you’ll need to up your ISO to 1600 or even 3200 in late twilight to get a tack-sharp, motionless photo.

I screwed this photo up of the Moon, Jupiter and Mars by overexposing the sunlit crescent. Credit: Bob King
I screwed this photo up of the Moon, Jupiter and Mars by overexposing the sunlit crescent. It’s all part of learning the ropes, a task made much easier nowadays by simply checking the view screen of your camera and trying a different exposure. Credit: Bob King

Telephoto images are a bit more challenging, but they increase the size of the pretty trio within the scene. When shooting telephoto images (even wide ones if you’re fussy), shoot them on self-timer. That’s the setting everyone used before the selfie took the world by storm. Most timers are pre-set to 10 seconds. You press it and the camera counts down 10 seconds before automatically tripping the shutter, allowing you time to put yourself in a group photo.

In astrophotography, using the self-timer assures you’re going to get a vibration-free photo. If it’s cold out and you’re shooting with a telephoto, vibration from your finger pressing the shutter button can jiggle the image.

Good luck tonight and clear skies! If you have any questions, please ask.

25 Years Since Voyager’s ‘Pale Blue Dot’ Images

These six narrow-angle color images were made from the first ever "portrait" of the solar system taken by Voyager 1 on Valentine’s Day on Feb. 14, 1990, which was more than 4 billion miles from Earth and about 32 degrees above the ecliptic. Venus, Earth, Jupiter, and Saturn, Uranus, Neptune are seen in these blown-up images, from left to right and top to bottom. Credit: NASA/JPL-Caltech

A quarter of a century has passed since NASA’s Voyager 1 spacecraft snapped the iconic image of Earth known as the “Pale Blue Dot” that shows all of humanity as merely a tiny point of light.

The outward bound Voyager 1 space probe took the ‘pale blue dot’ image of Earth 25 years ago on Valentine’s Day, on Feb. 14, 1990 when it looked back from its unique perch beyond the orbit of Neptune to capture the first ever “portrait” of the solar system from its outer realms.

Voyager 1 was 4 billion miles from Earth, 40 astronomical units (AU) from the sun and about 32 degrees above the ecliptic at that moment.

The idea for the images came from the world famous astronomer Carl Sagan, who was a member of the Voyager imaging team at the time.

He head the idea of pointing the spacecraft back toward its home for a last look as a way to inspire humanity. And to do so before the imaging system was shut down permanently thereafter to repurpose the computer controlling it, save on energy consumption and extend the probes lifetime, because it was so far away from any celestial objects.

Sagan later published a well known and regarded book in 1994 titled “Pale Blue Dot,” that refers to the image of Earth in Voyagers series.

This narrow-angle color image of the Earth, dubbed "Pale Blue Dot," is a part of the first ever "portrait" of the solar system taken by Voyager 1 on Valentine’s Day on Feb. 14, 1990.  Credit: NASA/JPL-Caltech
This narrow-angle color image of the Earth, dubbed “Pale Blue Dot,” is a part of the first ever “portrait” of the solar system taken by Voyager 1 on Valentine’s Day on Feb. 14, 1990. Credit: NASA/JPL-Caltech

“Twenty-five years ago, Voyager 1 looked back toward Earth and saw a ‘pale blue dot,’ ” an image that continues to inspire wonderment about the spot we call home,” said Ed Stone, project scientist for the Voyager mission, based at the California Institute of Technology, Pasadena, in a statement.

Six of the Solar System’s nine known planets at the time were imaged, including Venus, Earth, Jupiter, and Saturn, Uranus, Neptune. The other three didn’t make it in. Mercury was too close to the sun, Mars had too little sunlight and little Pluto was too dim.

Voyager snapped a series of images with its wide angle and narrow angle cameras. Altogether 60 images from the wide angle camera were compiled into the first “solar system mosaic.”

Voyager 1 was launched in 1977 from Cape Canaveral Air Force Station in Florida as part of a twin probe series with Voyager 2. They successfully conducted up close flyby observations of the gas giant outer planets including Jupiter, Saturn, Uranus and Neptune in the 1970s and 1980s.

Both probes still operate today as part of the Voyager Interstellar Mission.

“After taking these images in 1990, we began our interstellar mission. We had no idea how long the spacecraft would last,” Stone said.

Hurtling along at a distance of 130 astronomical units from the sun, Voyager 1 is the farthest human-made object from Earth.

Solar System Portrait - 60 Frame Mosaic. The cameras of Voyager 1 on Feb. 14, 1990, pointed back toward the sun and took a series of pictures of the sun and the planets, making the first ever "portrait" of our solar system as seen from the outside.   Missing are Mercury, Mars and Pluto Credit:  NASA/JPL-Caltech
Solar System Portrait – 60 Frame Mosaic. The cameras of Voyager 1 on Feb. 14, 1990, pointed back toward the sun and took a series of pictures of the sun and the planets, making the first ever “portrait” of our solar system as seen from the outside. Missing are Mercury, Mars and Pluto. Credit: NASA/JPL-Caltech

Voyager 1 still operates today as the first human made instrument to reach interstellar space and continues to forge new frontiers outwards to the unexplored cosmos where no human or robotic emissary as gone before.

Here’s what Sagan wrote in his “Pale Blue Dot” book:

“That’s here. That’s home. That’s us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives. … There is perhaps no better demonstration of the folly of human conceits than this distant image of our tiny world.”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Interesting Facts About The Planets

A montage of planets and other objects in the solar system. Credit: NASA/JPL

While the universe is a big place to study, we shouldn’t forget our own backyard. With eight planets and a wealth of smaller worlds to look at, there’s more than enough to learn for a few lifetimes!

So what are some of the most surprising things about the planets? We’ve highlighted a few things below.

1. Mercury is hot, but not too hot for ice

The closest planet to the Sun does indeed have ice on its surface. That sounds surprising at first glance, but the ice is found in permanently shadowed craters — those that never receive any sunlight. It is thought that perhaps comets delivered this ice to Mercury in the first place. In fact, NASA’s MESSENGER spacecraft not only found ice at the north pole, but it also found organics, which are the building blocks for life. Mercury is way too hot and airless for life as we know it, but it shows how these elements are distributed across the Solar System.

2. Venus doesn’t have any moons, and we aren’t sure why.

Both Mercury and Venus have no moons, which can be considered a surprise given there are dozens of other ones around the Solar System. Saturn has over 60, for example. And some moons are little more than captured asteroids, which may have been what happened with Mars’ two moons, for example. So what makes these planets different? No one is really sure why Venus doesn’t, but there is at least one stream of research that suggests it could have had one in the past.

Mars, as it appears today, Credit: NASA
Mars, as it appears today, Credit: NASA

3. Mars had a thicker atmosphere in the past.

What a bunch of contrasts in the inner Solar System: practically atmosphere-less Mercury, a runaway hothouse greenhouse effect happening in Venus’ thick atmosphere, temperate conditions on much of Earth and then a thin atmosphere on Mars. But look at the planet and you can see gullies carved in the past from probable water. Water requires more atmosphere, so Mars had more in the past. Where did it go? Some scientists believe it’s because the Sun’s energy pushed the lighter molecules out of Mars’ atmosphere over millions of years, decreasing the thickness over time.

4. Jupiter is a great comet catcher.

The most massive planet in the Solar System probably had a huge influence on its history. At 318 times the mass of Earth, you can imagine that any passing asteroid or comet going near Jupiter has a big chance of being caught or diverted. Maybe Jupiter was partly to blame for the great bombardment of small bodies that peppered our young Solar System early in its history, causing scars you can still see on the Moon today. And in 1994, astronomers worldwide were treated to a rare sight: a comet, Shoemaker-Levy 9, breaking up under Jupiter’s gravity and slamming into the atmosphere.

Fragmentation of comets is common. Many sungrazers are broken up by thermal and tidal stresses during their perihelions. At top, an image of the comet Shoemaker-Levy 9 (May 1994) after a close approach with Jupiter which tore the comet into numerous fragments. An image taken by Andrew Catsaitis of components B and C of Comet 73P/Schwassmann–Wachmann 3 as seen together on 31 May 2006 (Credit: NASA/HST, Wikipedia, A.Catsaitis)
Fragmentation of comets is common. Many sungrazers are broken up by thermal and tidal stresses during their perihelions. At top, an image of the comet Shoemaker-Levy 9 (May 1994) after a close approach with Jupiter which tore the comet into numerous fragments. An image taken by Andrew Catsaitis of components B and C of Comet 73P/Schwassmann–Wachmann 3 as seen together on 31 May 2006 (Credit: NASA/HST, Wikipedia, A.Catsaitis)

5. No one knows how old Saturn’s rings are

There’s a field of ice and rock debris circling Saturn that from afar, appear as rings. Early telescope observations of the planet in the 1600s caused some confusion: does that planet have ears, or moons, or what? With better resolution, however, it soon became clear that there was a chain of small bodies encircling the gas giant. It’s possible that a single moon tore apart under Saturn’s strong gravity and produced the rings. Or, maybe they’ve been around (pun intended) for the last few billion years, unable to coalesce into a larger body but resistant enough to gravity not to break up.

6. Uranus is more stormy than we thought.

When Voyager 2 flew by the planet in the 1980s, scientists saw a mostly featureless blue ball and some assumed there wasn’t much activity going on on Uranus. We’ve had a better look at the data since then that does show some interesting movement in the southern hemisphere. Additionally, the planet drew closer to the Sun in 2007, and in more recent years telescope probing has shown some storms going on. What is causing all this activity is difficult to say unless we were to send another probe that way. And unfortunately, there are no missions yet that are slated for sure to zoom out to that part of the Solar System.

Infrared images of Uranus showing storms at 1.6 and 2.2 microns obtained Aug. 6, 2014 by the 10-meter Keck telescope. Credit: Imke de Pater (UC Berkeley) & Keck Observatory images.
Infrared images of Uranus showing storms at 1.6 and 2.2 microns obtained Aug. 6, 2014 by the 10-meter Keck telescope. Credit: Imke de Pater (UC Berkeley) & Keck Observatory images.

7. Neptune has supersonic winds.

While on Earth we are concerned about hurricanes, the strength of these storms is nowhere near what you would find on Neptune. At its highest altitudes, according to NASA, winds blow at more than 1,100 miles per hour (1,770 kilometers per hour). To put that in context, that’s faster than the speed of sound on Earth, at sea level. Why Neptune is so blustery is a mystery, especially considering the Sun’s heat is so little at its distance.

8. You can see Earth’s magnetic field at work during light shows.

We have a magnetic field surrounding our planet that protects us from the blasts of radiation and particles the Sun sends our way. Good thing, too, because such flare-ups could prove deadly to unprotected people; that’s why NASA keeps an eye on solar activity for astronauts on the International Space Station, for example. At any rate, when you see auroras shining in the sky, that’s what happens when the particles from the Sun flow along the magnetic field lines and interact with Earth’s upper atmosphere.

Universe Today has many articles on interesting facts about the planets. Start with 10 facts about Mercury  and 10 facts about Venus. You may also want to check out the 10 facts about Mars. Astronomy Cast also has a number of podcasts about the planets, including one on Earth.

10 Interesting Facts About Mars

The Planet Mars. Image credit: NASA
The Planet Mars. Image credit: NASA

Mars is a constant point of discussion for space explorers around the world. We’ve sent dozens of spacecraft there to study it. Some want to land astronauts on it. The planet is just far away to make that dream difficult, but just close enough to spark our imagination. So what are some of the most important things to learn about the Red Planet?

Continue reading “10 Interesting Facts About Mars”

How Can Mars Sometimes Be Warmer Than Earth?

Curiosity's recent shot of the Martian landscape. Doesn't look warm, does it? Credit: NASA/JPL

Remember a few weeks ago when the weather on Mars was making the news? At the time, parts of the Red Planet was experiencing temperatures that were actually warmer than parts of the US. Naturally, there were quite a few skeptics. How could a planet with barely any atmosphere which is farther from the Sun actually be warmer than Earth?

Well, according to recent data obtained by the Curiosity rover, temperatures in the Gale Crater reached a daytime high of -8 °C (17.6 °F) while cities like Chicago and Buffalo were experiencing lows of -16 to -20 °C (2 to -4 °F). As it turns out, this is due to a number of interesting quirks that allow for significant temperature variability on Mars, which at times allow some regions to get warmer than places here on Earth.

It’s no secret that this past winter, we here in North America have been experiencing a bit of a record-breaking cold front. This was due to surges of cold air pushing in from Siberia and the North Pole into Canada, the Northern Plains and the Midwest. This resulted in many cities experiencing January-like weather conditions in November, and several cities hitting record-lows not seen in decades or longer.

Credit: NASA/JPL/University of Arizona
Carbon dioxide ice on Mars, which experiences sublimation from solar warming to create  polygonal structures. Credit: NASA/JPL/University of Arizona

For instance, the morning of November 18th, 2014, was the coldest since 1976, with a national average temperature of -7 °C (19.4 °F). That same day, Detroit tied a record it had set in 1880, with a record low of -12 °C (11 °F).

Five days earlier, the city of Denver, Colorado experienced temperatures as cold as -26 °C (-14 °F) while the city of Casper, Wyoming, hit a record low of -33 °C (-27 °F). And then on November 20th, the town of Jacksonville, Florida broke a previous record (which it set in 1873) with an uncharacteristic low of -4° C (25 °F).

Hard to believe isn’t it? Were it not for the constant need for bottled oxygen, more people might consider volunteering for Mars One‘s colonizing mission – which, btw, is still scheduled to depart in 2023, so there’s still plenty of time register! However, these comparative figures manage to conceal a few interesting facts about Mars.

For starters, Mars experiences an average surface temperature of about -55 °C (-67 °F), with temperatures at the pole reaching as low as a frigid -153 °C (-243.4 °F). Meanwhile, here on Earth the average surface temperature is 7.2 °C (45 °F), which is also due to a great deal of seasonal and geographic variability.

The eccentricity in Mars' orbit means that it is . Credit: NASA
The eccentricity in Mars’ orbit around the Sun means that it is 42.5 million km closer during certain times of the year. Credit: NASA

In the desert regions near the equator, temperature can get as high as 57.7 °C, with the hottest temperature ever recorded being 70.7 °C (158.36 °F) in the summertime in the desert region of Iran. At the south pole in Antarctica temperatures can reach as low as -89.2 °C (-128.6 °F). Pretty darn cold, but still balmy compared to Mars’ polar ice caps!

Also, since its arrival in 2012, the Curiosity Rover has been rolling around inside Gale Crater – which is located near the planet’s equator. Here, the planet’s temperature experiences the most variability, and can reach as high as 20 °C (68 °F) during midday.

And last, but not least, Mars has a greater eccentricity than all other planet’s in the Solar System – save for Mercury. This means that when the planet is at perihelion (closest to the Sun) it is roughly 0.28 AUs (42.5 million km) closer than when it is at aphelion (farthest from the Sun). Having just passed perihelion recently, the average surface temperatures on Mars can vary by up to an additional 20 ºC.

In short, Mars is still, and by far, the colder of the two planets. Not that it’s a competition or anything…

Further Reading: NASA