All systems are go for the inaugural ground test firing on March 11 of the world’s most powerful solid rocket booster ever built that will one day power NASA’s mammoth new Space Launch System (SLS) heavy lift rocket and propel astronauts to deep space destinations.
The booster known as qualification motor, QM-1, is the largest solid rocket motor ever built and will be ignited on March 11 for a full duration static fire test by prime contractor Orbital ATK at the newly merged firms test facility in Promontory, Utah.
Ignition of the horizontally mounted motor is planned for 11:30 a.m. EDT (9:30 a.m. MDT) on Wednesday, March 11 on the T-97 test stand.
The test will be broadcast live on NASA TV.
The two minute long, full duration static test firing of the motor marks a major milestone in the ongoing development of NASA’s SLS booster, which is the most powerful rocket ever built in human history.
The 5-segment booster produces 3.6 million lbs of maximum thrust which equates to more than 14 Boeing 747-400s at full takeoff power!
The new 5-segment booster is directly derived from the 4-segment booster used during NASA’s three decade long Space Shuttle program. One segment has been added and therefore the new, longer and more powerful booster must be requalified to launch the SLS and humans.
A second test is planned a year from now and will qualify the boosters for use with the SLS.
Teams of engineers, operators, inspectors and program managers across Orbital ATK’s Flight Systems Group have spent months getting ready for the QM-1 test. To prepare they started countdown tests on Feb 25.
“The crew officially starts daily countdown test runs of the systems this week, at T-15 days,” said Kevin Rees, director, Test & Research Operations at Orbital ATK.
“These checks, along with other test stand calibrations, will verify all systems are ready for the static test. Our team is prepared and we are proud to play such a significant role on this program.”
The QM-1 booster is being conditioned to 90 degrees and the static fire test will qualify the booster design for high temperature launch conditions. It sits horizontally in the test stand and measures 154 feet in length and 12 feet in diameter and weighs 801 tons.
The static fire test will collect data on 103 design objectives as measured through more than 534 instrumentation channels on the booster it is firing.
The second booster test in March 2016 will be conducted at lower temperature to qualify the lower end of the launch conditions at 40 degrees F.
The first stage of the SLS will be powered by a pair of the five-segment boosters and four RS-25 engines that will generate a combined 8.4 million pounds of liftoff thrust.
The SLS is designed to propel the Orion crew capsule to deep space destinations, including the Moon, asteroids and the Red Planet.
The maiden test flight of the SLS is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) version with a liftoff thrust of 8.4 million pounds. It will boost an unmanned Orion on an approximately three week long test flight beyond the Moon and back.
NASA plans to gradually upgrade the SLS to achieve an unprecedented lift capability of 130 metric tons (143 tons), enabling the more distant missions even farther into our solar system.
The first SLS test flight with the uncrewed Orion is called Exploration Mission-1 (EM-1) and will launch from Launch Complex 39-B at the Kennedy Space Center.
Orion’s inaugural mission dubbed Exploration Flight Test-1 (EFT) was successfully launched on a flawless flight on Dec. 5, 2014 atop a United Launch Alliance Delta IV Heavy rocket Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
Orion’s inaugural mission dubbed Exploration Flight Test-1 (EFT) was successfully launched on a flawless flight on Dec. 5, 2014 atop a United Launch Alliance Delta IV Heavy rocket Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
It’s hard to believe it now looking at Mars’ dusty, dessicated landscape that it once possessed a vast ocean. A recent NASA study of the Red Planet using the world’s most powerful infrared telescopes clearly indicate a planet that sustained a body of water larger than the Earth’s Arctic Ocean.
If spread evenly across the Martian globe, it would have covered the entire surface to a depth of about 450 feet (137 meters). More likely, the water pooled into the low-lying plains that cover much of Mars’ northern hemisphere. In some places, it would have been nearly a mile (1.6 km) deep.
Now here’s the good part. Before taking flight molecule-by-molecule into space, waves lapped the desert shores for more than 1.5 billion years – longer than the time life needed to develop on Earth. By implication, life had enough time to get kickstarted on Mars, too.
Using the three most powerful infrared telescopes on Earth – the W. M. Keck Observatory in Hawaii, the ESO’s Very Large Telescope and NASA’s Infrared Telescope Facility – scientists at NASA’s Goddard Space Flight Center studied water molecules in the Martian atmosphere. The maps they created show the distribution and amount of two types of water – the normal H2O version we use in our coffee and HDO or heavy water, rare on Earth but not so much on Mars as it turns out.
In heavy water, one of the hydrogen atoms contains a neutron in addition to its lone proton, forming an isotope of hydrogen called deuterium. Because deuterium is more massive than regular hydrogen, heavy water really is heavier than normal water just as its name implies. The new “water maps” showed how the ratio of normal to heavy water varied across the planet according to location and season. Remarkably, the new data show the polar caps, where much of Mars’ current-day water is concentrated, are highly enriched in deuterium.
On Earth, the ratio of deuterium to normal hydrogen in water is 1 to 3,200, but at the Mars polar caps it’s 1 to 400. Normal, lighter hydrogen is slowly lost to space once a small planet has lost its protective atmosphere envelope, concentrating the heavier form of hydrogen. Once scientists knew the deuterium to normal hydrogen ratio, they could directly determine how much water Mars must have had when it was young. The answer is A LOT!
Only 13% of the original water remains on the planet, locked up primarily in the polar regions, while 87% of the original ocean has been lost to space. The most likely place for the ocean would have been the northern plains, a vast, low-elevation region ideal for cupping huge quantities of water. Mars would have been a much more earth-like planet back then with a thicker atmosphere, providing the necessary pressure, and warmer climate to sustain the ocean below.
What’s most exciting about the findings is that Mars would have stayed wet much longer than originally thought. We know from measurements made by the Curiosity Rover that water flowed on the planet for 1.5 billion years after its formation. But the new study shows that the Mars sloshed with the stuff much longer. Given that the first evidence for life on Earth goes back to 3.5 billion years ago – just a billion years after the planet’s formation – Mars may have had time enough for the evolution of life.
So while we might bemoan the loss of so wonderful a thing as an ocean, we’re left with the tantalizing possibility that it was around long enough to give rise to that most precious of the universe’s creations – life.
To quote Charles Darwin: “… from so simple a beginning endless forms most beautiful and most wonderful have been, and are being, evolved.
Editor’s note: On August 27, 2003 Mars was closer to Earth than at any time in human history. Author Andrew Chaikin asked Universe Today to tell the story of how he was fortunate enough to enjoy the event with Don Parker, a “superb planetary photographer and wonderful guy,” Chaikin wrote. “I first met Don, a retired anesthesiologist from Coral Gables, Florida, several weeks earlier when I journeyed with my telescope to Florida to photograph the Moon passing in front of Mars, an event called an occultation. I’d seen Don’s work for decades in Sky & Telescope magazine, but until the occultation we’d never met. I certainly had never imagined that he would turn out to be as much fun as he was, with a warped, wickedly bawdy sense of humor. Standing under the moon and Mars we bonded, and soon we were making plans for me to come down to his place for the closest approach.”
Don passed away on February 22, 2015. In his memory here’s an excerpt from Chaikin’s book, A Passion for Mars.
Godspeed, Don. See you on Mars.
ON PAPER, Don Parker’s life story is pretty ordinary: Born in 1939, he grew up in an Italian neighborhood in Chicago. He spent a few years in the navy, went to medical school, and ended up living in Florida with his wife, Maureen, and their children, working as an anesthesiologist in a Miami hospital. Looking at his résumé you’d never know about his other life, the one dominated by a lifelong obsession with Mars. By the time he went to see Invaders from Mars and War of the Worlds as a teenager in 1953, he was building his first telescope, a three-inch refractor with lenses from Edmund Scientific and a body made from a stovepipe his dad got for him.
He was subscribing to Sky & Telescope magazine and following the continuing debate over whether the canals on Mars really existed. That was a question that only a handful of professional astronomers cared about, but amateur observers, like the ones whose drawings were printed in the magazine, seemed to be on the case. Parker got serious about observing Mars himself around 1954, when he tried to create a homemade reflector, but failed when he had trouble with the mirror. His aunt Hattie came to the rescue that Christmas by giving him a hundred dollar bill — quite a bit of money in those days — which he used to buy a professionally made eight-inch mirror. With help from his dad, he assembled the new telescope, using pipe fittings for the mounting.
In the summer of 1956, when Mars made its famously close appearance, he was at the eyepiece making drawings of his own, until a dust storm engulfed much of the planet that September, just as Mars came closest to Earth. “Mars looked like a cue ball,” Parker remembers. “There was nothing on it. It was very disappointing for me.” At the time, he thought the problem was with his instrument. “I even took the mirror out of the telescope,” he recalls. “You know,‘What the hell is going on here?’” Only much later, when information on Martian dust storms began to show up in the amateur astronomy literature, did he realize his view had been spoiled by an event happening on Mars.
By that time Parker was in high school, and soon Martian canals became much less important than more earthly matters. “Football and blondes were my major,” he quips. Then it was off to college, and his telescope sat unused in its wooden shelter in the backyard. When it came time for his internship he convinced his wife, Maureen, that they should move to Florida so he could pursue his interest in scuba diving.
Needless to say he had no time for astronomy then, or during his residency. Then came a stint in the navy, and by the early 1970s he was back in Florida, beginning his career as an anesthesiologist and raising a family. By the time Mars made another close approach in 1973 Parker had brought his telescope down from Chicago; his parents had asked him to take it out of the backyard so they could put in a birdbath, and a few months after that, he remembers, “Maureen said, ‘Can you get that thing out of the garage?’”
He didn’t expect it to do him much good outside, however. The conventional wisdom was that south Florida, with its clouds and frequent storms, was a terrible place to do astronomy. But he found out differently that summer, when he trained his telescope on Mars. “I went, ‘Holy shit.’ It was just absolutely steady. I couldn’t believe it.”
Parker returned to his old practice of making drawings at the eyepiece to record as much detail as possible. He sent some of his work to Charles “Chick” Capen, an astronomer at Arizona’s Lowell Observatory and coordinator of Mars observations for the Association of Lunar and Planetary Observers. Soon he and Capen were in frequent contact, and from him Parker learned about the latest techniques for planetary photography.
In the 1970s that was a time-consuming process; he used professional-grade film ordered directly from Kodak and developed it with special, highly toxic chemicals that had to be laboriously prepared for each session. But that became a part of his life’s routine: off to the hospital in the morning, sailing with Maureen in the afternoon, nights at the telescope, and the rest of the time developing and printing his pictures. Returning to work after a beautiful Florida weekend, he says, “Everybody would come in with a nice tan; I’d come in looking like a bed sheet. Forty-eight hours in the darkroom! People would say, ‘Are you ill?’”
All that effort paid off. Parker’s planetary photos were now appearing frequently in Sky & Telescope. But they still couldn’t record the kind of details a good observer could see at the eyepiece. Soon Chick Capen was steering him, gently, toward more ambitious Martian observing projects—especially the exacting task of monitoring the planet’s north polar ice cap. Using a measuring device called a filar micrometer attached to their telescopes, Parker and fellow amateur Jeff Beish studied the cap as it shrank during the Martian spring and summer. Observations going back to the early years of the twentieth century showed that the north polar cap always shrank at the same predictable rate, but in the 1980s Parker and Beish found a surprise: The cap shrank more quickly, and to a smaller size, than ever before. Years before most people had even heard the term “global warming” (and more than a decade before evidence from NASA’s Mars Global Surveyor mission) Parker and Beish had found evidence that it was taking place on Mars.
Soon their observations were being reinforced by several kinds of data from other astronomers, a convergence that Parker remembers as tremendously thrilling. “All this stuff began to come together,” Parker says. “The dust storm frequencies, the cloud study frequencies, the polar cap shit. And it’s almost better than sex. And it came in from a lot of different observers, different times. It’s really kind of cool—when you’re in a science and something all of a sudden falls into place that you don’t expect. It’s really neat. Nothing’s better than sex, but it’s close.” His work with Beish and other observers was later published, to Parker’s great satisfaction, in the professional planetary science journal Icarus. For Parker it epitomizes the rewards of all those hours at the eyepiece. “It’s the thrill of the hunt,” he says. “That’s really the only thing that’s kept me going. Taking pretty pictures is fine and fun, but doing that for thirty years, it wears after a while. You’ve taken one pretty picture, you’ve taken them all.”
In the 1990s, though, the pictures started to get really pretty. For the first time, amateurs had access to electronic cameras using charged-coupled devices (CCDs), like the ones in NASA spacecraft and professional observatories. Around 1990 fellow amateur astronomer Richard Berry convinced Parker to invest in one of these new cameras, but he had a tough time getting used to it. “I hooked it up,” he remembers. “I didn’t know what to do with it. I was afraid of it. So I went back to film.”
Some months later Berry came for a visit and showed Parker what he’d been missing. They pointed Parker’s sixteen-inch telescope at Jupiter, and when the first image came up on his computer screen, “It was ten times better than anything I’d ever gotten with film. The detail was amazing. It was really exciting.”
Before long Parker had completely switched over to using his electronic imager, and he never looked back. Unlike film, it offered instant gratification; no longer did he have to spend hours in the darkroom before he could see results. Even more important, the extraordinary sensitivity of CCDs allowed much shorter exposure times than film, making it possible to record a planet during those brief moments of good seeing. He could even create remarkably detailed color images by taking separate exposures through red, green, and blue filters, then combining the results in newly developed programs like Adobe Photoshop.
And to Parker’s great relief, electronic images proved as good as visual observations for monitoring Martian features like clouds, dust storms, and— thankfully—the changing polar ice caps. At last, he could put aside the filar micrometer and the tedious hours that went along with it. But there was no way around the fact that the whole experience of planetary observing had changed for serious amateurs like Parker, just as it had for professionals. He realized this during Richard Berry’s visit, as they filled his computer’s hard drive with electronic portraits of Jupiter. “I said to Richard, ‘We’ve been here for six hours and haven’t even looked through the telescope.’ And he said, ‘Yeah, now you’re a real astronomer!’”
August 26, 2003,
Coral Gables, Florida
With no time for a road trip, I’ve packed my webcam and flown to Miami. I arrive at Don Parker’s waterfront home shortly after he has awakened from yet another all-nighter at the telescope. Don is tall, pot bellied, and nearly bald, with a kind of leering, lopsided grin that spreads mischievously across his face. In his old hospital scrubs he reminds me of Peter Boyle in Young Frankenstein. Don wouldn’t mind hearing me say that; he often refers to himself as Mongo, after the character in another Mel Brooks film, Blazing Saddles. (For example: “Mongo got good pictures. Mongo happy.”)
When he was a practicing anesthesiologist he had a penchant for playing crude practical jokes in the O.R. to startle the nurses (the fart machine was a favorite). “It was like MASH,” he says. Now that he is retired there is nothing to stop him from spending every clear night at the telescope—and that is what he does, whenever Mars shines overhead. Back in 1984, when the seeing was even better than it is now, he and Jeff Beish logged 285 nights of making drawings, photos, and micrometer measurements. Parker says, “We were praying for rain. Going to the Seminole reservation to pay the guys to do a rain dance.” Two decades later, his “other life” has become his life. For months now, as Mars has grown from an orange speck in the predawn sky to its current brilliance, high overhead at midnight, Don has faithfully recorded its changing aspect, the shrinking polar cap, the comings and goings of blue hazes and yellow dust clouds, the parade of deserts and dark markings. Maureen is now a full-fledged Mars widow. Don calls it “The Curse of the Red Planet.”
For me this is the big night, and I am full of anticipation. About twelve hours from now, at 5:51am Eastern Daylight Time on August 27, Mars will be 34,646,418 million miles away from Coral Gables. An astronomer at JPL has figured out that this is closer than at any time since the year 57617 B.C., and closer than Mars will be again until the year 2287. For Don, though, this is just one more night in an unbroken string of nights that began last April and will continue into next spring. Don, of course, is far from the only one so afflicted. At any given moment this summer someone around the world is observing Mars, including a couple of twenty-something wizards in Hong
Kong and Singapore who are getting spectacular results with telescopes placed on their high-rise apartment balconies (when I mention them Don curses ruefully, then laughs).
Sitting in Don’s kitchen, we discuss the weather for the coming night— the continuing hurricane season has made things a bit iffy—as he mixes his standard brew of freeze-dried coffee, sugar, and nondairy creamer, a concoction that seems less like a beverage than a research project in polymer chemistry. Arthritis and weakening of the bones in his legs have left him with a limp so painful that he must use a cane, and as he leads me to his upstairs office he utters a string of profanities.
Seated at the computer he unveils his most recent images and I am astonished by their clarity. Even back in April, when Mars was a fraction of its current apparent size, Don was getting a remarkable amount of detail. Now his pictures are so good that they hold up in side-by-side comparisons with Mars images from the Hubble Space Telescope. If you know where to look, you can even spot the giant volcano, Olympus Mons.
When I was growing up, even the two-hundred-inch giant at Palomar couldn’t come close to the details Don has recorded with a telescope just sixteen inches in diameter.
By nightfall the sky is mercifully clear, and Don sets up a ten-inch scope for me to use. The view is amazing: The planet’s disc is shaded with subtle, dusky patterns, far more detailed than any previous view of Mars I’ve ever seen. But when I attach the webcam and fire up the laptop, the live video that appears before me is almost too good to be true. Mars is so big, so clear, that I can even see individual dark spots that must be huge, windblown craters, trailing streaks of dark sand across the pink deserts. At the south pole, the retreating ice cap gleams brilliantly, with an outlier of frosted ground distinctly visible adjacent to the larger white mass.
Long into the night, and again the next, Don and I gather our photographic records of this unprecedented encounter, he at one telescope, I at the other. I feel lucky to be alive at this moment, suspended between the time of the Neanderthals and the twenty-third century, when some of our descendants will be on Mars, looking back at Earth. Right now I am face-to-face with Mars in a way I have never been, and never will be again. It is not the Mars of my childhood picture books, or the one revealed by an armada of space probes, or the trackless world where men and women will someday leave footprints. At this moment, I am exploring Mars, and 35 million miles doesn’t seem like much, not much at all.
Find out more about Chaikin’s books “A Passion for for Mars,” “A Man on the Moon” and more at Chaikin’s website.
When we look out into space, we’re also looking back into time. Just how far back can we see?
The Universe is a magic time window, allowing us to peer into the past. The further out we look, the further back in time we see. Despite our brains telling us things we see happen at the instant we view them, light moves at a mere 300,000 kilometers per second, which makes for a really weird time delay at great distances.
Let’s say that you’re talking with a friend who’s about a meter away. The light from your friend’s face took about 3.336 nanoseconds to reach you. You’re always seeing your loved ones 3.336 nanoseconds into the past. When you look around you, you’re not seeing the world as it is, you’re seeing the world as it was, a fraction of a second ago. And the further things are, the further back in time you’re looking.
The distance to the Moon is, on average, about 384,000 km. Light takes about 1.28 seconds to get from the Moon to the Earth. If there was a large explosion on the Moon of a secret Nazi base, you wouldn’t see it for just over a second. Even trying to communicate with someone on the Moon would be frustrating as you’d experience a delay each time you talked.
Let’s go with some larger examples. Our Sun is 8 minutes and 20 seconds away at the speed of light. You’re not seeing the Sun as it is, but how it looked more than 8 minutes ago.
On average, Mars is about 14 light minutes away from Earth. When we were watching live coverage of NASA’s Curiosity Rover landing on Mars, it wasn’t live. Curiosity landed minutes earlier, and we had to wait for the radio signals to reach us, since they travel at the speed of light.
When NASA’s New Horizons spacecraft reaches Pluto next year, it’ll be 4.6 light hours away. If we had a telescope strong enough to watch the close encounter, we’d be looking at events that happened 4.6 hours ago.
The closest star, Proxima Centauri, is more than 4.2 light-years away. This means that the Proxima Centurans don’t know who won the last US Election, or that there are going to be new Star Wars movies. They will, however, as of when this video was produced, be watching Toronto make some questionable life choices regarding its mayoral election.
The Eagle Nebula with the famous Pillars of Creation, is 7,000 light-years away. Astronomers believe that a supernova has already gone off in this region, blasting them away. Take a picture with a telescope and you’ll see them, but mostly likely they’ve been gone for thousands of years.
The core of our own Milky Way galaxy is about 25,000 light-years away. When you look at these beautiful pictures of the core of the Milky Way, you’re seeing light that may well have left before humans first settled in North America.
And don’t get me started on Andromeda. That galaxy is more than 2.5 million light-years away. That light left Andromeda before we had Homo Erectus on Earth. There are galaxies out there, where aliens with powerful enough telescopes could be watching dinosaurs roaming the Earth, right now.
Here’s where it gets even more interesting. Some of the brightest objects in the sky are quasars, actively feeding supermassive black holes at the cores of galaxies. The closest is 2.5 billion light years away, but there are many much further out. Earth formed only 4.5 billion years ago, so we can see quasars shining where the light had left before the Earth even formed.
The Cosmic Microwave Background Radiation, the very edge of the observable Universe is about 13.8 billion light-years away. This light left the Universe when it was only a few hundred thousand years old, and only now has finally reached us. What’s even stranger, the place that emitted that radiation is now 46 billion light-years away from us.
So crack out your sonic screwdrivers and enjoy your time machine, Whovians. Your ability to look out into space and peer into the past. Without a finite speed of light, we wouldn’t know as much about the Universe we live in and where we came from. What moment in history do you wish you could watch? Express your answer in the form of a distance in light-years.
If we really want to find life on other worlds, why do we keep looking for life based on carbon and water? Why don’t we look for the stuff that’s really different?
In the immortal words of Arthur C. Clarke, “Two possibilities exist: either we are alone in the Universe or we are not. Both are equally terrifying.”
I’m seeking venture capital for a Universal buffet chain, and I wondering if I need to include whatever the tentacle equivalent of forks is on my operating budget. If there isn’t any life, I’m going to need to stop watching so much science fiction and get on with helping humanity colonize space.
Currently, astrobiologists are hard at work searching for life, trying to answer this question. The SETI Institute is scanning radio signals from space, hoping to catch a message. Since humans use radio waves, maybe aliens will too. NASA is using the Curiosity Rover to search for evidence that liquid water existed on the surface of Mars long enough for life to get going. The general rule is if we find liquid water on Earth, we find life. Astronomers are preparing to study the atmospheres of extrasolar planets, looking for gasses that match what we have here on Earth.
Isn’t this just intellectually lazy? Do our scientists lack imagination? Aren’t they all supposed to watch Star Trek How do we know that life is going to look anything like the life we have on Earth? Oh, the hubris!
Who’s to say aliens will bother to communicate with radio waves, and will transcend this quaint transmission system and use beams of neutrinos instead. Or physics we haven’t even discovered yet? Perhaps they talk using microwaves and you can tell what the aliens are saying by how your face gets warmed up. And how do we know that life needs to depend on water and carbon? Why not silicon-based lifeforms, or beings which are pure energy? What about aliens that breathe pure molten boron and excrete seahorse dreams? Why don’t these scientists expand their search to include life as we don’t know it? Why are they so closed-minded?
The reality is they’re just being careful. A question this important requires good evidence. Consider the search for life on Mars. Back in the 1970s, the Viking Lander carried an experiment that would expose Martian soil to water and nutrients, and then try to detect out-gassing from microbes. The result of the experiment was inconclusive, and scientists still argue over the results today. If you’re going to answer a question like this, you want to be conclusive. Also, getting to Mars is pretty challenging to begin with. You probably don’t want to “half-axe” your science.
The current search for life is incremental and exhaustive. NASA’s Spirit and Opportunity searched for evidence that liquid water once existed on the surface of Mars. They found evidence of ancient water many times, in different locations. The fact that water once existed on the surface of Mars is established. Curiosity has extended this line of research, looking for evidence that water existed on the surface of Mars for long periods of time. Long enough that life could have thrived. Once again, the rover has turned up the evidence that scientists were hoping to see. Mars was once hospitable for life, for long periods of time. The next batch of missions will actually search for life, both on the surface of Mars and bringing back samples to Earth so we can study them here.
The search for life is slow and laborious because that’s how science works. You start with the assumption that since water is necessary for life on Earth, it makes sense to just check other water in the Solar System. It’s the low hanging fruit, then once you’ve exhausted all the easy options, you get really creative.
Scientists have gotten really creative about how and where they could search for life. Astrobiologists have considered other liquids that could be conducive for life. Instead of water, it’s possible that alternative forms of life could use liquid methane or ammonia as a solvent for its biological processes. In fact, this environment exists on the surface of Titan. But even if we did send a rover to Titan, how would we even know what to look for?
We understand how life works here, so we know what kinds of evidence to pursue. But kind of what evidence would be required to convince you there’s life as you don’t understand it? Really compelling evidence.
Go ahead and propose some alternative forms of life and how you think we’d go searching for it in the comments.
Thanks for watching! Never miss an episode by clicking subscribe. Our Patreon community is the reason these shows happen. We’d like to thank Kuri the Vegan Traveller and Craig Hayes, and the rest of the members who support us in making great space and astronomy content. Members get advance access to episodes, extras, contests, and other shenanigans with Jay, myself and the rest of the team. Want to get in on the action? Click here.
For thousands of years, human beings have stared up at the sky and wondered about the Red Planet. Easily seen from Earth with the naked eye, ancient astronomers have charted its course across the heavens with regularity. By the 19th century, with the development of powerful enough telescopes, scientists began to observe the planet’s surface and speculate about the possibility of life existing there.
However, it was not until the Space Age that research began to truly shine light on the planet’s deeper mysteries. Thanks to numerous space probes, orbiters and robot rovers, scientists have learned much about the planet’s surface, its history, and the many similarities it has to Earth. Nowhere is this more apparent than in the composition of the planet itself.
Structure and Composition:
Like Earth, the interior of Mars has undergone a process known as differentiation. This is where a planet, due to its physical or chemical compositions, forms into layers, with denser materials concentrated at the center and less dense materials closer to the surface. In Mars’ case, this translates to a core that is between 1700 and 1850 km (1050 – 1150 mi) in radius and composed primarily of iron, nickel and sulfur.
This core is surrounded by a silicate mantle that clearly experienced tectonic and volcanic activity in the past, but which now appears to be dormant. Besides silicon and oxygen, the most abundant elements in the Martian crust are iron, magnesium, aluminum, calcium, and potassium. Oxidation of the iron dust is what gives the surface its reddish hue.
Magnetism and Geological Activity:
Beyond this, the similarities between Earth and Mars’ internal composition ends. Here on Earth, the core is entirely fluid, made up of molten metal and is in constant motion. The rotation of Earth’s inner core spins in a direction different from the outer core and the interaction of the two is what gives Earth it’s magnetic field. This in turn protects the surface of our planet from harmful solar radiation.
The Martian core, by contrast, is largely solid and does not move. As a result, the planet lacks a magnetic field and is constantly bombarded by radiation. It is speculated that this is one of the reasons why the surface has become lifeless in recent eons, despite the evidence of liquid, flowing water at one time.
Despite there being no magnetic field at present, there is evidence that Mars had a magnetic field at one time. According to data obtained by the Mars Global Surveyor, parts of the planet’s crust have been magnetized in the past. It also found evidence that would suggest that this magnetic field underwent polar reversals.
This observed paleomagnetism of minerals found on the Martian surface has properties that are similar to magnetic fields detected on some of Earth’s ocean floors. These findings led to a re-examination of a theory that was originally proposed in 1999 which postulated that Mars experienced plate tectonic activity four billion years ago. This activity has since ceased to function, causing the planet’s magnetic field to fade away.
Much like the core, the mantle is also dormant, with no tectonic plate action to reshape the surface or assist in removing carbon from the atmosphere. The average thickness of the planet’s crust is about 50 km (31 mi), with a maximum thickness of 125 km (78 mi). By contrast, Earth’s crust averages 40 km (25 mi) and is only one third as thick as Mars’s, relative to the sizes of the two planets.
The crust is mainly basalt from the volcanic activity that occurred billions of years ago. Given the lightness of the dust and the high speed of the Martian winds, features on the surface can be obliterated in a relatively short time frame.
Formation and Evolution:
Much of Mars’ composition is attributed to its position relative to the Sun. Elements with comparatively low boiling points, such as chlorine, phosphorus, and sulphur, are much more common on Mars than Earth. Scientists believe that these elements were probably removed from areas closer to the Sun by the young star’s energetic solar wind.
After its formation, Mars, like all the planets in the Solar System, was subjected to the so-called “Late Heavy Bombardment.” About 60% of the surface of Mars shows a record of impacts from that era, whereas much of the remaining surface is probably underlain by immense impact basins caused by those events.
These craters are so well preserved because of the slow rate of erosion that happens on Mars. Hellas Planitia, also called the Hellas impact basin, is the largest crater on Mars. Its circumference is approximately 2,300 kilometers, and it is nine kilometers deep.
The largest impact event on Mars is believed to have occurred in the northern hemisphere. This area, known as the North Polar Basin, measures some 10,600 km by 8,500 km, or roughly four times larger than the Moon’s South Pole – Aitken basin, the largest impact crater yet discovered.
Though not yet confirmed to be an impact event, the current theory is that this basin was created when a Pluto-sized body collided with Mars about four billion years ago. This is thought to have been responsible for the Martian hemispheric dichotomy and created the smooth Borealis basin that now covers 40% of the planet.
Scientists are currently unclear on whether or not a huge impact may be responsible for the core and tectonic activity having become dormant. The InSight Lander, which is planned for 2018, is expected to shed some light on this and other mysteries – using a seismometer to better constrain the models of the interior.
Other theories claim that Mars lower mass and chemical composition caused it to cool more rapidly than Earth. This cooling process is therefore believed to be what arrested convection within the planet’s outer core, thus causing its magnetic field to disappear.
Mars also has discernible gullies and channels on its surface, and many scientists believe that liquid water used to flow through them. By comparing them to similar features on Earth, it is believed these were were at least partially formed by water erosion. Some of these channels are quite large, reaching 2,000 kilometers in length and 100 kilometers in width.
Yes, Mars is much like Earth in many respects. It’s a rocky planet, has a crust, mantle, and core, and is composed of roughly the same elements. As our exploration of the Red Planet continues, we are learning more and more about its history and evolution. Someday, we may find ourselves settling on that rock, and relying on its similarities to create a “backup location” for humanity.
Tonight the thin, 2-day-old crescent Moon will join Venus and Mars in the western sky at dusk for one of the most striking conjunctions of the year. The otherworldly trio will fit neatly with a circle about 1.5° wide or just three times the diameter of the full moon. No question, this will catch a lot of eyes around the world. Why not take a picture and share it with your friends? Here are a few tips to do just that.
You won’t need much for an easy snapshot. In bright twilight, point your mobile phone toward the Moon and tap off a few shots, taking care not to touch the screen too hard lest you shake the phone and blur the image. The phone’s autoexposure and autofocus settings should be adequate to capture both the Moon and Venus. Mars is fainter and may only show if you can steady your phone against something to allow for a longer exposure without blurring. Assuming you use your phone in its default wide view, the Moon, Venus and Mars will form a tight, small group in a larger scene.
Phones provide the highest resolution in their wide setting. If you zoom in, the Moon will be bigger but resolution or sharpness will suffer. Someday phones will be as good as digital single lens reflex cameras (DSLRs) but until then, you’ll need one of these or their cousins, the point-and-shoot cameras, to get the best images of astronomical objects.
You’ll also need a tripod to keep the camera still and stable during the longer exposures you’ll need during the optimum time for photography which begins about 30 minutes after sunset. That’s when your photos will capture all three objects without overexposing the Moon and making it look washed-out. Ideally, you want to see the bright crescent contrasting with the dim glow of the earthshine.
Lucky for us, the Moon’s sharp form makes an ideal target for the camera’s autofocus. Frame an attractive landscape or ask a friend to stand in the foreground. Set your lens to its widest open setting (usually f/2.8-3.5) and the ISO (your camera’s sensitivity to light) to 800. The higher the ISO, the shorter the exposure you can use to capture an image, but high ISOs introduce unwanted noise and graininess. 800’s a good compromise. If you can manually set your exposure, start at 4 seconds.
Compose your photo and then focus on the Moon and gently press the shutter button. Check the image on the back screen. Are you on target or is it too dark? If so, double the time. If too bright, half it. As the sky gets darker, you’ll need to gradually increase your exposure. That’s when the Moon will start to wash out and the beautiful deep blue sky turn black or the color of your local light pollution. Around here, that’s pinkish-orange. I’ve got lots of orange sky photos to prove it!
All told, you can use a mobile phone to shoot from about 25-40 minutes after sunset and a DSLR from 25 minutes to 75 minutes after. If you’re shooting with a standard 24-35mm lens, keep your exposures under 20 seconds or the Moon and planets will start to streak or trail. The Rule of 500 is a great way to remember how long a time exposure you can make with any lens before celestial objects start trailing. So, 500/24mm = 20.8 seconds and 500/200mm (telephoto) = 2.5 seconds. That means if you plan to shoot the conjunction with a longer lens, you’ll need to up your ISO to 1600 or even 3200 in late twilight to get a tack-sharp, motionless photo.
Telephoto images are a bit more challenging, but they increase the size of the pretty trio within the scene. When shooting telephoto images (even wide ones if you’re fussy), shoot them on self-timer. That’s the setting everyone used before the selfie took the world by storm. Most timers are pre-set to 10 seconds. You press it and the camera counts down 10 seconds before automatically tripping the shutter, allowing you time to put yourself in a group photo.
In astrophotography, using the self-timer assures you’re going to get a vibration-free photo. If it’s cold out and you’re shooting with a telephoto, vibration from your finger pressing the shutter button can jiggle the image.
Good luck tonight and clear skies! If you have any questions, please ask.
A quarter of a century has passed since NASA’s Voyager 1 spacecraft snapped the iconic image of Earth known as the “Pale Blue Dot” that shows all of humanity as merely a tiny point of light.
The outward bound Voyager 1 space probe took the ‘pale blue dot’ image of Earth 25 years ago on Valentine’s Day, on Feb. 14, 1990 when it looked back from its unique perch beyond the orbit of Neptune to capture the first ever “portrait” of the solar system from its outer realms.
Voyager 1 was 4 billion miles from Earth, 40 astronomical units (AU) from the sun and about 32 degrees above the ecliptic at that moment.
The idea for the images came from the world famous astronomer Carl Sagan, who was a member of the Voyager imaging team at the time.
He head the idea of pointing the spacecraft back toward its home for a last look as a way to inspire humanity. And to do so before the imaging system was shut down permanently thereafter to repurpose the computer controlling it, save on energy consumption and extend the probes lifetime, because it was so far away from any celestial objects.
Sagan later published a well known and regarded book in 1994 titled “Pale Blue Dot,” that refers to the image of Earth in Voyagers series.
“Twenty-five years ago, Voyager 1 looked back toward Earth and saw a ‘pale blue dot,’ ” an image that continues to inspire wonderment about the spot we call home,” said Ed Stone, project scientist for the Voyager mission, based at the California Institute of Technology, Pasadena, in a statement.
Six of the Solar System’s nine known planets at the time were imaged, including Venus, Earth, Jupiter, and Saturn, Uranus, Neptune. The other three didn’t make it in. Mercury was too close to the sun, Mars had too little sunlight and little Pluto was too dim.
Voyager snapped a series of images with its wide angle and narrow angle cameras. Altogether 60 images from the wide angle camera were compiled into the first “solar system mosaic.”
Voyager 1 was launched in 1977 from Cape Canaveral Air Force Station in Florida as part of a twin probe series with Voyager 2. They successfully conducted up close flyby observations of the gas giant outer planets including Jupiter, Saturn, Uranus and Neptune in the 1970s and 1980s.
Both probes still operate today as part of the Voyager Interstellar Mission.
“After taking these images in 1990, we began our interstellar mission. We had no idea how long the spacecraft would last,” Stone said.
Hurtling along at a distance of 130 astronomical units from the sun, Voyager 1 is the farthest human-made object from Earth.
Voyager 1 still operates today as the first human made instrument to reach interstellar space and continues to forge new frontiers outwards to the unexplored cosmos where no human or robotic emissary as gone before.
Here’s what Sagan wrote in his “Pale Blue Dot” book:
“That’s here. That’s home. That’s us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives. … There is perhaps no better demonstration of the folly of human conceits than this distant image of our tiny world.”
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.