Interesting Facts About The Planets

A montage of planets and other objects in the solar system. Credit: NASA/JPL

While the universe is a big place to study, we shouldn’t forget our own backyard. With eight planets and a wealth of smaller worlds to look at, there’s more than enough to learn for a few lifetimes!

So what are some of the most surprising things about the planets? We’ve highlighted a few things below.

1. Mercury is hot, but not too hot for ice

The closest planet to the Sun does indeed have ice on its surface. That sounds surprising at first glance, but the ice is found in permanently shadowed craters — those that never receive any sunlight. It is thought that perhaps comets delivered this ice to Mercury in the first place. In fact, NASA’s MESSENGER spacecraft not only found ice at the north pole, but it also found organics, which are the building blocks for life. Mercury is way too hot and airless for life as we know it, but it shows how these elements are distributed across the Solar System.

2. Venus doesn’t have any moons, and we aren’t sure why.

Both Mercury and Venus have no moons, which can be considered a surprise given there are dozens of other ones around the Solar System. Saturn has over 60, for example. And some moons are little more than captured asteroids, which may have been what happened with Mars’ two moons, for example. So what makes these planets different? No one is really sure why Venus doesn’t, but there is at least one stream of research that suggests it could have had one in the past.

Mars, as it appears today, Credit: NASA
Mars, as it appears today, Credit: NASA

3. Mars had a thicker atmosphere in the past.

What a bunch of contrasts in the inner Solar System: practically atmosphere-less Mercury, a runaway hothouse greenhouse effect happening in Venus’ thick atmosphere, temperate conditions on much of Earth and then a thin atmosphere on Mars. But look at the planet and you can see gullies carved in the past from probable water. Water requires more atmosphere, so Mars had more in the past. Where did it go? Some scientists believe it’s because the Sun’s energy pushed the lighter molecules out of Mars’ atmosphere over millions of years, decreasing the thickness over time.

4. Jupiter is a great comet catcher.

The most massive planet in the Solar System probably had a huge influence on its history. At 318 times the mass of Earth, you can imagine that any passing asteroid or comet going near Jupiter has a big chance of being caught or diverted. Maybe Jupiter was partly to blame for the great bombardment of small bodies that peppered our young Solar System early in its history, causing scars you can still see on the Moon today. And in 1994, astronomers worldwide were treated to a rare sight: a comet, Shoemaker-Levy 9, breaking up under Jupiter’s gravity and slamming into the atmosphere.

Fragmentation of comets is common. Many sungrazers are broken up by thermal and tidal stresses during their perihelions. At top, an image of the comet Shoemaker-Levy 9 (May 1994) after a close approach with Jupiter which tore the comet into numerous fragments. An image taken by Andrew Catsaitis of components B and C of Comet 73P/Schwassmann–Wachmann 3 as seen together on 31 May 2006 (Credit: NASA/HST, Wikipedia, A.Catsaitis)
Fragmentation of comets is common. Many sungrazers are broken up by thermal and tidal stresses during their perihelions. At top, an image of the comet Shoemaker-Levy 9 (May 1994) after a close approach with Jupiter which tore the comet into numerous fragments. An image taken by Andrew Catsaitis of components B and C of Comet 73P/Schwassmann–Wachmann 3 as seen together on 31 May 2006 (Credit: NASA/HST, Wikipedia, A.Catsaitis)

5. No one knows how old Saturn’s rings are

There’s a field of ice and rock debris circling Saturn that from afar, appear as rings. Early telescope observations of the planet in the 1600s caused some confusion: does that planet have ears, or moons, or what? With better resolution, however, it soon became clear that there was a chain of small bodies encircling the gas giant. It’s possible that a single moon tore apart under Saturn’s strong gravity and produced the rings. Or, maybe they’ve been around (pun intended) for the last few billion years, unable to coalesce into a larger body but resistant enough to gravity not to break up.

6. Uranus is more stormy than we thought.

When Voyager 2 flew by the planet in the 1980s, scientists saw a mostly featureless blue ball and some assumed there wasn’t much activity going on on Uranus. We’ve had a better look at the data since then that does show some interesting movement in the southern hemisphere. Additionally, the planet drew closer to the Sun in 2007, and in more recent years telescope probing has shown some storms going on. What is causing all this activity is difficult to say unless we were to send another probe that way. And unfortunately, there are no missions yet that are slated for sure to zoom out to that part of the Solar System.

Infrared images of Uranus showing storms at 1.6 and 2.2 microns obtained Aug. 6, 2014 by the 10-meter Keck telescope. Credit: Imke de Pater (UC Berkeley) & Keck Observatory images.
Infrared images of Uranus showing storms at 1.6 and 2.2 microns obtained Aug. 6, 2014 by the 10-meter Keck telescope. Credit: Imke de Pater (UC Berkeley) & Keck Observatory images.

7. Neptune has supersonic winds.

While on Earth we are concerned about hurricanes, the strength of these storms is nowhere near what you would find on Neptune. At its highest altitudes, according to NASA, winds blow at more than 1,100 miles per hour (1,770 kilometers per hour). To put that in context, that’s faster than the speed of sound on Earth, at sea level. Why Neptune is so blustery is a mystery, especially considering the Sun’s heat is so little at its distance.

8. You can see Earth’s magnetic field at work during light shows.

We have a magnetic field surrounding our planet that protects us from the blasts of radiation and particles the Sun sends our way. Good thing, too, because such flare-ups could prove deadly to unprotected people; that’s why NASA keeps an eye on solar activity for astronauts on the International Space Station, for example. At any rate, when you see auroras shining in the sky, that’s what happens when the particles from the Sun flow along the magnetic field lines and interact with Earth’s upper atmosphere.

Universe Today has many articles on interesting facts about the planets. Start with 10 facts about Mercury  and 10 facts about Venus. You may also want to check out the 10 facts about Mars. Astronomy Cast also has a number of podcasts about the planets, including one on Earth.

10 Interesting Facts About Mars

The Planet Mars. Image credit: NASA
The Planet Mars. Image credit: NASA

Mars is a constant point of discussion for space explorers around the world. We’ve sent dozens of spacecraft there to study it. Some want to land astronauts on it. The planet is just far away to make that dream difficult, but just close enough to spark our imagination. So what are some of the most important things to learn about the Red Planet?

Continue reading “10 Interesting Facts About Mars”

How Can Mars Sometimes Be Warmer Than Earth?

Curiosity's recent shot of the Martian landscape. Doesn't look warm, does it? Credit: NASA/JPL

Remember a few weeks ago when the weather on Mars was making the news? At the time, parts of the Red Planet was experiencing temperatures that were actually warmer than parts of the US. Naturally, there were quite a few skeptics. How could a planet with barely any atmosphere which is farther from the Sun actually be warmer than Earth?

Well, according to recent data obtained by the Curiosity rover, temperatures in the Gale Crater reached a daytime high of -8 °C (17.6 °F) while cities like Chicago and Buffalo were experiencing lows of -16 to -20 °C (2 to -4 °F). As it turns out, this is due to a number of interesting quirks that allow for significant temperature variability on Mars, which at times allow some regions to get warmer than places here on Earth.

It’s no secret that this past winter, we here in North America have been experiencing a bit of a record-breaking cold front. This was due to surges of cold air pushing in from Siberia and the North Pole into Canada, the Northern Plains and the Midwest. This resulted in many cities experiencing January-like weather conditions in November, and several cities hitting record-lows not seen in decades or longer.

Credit: NASA/JPL/University of Arizona
Carbon dioxide ice on Mars, which experiences sublimation from solar warming to create  polygonal structures. Credit: NASA/JPL/University of Arizona

For instance, the morning of November 18th, 2014, was the coldest since 1976, with a national average temperature of -7 °C (19.4 °F). That same day, Detroit tied a record it had set in 1880, with a record low of -12 °C (11 °F).

Five days earlier, the city of Denver, Colorado experienced temperatures as cold as -26 °C (-14 °F) while the city of Casper, Wyoming, hit a record low of -33 °C (-27 °F). And then on November 20th, the town of Jacksonville, Florida broke a previous record (which it set in 1873) with an uncharacteristic low of -4° C (25 °F).

Hard to believe isn’t it? Were it not for the constant need for bottled oxygen, more people might consider volunteering for Mars One‘s colonizing mission – which, btw, is still scheduled to depart in 2023, so there’s still plenty of time register! However, these comparative figures manage to conceal a few interesting facts about Mars.

For starters, Mars experiences an average surface temperature of about -55 °C (-67 °F), with temperatures at the pole reaching as low as a frigid -153 °C (-243.4 °F). Meanwhile, here on Earth the average surface temperature is 7.2 °C (45 °F), which is also due to a great deal of seasonal and geographic variability.

The eccentricity in Mars' orbit means that it is . Credit: NASA
The eccentricity in Mars’ orbit around the Sun means that it is 42.5 million km closer during certain times of the year. Credit: NASA

In the desert regions near the equator, temperature can get as high as 57.7 °C, with the hottest temperature ever recorded being 70.7 °C (158.36 °F) in the summertime in the desert region of Iran. At the south pole in Antarctica temperatures can reach as low as -89.2 °C (-128.6 °F). Pretty darn cold, but still balmy compared to Mars’ polar ice caps!

Also, since its arrival in 2012, the Curiosity Rover has been rolling around inside Gale Crater – which is located near the planet’s equator. Here, the planet’s temperature experiences the most variability, and can reach as high as 20 °C (68 °F) during midday.

And last, but not least, Mars has a greater eccentricity than all other planet’s in the Solar System – save for Mercury. This means that when the planet is at perihelion (closest to the Sun) it is roughly 0.28 AUs (42.5 million km) closer than when it is at aphelion (farthest from the Sun). Having just passed perihelion recently, the average surface temperatures on Mars can vary by up to an additional 20 ºC.

In short, Mars is still, and by far, the colder of the two planets. Not that it’s a competition or anything…

Further Reading: NASA

Weekly Space Hangout – Feb. 6, 2015: Astronaut Ron Garan’s “Orbital Perspective”

Host: Fraser Cain (@fcain)

Guests:
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )

Special Guest: Astronaut Ron Garan (orbitalpersepctive.com / @Astro_Ron)
Ron will talk about his new book The Orbital Perspective: Lessons in Seeing the Big Picture from a Journey of 71 Million Miles.

This Week’s Stories:

Obama’s NASA budget request
Black Holes Do Not Exist Where Space and Time Do Not Exist, Says New Theory
SES Rethinking Being First to Fly on a Full-Throttle Falcon 9
5 Lunar X-Prize Teams Land Payday; Only 2 Landed Hardware
Moroccan Meteorite May Be a 4.4-Billion-Year-Old Chunk of Martian Crust
After Canceling NRO Launch Competition, USAF Dangles More Plums for SpaceX
Where is Saturn? VLBA Used to Accurately Measure Position of Saturn and its 62 Moons
SpaceX Nears Pad Abort Test for Human-Rated Dragon Capsule
Closer Look at the IXV Intermediate eXperimental Vehicle
Skylon Spaceplane’s Inventor Sees Busy Spaceports Coming Soon
SpaceX Conducts Static Fire Test Ahead of DSCOVR Mission
Supernova Mystery Found at the Bottom of the Sea
NASA Does an About Face on SOFIA: Requests Full Funding
LightSail Test Flight Scheduled for May 2015
Mining the Moon Becomes a Serious Prospect
TWiM: NASA Presses Congress for More Commercial Crew Funding
A Second Ringed Centaur? Centaurs with Rings Could Be Common
Rosetta Swoops In for a Close Encounter
Super Sizing Pegasus for SLS Core Transport
TWiM: SpaceX Drone Boats Named After Sci-Fi Legend’s Spaceships
It’s Official: We’re On the Way to Europa
McCain Accuses USAF of “Actively Keeping Out” SpaceX
Europe Tired of Playing “Simon Says” with SpaceX
Business on the Moon: FAA Backs Bigelow Aerospace
Mystery of the Universe’s Gamma-Ray Glow May Be Solved
New Infrared View of the Trifid Nebula Reveals New Variable Stars Far Beyond
Gap Reveals Potential Exomoon

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

You can join in the discussion between episodes over at our Weekly Space Hangout Crew group in G+, and suggest your ideas for stories we can discuss each week!

Obama Administration Proposes $18.5 Billion Budget for NASA – Bolden

In the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, NASA Administrator Charlie Bolden delivers a “state of the agency” address at NASA's televised fiscal year 2016 budget rollout event with Kennedy Space Center Director Bob Cabana looking on, at right. NASA's Orion, SpaceX Dragon and Boeing CST-100 spacecraft were on display. Photo credit: NASA/Gianni Woods

The Obama Administration today (Feb. 2) proposed a NASA budget allocation of $18.5 Billion for the new Fiscal Year 2016, which amounts to a half-billion dollar increase over the enacted budget for FY 2015, and keeps the key manned capsule and heavy lift rocket programs on track to launch humans to deep space in the next decade and significantly supplements the commercial crew initiative to send our astronauts to low Earth orbit and the space station later this decade.

NASA Administrator Charles Bolden formally announced the rollout of NASA’s FY 2016 budget request today during a “state of the agency” address at the Kennedy Space Center (KSC), back dropped by the three vehicles at the core of the agency’s human spaceflight exploration strategy; Orion, the Boeing CST-100 and the SpaceX Dragon.

“To further advance these plans and keep on moving forward on our journey to Mars, President Obama today is proposing an FY 2016 budget of $18.5 billion for NASA, building on the significant investments the administration has made in America’s space program over the past six years,” Administrator Bolden said to NASA workers and the media gathered at the KSC facility where Orion is being manufactured.

“These vehicles are not things just on paper anymore! This is tangible evidence of what you [NASA] have been doing these past few years.”

In the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, NASA Administrator Charlie Bolden delivers a “state of the agency” address on Feb 2, 2015 at NASA's televised fiscal year 2016 budget rollout event.   Photo credit: NASA/Gianni Woods
In the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, NASA Administrator Charlie Bolden delivers a “state of the agency” address on Feb 2, 2015 at NASA’s televised fiscal year 2016 budget rollout event. Photo credit: NASA/Gianni Woods

Bolden said the $18.5 Billion budget request will enable the continuation of core elements of NASA’s main programs including first launch of the new commercial crew vehicles to orbit in 2017, maintaining the Orion capsule and the Space Launch System (SLS) rocket to further NASA’s initiative to send ‘Humans to Mars’ in the 2030s, extending the International Space Station (ISS) into the next decade, and launching the James Webb Space Telescope in 2018. JWST is the long awaited successor to NASA’s Hubble Space Telescope.

“NASA is firmly on a journey to Mars. Make no mistake, this journey will help guide and define our generation.”

Funding is also provided to enable the manned Asteroid Redirect Mission (ARM) by around 2025, to continue development of the next Mars rover, and to continue formulation studies of a robotic mission to Jupiter’s icy moon Europa.

“That’s a half billion-dollar increase over last year’s enacted budget, and it is a clear vote of confidence in you – the employees of NASA – and the ambitious exploration program you are executing,” said Bolden.

Overall the additional $500 million for FY 2016 translates to a 2.7% increase over FY 2015. That compares to about a 6.4% proposed boost for the overall US Federal Budget amounting to $4 Trillion.

The Boeing CST-100 and the SpaceX Dragon V2 will restore the US capability to ferry astronauts to and from the International Space Station (ISS).

In September 2014, Bolden announced the selections of Boeing and SpaceX to continue development and certification of their proposed spaceships under NASA’s Commercial Crew Program (CCP) and Launch America initiative started back in 2010.

NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com

Since the retirement of the Space Shuttle program in 2011, all NASA astronauts have been totally dependent on Russia and their Soyuz capsule as the sole source provider for seats to the ISS.

“The commercial crew vehicles are absolutely critical to our journey to Mars, absolutely critical. SpaceX and Boeing have set up operations here on the Space Coast, bringing jobs, energy and excitement about the future with them. They will increase crew safety and drive down costs.”

Meet Dragon V2 - SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX's new astronaut transporter for NASA. Credit: SpaceX
Meet Dragon V2 – SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX’s new astronaut transporter for NASA. Credit: SpaceX

CCP gets a hefty and needed increase from $805 Million in FY 2015 to $1.244 Billion in FY 2016.

To date the Congress has not fully funded the Administration’s CCP funding requests, since its inception in 2010.

The significant budget slashes amounting to 50% or more by Congress, have forced NASA to delay the first commercial crew flights of the private ‘space taxis’ from 2015 to 2017.

As a result, NASA has also been forced to continue paying the Russians for crew flights aboard the Soyuz that now cost over $70 million each under the latest contract signed with Roscosmos, the Russian Federal Space Agency.

Boeing CST-100 capsule interior up close.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 capsule interior up close. Credit: Ken Kremer – kenkremer.com

Bolden has repeatedly stated that NASA’s overriding goal is to send astronauts to Mars in the 2030s.

To accomplish the ‘Journey to Mars’ NASA is developing the Orion deep space crew capsule and mammoth SLS rocket.

However, both programs had their budgets cut in the FY 2016 proposal compared to FY 2015. The 2015 combined total of $3.245 Billion is reduced in 2016 to $2.863 Billion, or over 10%.

The first test flight of an unmanned Orion atop the SLS is now slated for liftoff on Nov. 2018, following NASA’s announcement of a launch delay from the prior target of December 2017.

Since the Journey to Mars goal is already underfunded, significant cuts will hinder progress.

Orion just completed its nearly flawless maiden unmanned test flight in December 2014 on the Exploration Flight Test-1 (EFT-1) mission.

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

There are some losers in the new budget as well.

Rather incomprehensibly funding for the long lived Opportunity Mars Exploration Rover is zeroed out in 2016.

This comes despite the fact that the renowned robot just reached the summit of a Martian mountain at Cape Tribulation and is now less than 200 meters from a science goldmine of water altered minerals.

NASA’s Opportunity Mars rover captures sweeping panoramic vista near the ridgeline of 22 km (14 mi) wide Endeavour Crater's western rim. The center is southeastward and the distant rim is visible in the center. An outcrop area targeted for the rover to study is at right of ridge.  This navcam panorama was stitched from images taken on May 10, 2014 (Sol 3659) and colorized.  Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com
NASA’s Opportunity Mars rover captures sweeping panoramic vista near the ridgeline of 22 km (14 mi) wide Endeavour Crater’s western rim. The center is southeastward and the distant rim is visible in the center. An outcrop area targeted for the rover to study is at right of ridge. This navcam panorama was stitched from images taken on May 10, 2014 (Sol 3659) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com

Funding for the Lunar Reconnaissance Orbiter (LRO) is also zeroed out in FY 2016.

Both missions continue to function quite well with very valuable science returns. They were also zeroed out in FY 2015 but received continued funding after a senior level science review.

So their ultimate fate is unknown at this time.

Overall, Bolden was very upbeat about NASA’s future.

“I can unequivocally say that the state of NASA is strong,” Bolden said.

He concluded his remarks saying:

“Because of the dedication and determination of each and every one of you in our NASA Family, America’s space program is not just alive, it is thriving! Together with our commercial and international partners, academia and entrepreneurs, we’re launching the future. With the continued support of the Administration, the Congress and the American people, we’ll all get there together.”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Moroccan Meteorite May Be a 4.4-Billion-Year-Old Chunk of Dark Martian Crust

Mars! Martian meteorites make their way to Earth after being ejected from Mars by a meteor impact on the Red Planet. Image: NASA/National Space Science Data Center.
Mars! Martian meteorites make their way to Earth after being ejected from Mars by a meteor impact on the Red Planet. Image: NASA/National Space Science Data Center.

Mars is often referred to as the Red Planet. But its signature color is only skin-deep – or, I should say, dust-deep. Beneath its rusty regolith Mars has many other hues and shades as well, from pale greys like those found inside holes drilled by Curiosity to large dark regions that are the result of ancient lava flows. Now, researchers think we may have an actual piece of one of Mars’ dark plains here on Earth in the form of a meteorite that was found in the Moroccan desert in 2011.

Mars meteorite NWA 7034 (NASA)
Mars meteorite NWA 7034 (NASA)

Classified as NWA 7034 (for Northwest Africa) the meteorite is a 320-gram (11 oz.) piece of Martian basaltic breccia made up of small fragments cemented together in a dark matrix. Nicknamed “Black Beauty,” NWA 7034 is one of the oldest meteorites ever discovered and is like nothing else ever found on Earth.

According to a new study on a fragment of the meteorite by researchers from Brown University in Providence, Rhode Island and the University of New Mexico, Black Beauty is a 4.4-billion-year-old chunk of Mars’ dark crust – the only known piece of such to have landed on Earth.

While other meteorites originating from Mars have been identified, they are of entirely different types than Black Beauty.

The researchers used a hyperspectral imaging technique to obtain data from across the whole fragment. In doing this, the measurements matched what’s been detected from Mars orbit by NASA’s Mars Reconnaissance Orbiter.

“Other techniques give us measurements of a dime-sized spot,” said Kevin Cannon, a Brown University graduate student and lead author of a new paper published in the journal Icarus. “What we wanted to do was get an average for the entire sample. That overall measurement was what ended up matching the orbital data.”

In addition to indicating a truly ancient piece of another planet, these findings hint at what the surface of many parts of Mars might be like just below the rusty soil… a surface that’s been shattered and reassembled many times by meteorite impacts.

“This is showing that if you went to Mars and picked up a chunk of crust, you’d expect it to be heavily beat up, battered, broken apart and put back together,” Cannon said.

HiRISE image of dark terrain near Ganges Chasma (NASA/JPL/University of Arizona)
HiRISE image of dark terrain near Ganges Chasma (NASA/JPL/University of Arizona)

Source/read more at Brown University news.

Elon Musk and the SpaceX Odyssey: the Path from Falcon 9 to Mars Colonization Transporter

ILLUSTRATION IS RESERVED - DO NOT USE. Are we seeing the convergence of a century of space science and science fiction before our eyes? Will Musk and SpaceX make 2001 Space Odyssey a reality? (Photo Credit: NASA, Apple, SpaceX, Tesla Motors, MGM, Paramount Pictures, Illustration – Judy Schmidt)

In Kubrick’s and Clark’s 2001 Space Odyssey, there was no question of “Boots or Bots”[ref]. The monolith had been left for humanity as a mileage and direction marker on Route 66 to the stars. So we went to Jupiter and Dave Bowman overcame a sentient machine, shut it down cold and went forth to discover the greatest story yet to be told.

Now Elon Musk, born three years after the great science fiction movie and one year before the last Apollo mission to the Moon has set his goals, is achieving milestones to lift humans beyond low-Earth orbit, beyond the bonds of Earth’s gravity and take us to the first stop in the final frontier – Mars – the destination of the SpaceX odyssey.

Marvel claims Musk as the inspiration for Tony Stark in Ironman but for countless space advocates around the World he is the embodiment of Dave Bowman, the astronaut in 2001 Space Odyssey destined to travel to the edge of the Universe and retire an old man on Mars. (Photo Credit: NASA, MGM, Paramount Pictures, Illustration – Judy Schmidt)
Marvel claims Musk as the inspiration for Tony Stark in Ironman but for countless space advocates around the World he is the embodiment of Dave Bowman, the astronaut in 2001 Space Odyssey destined to travel to the edge of the Universe and retire an old man on Mars. (Photo Credit: NASA, MGM, Paramount Pictures, Illustration – Judy Schmidt)

Ask him what’s next and nowhere on his bucket list does he have Disneyland or Disney World. You will find Falcon 9R, Falcon Heavy, Dragon Crew, Raptor Engine and Mars Colonization Transporter (MCT).

At the top of his working list is the continued clean launch record of the Falcon 9 and beside that must-have is the milestone of a soft landing of a Falcon 9 core. To reach this milestone, Elon Musk has an impressive array of successes and also failures – necessary, to-be-expected and effectively of equal value. His plans for tomorrow are keeping us on the edge of our seats.

The Dragn Crew capsule is more than a modernized Apollo capsule. It will land softly and at least on Earth will be reusable while Musk and SpaceX dream of landing Falcon Crew on Mars. (Photo Credits: SpaceX)
The Dragon Crew capsule is more than a modernized Apollo capsule. It will land softly and at least on Earth will be reusable while Musk and SpaceX dream of landing Falcon Crew on Mars. (Photo Credits: SpaceX)

CRS-5, the Cargo Resupply mission number 5, was an unadulterated success and to make it even better, Elon’s crew took another step towards the first soft  landing of a Falcon core, even though it wasn’t entirely successful. Elon explained that they ran out of hydaulic fluid. Additionally, there is a slew of telemetry that his engineers are analyzing to optimize the control software. Could it have been just a shortage of fluid? Yes, it’s possible they could extrapolate the performance that was cut short and recognize the landing Musk and crew dreamed of.

A successful failure of a soft landing had no baring on the successful launch of the CRS-5, the cargo resupply mission to ISS. (Image Credits: SpaceX)
A successful failure of a soft landing had no baring on the successful launch of the CRS-5, the cargo resupply mission to ISS. (Image Credits: SpaceX)

The addition of the new grid fins to improve control both assured the observed level of success and also assured failure. Anytime one adds something unproven to a test vehicle, the risk of failure is raised. This was a fantastic failure that provided a treasure trove of new telemetry and the possibilities to optimize software. More hydraulic fluid is a must but improvements to SpaceX software is what will bring a repeatable string of Falcon core soft landings.

“Failure is not an option,” are the famous words spoken by Eugene Kranz as he’s depicted in the movie Apollo 13. Failure to Elon Musk and to all of us is an essential part of living. However, from Newton to Einstein to Hawking, the equations to describe and define how the Universe functions cannot show failure otherwise they are imperfect and must be replaced. Every moment of a human life is an intertwined array of success and failure. Referring only to the final frontier, in the worse cases, teams fall out of balance and ships fall out of the sky. Just one individual can make a difference between his or a team’s success. Failure, trial and error is a part of Elon’s and SpaceX’s success.

Only the ULA Delta IV Heavy image is real. TBC - to be completed - is the status of Delta Heavy. To be launch on its maiden flight in 2015, Falcon Heavy will become the most powerful American-made launch vehicle since Von Braun's Saturn rocket of the d1960s. (Credits: SpaceX, ULA)
Only the ULA Delta IV Heavy image is real. TBC – to be completed – is the status of Falcon Heavy. To be launch on its maiden flight in 2015, Falcon Heavy will become the most powerful American-made launch vehicle since Von Braun’s Saturn rocket of the d1960s. (Credits: SpaceX, ULA)

He doesn’t quote or refer to Steve Jobs but Elon Musk is his American successor. From Hyperloops, to the next generation of Tesla electric vehicles, Musk is wasting no time unloading ideas and making his dreams reality. Achieving his goals, making milestones depends also on bottom line – price and performance into profits. The Falcon rockets are under-cutting ULA EELVs (Atlas & Delta) by more than half in price per pound of payload and even more with future reuse. With Falcon Heavy he will also stake claim to the most powerful American-made rocket.

In both cost and performance the Falcon 9 and Heavy outperform the Delta IV. The Falcon vehicle is disruptive technology. (Illustration: T.Reyes)
In both cost and performance the Falcon 9 and Heavy outperform the Delta IV. The Falcon vehicle is disruptive technology. (Illustration: T.Reyes)

Musk’s success will depend on demand for his product. News in the last week of his investments in worldwide space-based internet service also shows his intent to promote products that will utilize his low-cost launch solutions. The next generation of space industry could falter without investors and from the likes of Musk, re-investing to build demand for launch and sustaining young companies through their start-up phases. Build it and they will come but take for granted, not recognize the fragility of the industry, is at your own peril.

So what is next in the SpaceX Odyssey? Elon’s sights remain firmly on the Falcon 9R (Reuse) and the Falcon Heavy. Nothing revolutionary on first appearance, the Falcon Heavy will look like a Delta IV Heavy on steroids. Price and performance will determine its success – there is no comparison. It is unclear what will become of the Delta IV Heavy once the Falcon Heavy is ready for service. There may be configurations of the Delta IV with an upper stage that SpaceX cannot match for a time but either way, the US government is likely to effectively provide welfare for the Delta and even Atlas vehicles until ULA (Lockheed Martin and Boeing’s developed corporation) can develop a competitive solution. The only advantage remaining for ULA is that Falcon Heavy hasn’t launched yet. Falcon Heavy, based on Falcon 9, does carry a likelihood of success based on Falcon 9’s 13 of 13 successful launches over the last 5 years. Delta IV Heavy has had 7 of 8 successful launches over a span of 11 years.

The legacy that Elon and SpaceX stand upon is a century old. William Gerstenmaier, a native of the state of Ohio - First in Flight, associate administrator for NASA Human Spaceflight and past program manager of ISS has been a prime executor of NASA human spaceflight for two decades. Elon Musk shares in common a long-time enthusiasm for space exploration with Gerstenmaier.  From top left, clockwise, Eugene Kranz, Michael Collins, Neil Armstron, Edwin (Buzz) Aldrin, W. Gerstenmaier, Michael Griffin, NASA Administrator Charles Bolden shaking hands with Elon Musk. (Photo Credits: NASA, SpaceX, Illustration, J.Schmidt/T.Reyes)
The legacy that Elon and SpaceX stand upon is a century old. The Ohio native, William Gerstenmaier, associate administrator for NASA Human Spaceflight and past program manager of ISS, like Musk and so many others, dreamed of space exploration from an early age. From top left, clockwise, Eugene Kranz, Michael Collins, Neil Armstrong, Edwin (Buzz) Aldrin, W. Gerstenmaier, Michael Griffin, NASA Administrator Charles Bolden shaking hands with Elon Musk, the Apollo 11 crew embarking on their famous voyage(center). (Photo Credits: NASA, SpaceX, Illustration, J.Schmidt/T.Reyes)

The convergence of space science and technology and science fiction in the form of Musk’s visions for SpaceX is linked to the NASA legacy beginning with NASA in 1958, accelerated by JFK in 1962 and landing upon the Moon in 1969. The legacy spans backward in time to Konstantin Tsiolkovsky, Robert Goddard, Werner Von Braun and countless engineers and forward through the Space Shuttle and Space Station era.

A snapshot from the  SpaceX webpage describing their successful first flight of the Dragon Cargo vessel on Falcon 9. Musk's SpaceX could not have achieved so much so quickly without the knowledge and support of NASA. (Credit: SpaceX)
A snapshot from the SpaceX webpage describing their successful first flight of the Dragon Cargo vessel on Falcon 9. Musk’s SpaceX could not have achieved so much so quickly without the knowledge and support of NASA. (Credit: SpaceX)

The legacy of Shuttle is that NASA remained Earth-bound for 30-plus years during a time that Elon Musk grew up in South Africa and Canada and finally brought his visions to the United States. With a more daring path by NASA, the story to tell today would have been Moon bases or Mars missions completed in the 1990s and commercial space development that might have outpaced or pale in comparison to today’s. Whether Musk would be present in commercial space under this alternate reality is very uncertain. But Shuttle retirement, under-funding its successor, the Ares I & V and Orion, cancelling the whole Constellation program, then creating Commercial Crew program, led to SpaceX winning a contract and accelerated development of Falcon 9 and the Dragon capsule.

Mars as it might look to the human eye  of colonists on final approach to the red planet. To Elon Musk, this is the big prize and a place to retire and relish his accomplishments if only for a brief moment. (Credit: NASA)
Mars as it might look to the human eye of colonists on final approach to the red planet. To Elon Musk, this is the big prize and a place to retire and relish his accomplishments if only for a brief moment. (Credit: NASA)

SpaceX is not meant to just make widgets and profit. Mars is the objective and whether by SpaceX or otherwise, it is the first stop in humankind’s journey into the final frontier. Mars is why Musk developed SpaceX. To that end, the first focal point for SpaceX has been the development of the Merlin engine.

Now, SpaceX’s plans for Mars are focusing on a new engine – Raptor and not a Merlin 2 – which will operate on liquified methane and liquid oxygen. The advantage of methane is its cleaner combustion leaving less exhaust deposits within the reusable engines. Furthermore, the Raptor will spearhead development of an engine that will land on Mar and be refueled with Methane produced from Martian natural resources.

The Raptor remains a few years off and the design is changing. A test stand has been developed for testing Raptor engine components at NASA’s Stennis Space Center. In a January Reddit chat session[ref] with enthusiasts, Elon replied that rather than being a Saturn F-1 class engine, that is, thrust of about 1.5 million lbf (foot-lbs force), his engineers are dialing down the size to optimize performance and reliability. Musk stated that plans call for Raptor engines to produce 500,000 lbf (2.2 million newtons) of thrust. While smaller, this represents a future engine that is 3 times as powerful as the present Merlin engine (700k newtons/157 klbf). It is 1/3rd the power of an F-1. Musk and company will continue to cluster engines to make big rockets.

The future line-up of Falcon rockets is compared to the famous NASA Saturn V. The first Falcon Heavy launch is planned for 2015. Raptor engines may replace and upgrade Heavy then lead to Falcon X, Falcon X Heavy and Falcon XX. The Falcon X  1st stage would have half the thrust of a Saturn V, Falcon X Heavy and XX would exceed a Saturn V's thrust by nearly 50%. (Illustration Credit: SpaceX, 2010)
The future line-up of Falcon rockets is compared to the famous NASA Saturn V. The first Falcon Heavy launch is planned for 2015. Raptor engines may replace and upgrade Heavy then lead to Falcon X, Falcon X Heavy and Falcon XX. The Falcon X 1st stage would have half the thrust of a Saturn V, Falcon X Heavy and XX would exceed a Saturn V’s thrust by nearly 50%. (Illustration Credit: SpaceX, 2010)

To achieve their ultimate goal – Mars colonization, SpaceX will require a big rocket. Elon Musk has repeatedly stated that a delivery of 100 colonists per trip is the present vision. The vision calls for the Mars Colonization Transporter (MCT). This spaceship has no publicly shared SpaceX concept illustrations as yet but more information is planned soon. A few enthusiasts on the web have shared their visions of MCT. What we can imagine is that MCT will become a interplanetary ferry.

The large vehicle is likely to be constructed in low-Earth orbit and remain in space, ferrying colonists between Earth orbit and Mars orbit. Raptor methane/LOX engines will drive it to Mars and back. Possibly, aerobraking will be employed at both ends to reduce costs. Raptor engines will be used to lift a score of passengers at a time and fill the living quarters of the waiting MCT vehicle. Once orbiting Mars, how does one deliver 100 colonists to the surface? With atmospheric pressure at its surface equivalent to Earth’s at 100,000 feet, Mars does not provide an Earth-like aerodynamics to land a large vehicle.

In between launching V-2s in New Mexico and developing rockets at Redstone Arsenal, Von Braun had time to write Mars Projekt (1952) in which he outlined a mission to Mars delivering 70 explorers. Much has changed since that early vision but some of his concepts may still become a reality and solve the problem of sending SpaceX colonists to Mars. (Credit: Mars Project, Von Braun)
In between launching V-2s in New Mexico and developing rockets at Redstone Arsenal, Von Braun had time to write Mars Projekt (1952) in which he outlined a mission to Mars delivering 70 explorers. Much has changed since that early vision but some of his concepts may still become a reality and solve the problem of sending SpaceX colonists to Mars. (Credit: Mars Project, Von Braun)

In 1952, Werner Von Braun in his book “Mars Projekt” envisioned an armada of ships, each depending on launch vehicles much larger than the Saturn V he designed a decade later. Like the invading Martians of War of the Worlds, the armada would rather converge on Mars and deploy dozens of winged landing vehicles that would use selected flat Martian plain to skid with passengers to a safe landing. For now, Elon and SpaceX illustrate the landing of Dragon capsules on Mars but it will clearly require a much larger lander. Perhaps, it will use future Raptors to land softly or possibly employ winged landers such as Von Braun’s after robotic Earth-movers on Mars have constructed ten or twenty mile long runways.

We wait and see what is next for Elon Musk’s SpaceX vision, his SpaceX Odyssey. For Elon Musk and his crew, there are no “wives” – Penelope and families awaiting their arrival on Mars. Their mission is more than a five year journey such as Star Trek. The trip to Mars will take the common 7 months of a Hohmann transfer orbit but the mission is really measured in decades. In the short-term, Falcon 9 is poised to launch again in early February and will again attempt a soft landing on a barge at sea. And later, hopefully, in 2015, the Falcon Heavy will make its maiden flight from Cape Canaveral’s rebuilt launch pad 39A where the Saturn V lifted Apollo 11 to the Moon and the first, last and many Space Shuttles were launched.

References:

National Aeronatics and Space Administration

Space Exploration Web Pages

Happy Birthday to my sister Sylvia who brought home posters, literature and interest from North American-Rockwell in Downey during the Apollo era and sparked my interest.

Amazing Impact Crater Where a Triple Asteroid Smashed into Mars

A triple crater in Elysium Planitia on Mars. Credit: NASA/JPL/University of Arizona.

At first glance, you many not guess that this feature on Mars is an impact crater. The reason it looks so unusual is that it likely is a triple impact crater, formed when three asteroids struck all at once in the Elysium Planitia region.

Why do planetary scientists think the three craters did not form independently at different times?

“The ejecta blanket appears to be uniform around the triple-crater showing no signs of burial or overlapping ejecta from overprinting craters,” write scientists Eric Pilles, Livio Tornabene, Ryan Hopkins, and Kayle Hansen on the HiRISE website. “The crater rims are significantly stunted where the craters overlap.”

This oblong-shaped crater could have been created from a triple asteroid, or it could have been a binary asteroid, and one broke apart, creating the three overlapping craters. The team says the two larger craters must have been produced by asteroids of approximately the same size, probably on the order of a few hundred meters across.

“The northern crater might have been created by a smaller asteroid, which was orbiting the larger binary pair, or when one of the binary asteroids broke up upon entering the atmosphere,” the team explained. “The shape of the triple-crater is oblong, suggesting an oblique impact; therefore, another alternative would be that the asteroid split upon impact and ricocheted across the surface, creating additional craters.”

Studying craters on Mars — and there are lots of them, thanks to Mars’ sparse atmosphere — can help estimate the ages of different terrains, as well as revealing materials such as ice or minerals that get exposed from the impact.

HiRISE is the amazing camera on board the Mars Reconnaissance Orbiter.

President Obama Salutes NASA, Astronaut Kelly, and 1 Year ISS Mission at State of the Union Address

NASA astronaut Scott Kelly stands as he is recognized by President Barack Obama, while First lady Michelle Obama, front left, and other guest applaud, during the State of the Union address on Capitol Hill in Washington, Tuesday Jan. 20, 2015. This March, Astronaut Scott Kelly will launch to the International Space Station and become the first American to live and work aboard the orbiting laboratory for a year-long mission. Credit: NASA/Bill Ingalls

President Obama gave a shout out to NASA Astronaut Scott Kelly and his upcoming 1 year mission to the International Space Station at the 2015 State of the Union address to the US Congress on Tuesday evening, Jan. 20, 2015.

Obama wished Kelly (pictured above in the blue jacket) good luck during his address and told him to send some photos from the ISS via Instagram. Kelly was seated with the First Lady, Michelle Obama, during the speech on Capitol Hill.

The TV cameras focused on Kelly and he was given a standing ovation by the Congress and the President.

Obama also praised Kelly’s flight and the recent Dec. 5, 2014, launch of NASA’s Orion deep space capsule as “part of a re-energized space program that will send American astronauts to Mars.”

Watch this video of President Obama hailing NASA and Scott Kelly:



Video Caption: President Obama recognizes NASA and Astronaut Scott Kelly at 2015 State of the Union Address. Credit: Congress/NASA

Here’s a transcript of President Obama’s words about NASA, Orion, and Scott Kelly’s 1 Year ISS mission:

“Pushing out into the Solar System not just to visit, but to stay. Last month, we launched a new spacecraft as part of a re-energized space program that will send American astronauts to Mars. In two months, to prepare us for those missions, Scott Kelly will begin a year-long stay in space. Good luck, Captain and make sure to Instagram it.”

In late March, Astronaut Scott Kelly will launch to the International Space Station and become the first American to live and work aboard the orbiting laboratory for a year-long mission.

Scott Kelly and Russian Cosmonaut Mikhail Kornienko, both veteran spacefliers, comprise the two members of the 1 Year Mission crew.

Normal ISS stays last for about a six month duration.

NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko comprise  the first ever ISS 1 Year Crew
NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko comprise the first ever ISS 1 Year Crew

No American has ever spent anywhere near a year in space. 4 Russian cosmonauts conducted long duration stays of about a year or more in space aboard the Mir Space Station in the 1980s and 1990s.

Together with Russian cosmonaut Gennady Padalka, Kelly and Kornienko will launch on a Russian Soyuz capsule from the Baikonur Cosmodrome as part of Expedition 44.

Kelly and Kornienko will stay aboard the ISS until March 2016.

They will conduct hundreds of science experiments focusing on at least 7 broad areas of investigation including medical, psychological, and biomedical challenges faced by astronauts during long-duration space flight.

During the 2015 State of the Union Address on Jan 20, President Obama lauds NASA’s Orion Spacecraft and our "re-energized space program."  Credit: NASA
During the 2015 State of the Union Address on Jan 20, President Obama lauds NASA’s Orion Spacecraft and our “re-energized space program.” Credit: NASA

Kelly was just featured in a cover story at Time magazine.

Here’s an online link to the Time magazine story : http://ti.me/1w25Qgo

@TIME features @StationCDRKelly ‘s 1-year-long mission in it’s 2015: Year Ahead issue. http://ti.me/1w25Qgo
@TIME features @StationCDRKelly ‘s 1-year-long mission in its 2015: Year Ahead issue. http://ti.me/1w25Qgo

Orion flew a flawless inaugural test flight when it thundered to space on Dec. 5, 2014, atop the fiery fury of a 242 foot tall United Launch Alliance Delta IV Heavy rocket – the world’s most powerful booster – from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

Orion launched on its two orbit, 4.5 hour flight maiden test flight on the Exploration Flight Test-1 (EFT-1) mission that carried the capsule farther away from Earth than any spacecraft designed for astronauts has traveled in more than four decades.

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

Kelly’s flight will pave the way for NASA’s goal to send astronaut crews to Mars by the 2030s. They will launch in the Orion crew vehicle atop the agency’s mammoth new Space Launch System (SLS) rocket, simultaneously under development.

Good luck to Kelly and Kornienko!!

NASA Administrator Charles Bolden officially unveils world’s largest welder to start construction of core stage of NASA's Space Launch System (SLS) rocket at NASA Michoud Assembly Facility, New Orleans, on Sept. 12, 2014. SLS will be the world’s most powerful rocket ever built.  Credit: Ken Kremer - kenkremer.com
NASA Administrator Charles Bolden officially unveils world’s largest welder to start construction of core stage of NASA’s Space Launch System (SLS) rocket at NASA Michoud Assembly Facility, New Orleans, on Sept. 12, 2014. SLS will be the world’s most powerful rocket ever built. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer