Yes, it’s another time-lapse of the October 8 lunar eclipse that was observed by skywatchers across half the Earth… except that these images weren’t captured from Earth at all; this was the view from Mercury!
The animation above was constructed from 31 images taken two minutes apart by the MESSENGER spacecraft between 5:18 a.m. and 6:18 a.m. EDT on Oct. 8, 2014.
“From Mercury, the Earth and Moon normally appear as if they were two very bright stars,” said Hari Nair, a planetary scientist at the Johns Hopkins University Applied Physics Laboratory, which developed and operates the MESSENGER mission for NASA. “During a lunar eclipse, the Moon seems to disappear during its passage through the Earth’s shadow, as shown in the movie.”
According to Nair the images have been zoomed by a factor of two and the Moon’s brightness has been increased by a factor of about 25 to enhance visibility. Captured by MESSENGER’s narrow-angle camera, Earth and the Moon were 0.713 AU (106.6 million km / 66.2 million miles) away from Mercury when the images were acquired.
Want to see some great photos of the eclipse shared by talented photographers around the world? Click here.
The Oct. 8 “Hunter’s Moon” eclipse was the second and last total lunar eclipse of 2014. The next will occur on April 4 of next year… but by that time MESSENGER won’t be around to witness it.
Launched August 3, 2004, MESSENGER entered orbit at Mercury on March 18, 2011. It is currently nearing the end of its missions as well as its its operational life, but we still have several more months of observations to look forward to from around the Solar System’s innermost planet before MESSENGER makes its final pass and ultimately impacts Mercury’s surface in March 2015.
Video credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
A little over a week before NASA’s MAVEN spacecraft fired its rockets to successfully enter orbit around Mars, MESSENGER performed a little burn of its own – the second of four orbit correction maneuvers (OCMs) that will allow it to remain in orbit around Mercury until next March. Although it is closing in on the end of its operational life it’s nice to know we still have a few more months of images and discoveries from MESSENGER to look forward to!
The first OCM burn was performed on June 17, raising MESSENGER’s orbit from 115 kilometers (71.4 miles) to 156.4 kilometers (97.2 miles) above the surface of Mercury. That was the ninth OCM of the MESSENGER mission, and at 11:54 a.m. EDT on Sept. 12, 2014, the tenth was performed.
At the time of this most recent maneuver, MESSENGER was in an orbit with a closest approach of 24.3 kilometers (15.1 miles) above the surface of Mercury. With a velocity change of 8.57 meters per second (19.17 miles per hour), the spacecraft’s four largest monopropellant thrusters (with a small contribution from four of the 12 smallest monopropellant thrusters) nudged the spacecraft to an orbit with a closest approach altitude of 94 kilometers (58.4 miles). This maneuver also increased the spacecraft’s speed relative to Mercury at the maximum distance from Mercury, adding about 3.2 minutes to the spacecraft’s eight-hour, two-minute orbit period.
OCM-10 lasted for 2 1/4 minutes and added 3.2 minutes to the spacecraft’s 8-hour, 2-minute-long orbit. (Source)
The next two burns will occur on October 24 and January 21.
After its two final successful burns MESSENGER will be out of propellant, making any further OCMs impossible. At the planned end of its mission MESSENGER will impact Mercury’s surface in March of 2015.
Built and operated by The Johns Hopkins University Applied Physics Laboratory (JHUAPL), MESSENGER launched from Cape Canaveral Air Force Station on August 3, 2004. It entered orbit around Mercury on March 18, 2011, the first spacecraft ever to do so. Since then it has performed countless observations of our Solar System’s innermost planet and has successfully mapped 100% of its surface. Check out the infographic below showing some of the amazing numbers racked up by MESSENGER since its launch ten years ago, and read more about the MESSENGER mission here.
Comet C/2014 E2 Jacques has returned! Before it disappeared in the solar glow this spring, the comet reached magnitude +6, the naked eye limit. Now it’s back at dawn, rising higher each morning as it treks toward darker skies. Just days after its July 2 perihelion, the fuzzball will be in conjunction with the planet Venus tomorrow morning July 13. With Mercury nearby, you may have the chance to see this celestial ‘Rat Pack’ tucked within a 8° circle.
While I can guarantee you’ll see Venus and probably Mercury (especially if you use binoculars), morning twilight and low altitude will undoubtedly make spotting Comet Jacques challenging. A 6-inch telescope might nail it. Look for a small, fuzzy cloud with a brighter core against the bluing sky. Patience is the sky observer’s most useful tool. It won’t be long before the comet’s westward motion combined with the seasonal drift of the stars will loft it into darkness again.
A week from now, when the moon’s slimmed to half, the comet will be nearly twice as high and should be easily visible in 50mm binoculars at the start of morning twilight.
Comet Jacques is expected to remain around magnitude +6 through the remainder of July into early August and then slowly fade. It will be well-placed in Perseus at the time of the Perseid meteor shower on Aug. 12-13. Closest approach to Earth occurs on August 29 at 52.4 million miles (84.3 million km). Good luck and let us know if you see it.
Our Sun is constantly sending a hot stream of charged atomic particles out into space in all directions. Pouring out from holes in the Sun’s corona, this solar wind flows through the Solar System at speeds of over 400 km/s (that’s 893,000 mph). When it encounters magnetic fields, like those generated by planets, the flow of particles is deflected into a bow shock — but not necessarily in a uniform fashion. Turbulence can occur just like in air flows on Earth, and “space weather” results.
One of the more curious effects is a regional reversal of the flow of solar wind particles. Called a “hot flow anomaly,” or HFA, these energetic phenomena occur almost daily in Earth’s magnetic field, as well as on Jupiter and Saturn, and even on Mars and Venus where the magnetic fields are weak (but there are still planets blocking the stream of charged particles.)
Not to be left out in the cold, Mercury is now known to display HFAs, which have been detected for the first time by the MESSENGER spacecraft.
The first measurement was of magnetic fields that can be used to detect giant electric current sheets that lead to HFAs. The second was of the heating of the charged particles. The scientists then analyzed this information to quantify what kind of turbulence exists in the region, which provided the final smoking gun of an HFA.
“Planets have a bow shock the same way a supersonic jet does,” explains Vadim Uritsky at NASA’s Goddard Space Flight Center. “These hot flow anomalies are made of very hot solar wind deflected off the bow shock.”
The solar wind is not 100% uniform; it has discontinuities within its own complex magnetic fields. When these shifting fields pile up against a planet’s bow shock they can create turbulence patterns that trap hot plasma, which in turn produces its own magnetic fields. The shockwaves, heat, and energy produced are powerful enough to actually reverse the flow of the solar wind within the HFA bulge.
And the word “hot” is putting it lightly — plasma temperatures in an HFA can reach 10 million degrees.
Mercury may be only a little larger than our Moon but it does possess an internally-generated dipolar magnetic field, unlike the Moon, Venus, and Mars which have only localized or shallow fields. The confirmed presence of HFAs on Mercury indicates that they may be a feature in all planetary bow shocks, regardless of how their magnetic fields — if any — are produced.
In related news, on June 17 MESSENGER successfully completed the first orbit adjustment maneuver to prepare it for its new — and final — low-altitude campaign, during which it will obtain its highest-resolution images ever of the planet’s surface and perform detailed investigations of its composition and magnetic field. Read more on the MESSENGER site here.
Before the Apollo Program, there was the Gemini Program, and before Gemini came the Mercury Program. 7 elite astronauts chosen from a pool of military test pilots. How did NASA choose these original 7 men?
We record Astronomy Cast as a live Google+ Hangout on Air every Monday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch here on Universe Today or from the Astronomy Cast Google+ page.
NASA’s Curiosity rover may be busy exploring the rugged and rocky interior of Gale Crater, but it does get a chance to skygaze on occasion. And while looking at the Sun on June 3, 2014 (mission Sol 649) the rover’s Mastcam spotted another member of our Solar System: tiny Mercury, flitting across the Sun’s face.
Silhouetted against the bright disk of the Sun, Mercury barely appears as a hazy blur in the filtered Mastcam images. But it was moving relatively quickly during the transit, passing the darker smudges of two Earth-sized sunspots over the course of several hours.
It’s the first time Mercury has ever been imaged from Mars, and also the first time we’ve observed a planet transiting our Sun from another world besides our own.
Watch an animation of the transit below:
Because the sunspots move along with the rotation of the Sun (and the Sun rotates once avery 25 days around its equator) Mercury makes a fast pass as it travels along on one of its 88-day-long years.
In reality this was no chance spotting, but rather a carefully calculated observation using the Mastcam’s right 100mm telephoto lens and neutral density filter, which is used to routinely image the Sun in order to measure the dustiness of the Martian atmosphere.
“This is a nod to the relevance of planetary transits to the history of astronomy on Earth. Observations of Venus transits were used to measure the size of the solar system, and Mercury transits were used to measure the size of the sun.”
– Mark Lemmon, Texas A&M University, member of the Mastcan science team
The next chance for Curiosity to spot Mercury will come in April 2015 and, if the rover is still operating by then — perhaps with some upgrades by future human visitors? — it may capture Earth similarly passing across the Sun in November of 2084.
Are you ready for a good close look at Mercury? At an incredible 5 meters per pixel, this is one of the highest-resolution images of Mercury’s surface ever captured. It was acquired on March 15 with the MESSENGER spacecraft’s MDIS (Mercury Dual Imaging System) instrument and shows an 8.3-km (5.2-mile) -wide section of Mercury’s north polar region, speckled with small craters and softly rolling hills.
Because MESSENGER was moving so quickly relative to the targeted area it was imaging, a short exposure time was necessary to avoid blurring. As a result the image appears a bit grainy. See the original map projection here.
Wondering what the next-best image was of Mercury? Find out below:
The previous record for most extreme close-up of Mercury was held by this image:
It was acquired as a targeted observation by MESSENGER’s Narrow-Angle Camera on April 30, 2012, and has a resolution of 7 meters/pixel. It shows an impact melt-covered area about 11 km (7 miles) across near Gaugin crater.
(Although Mercury’s surface may at first appear strikingly similar to the Moon’s, it’s been known since the Mariner 10 mission that the two worlds are very different at fundamental geologic and compositional levels. Read more on that here.)
Images like these are extremely special; during the first two years of MESSENGER’s mission in orbit around Mercury, over 150,000 images were acquired but only five images had resolutions better than 10 meters per pixel.
On April 20, 2014, MESSENGER completed its 3,000th orbit of Mercury (3,075 to date) and is steadily moving into an even lower-altitude orbit. MESSENGER now comes within less than 200 km (124 miles) of the planet’s surface when it passes over its north pole every eight hours… that’s less than half the altitude of the Space Station!
Orbiting at such a low altitude and so often will allow MESSENGER to examine Mercury’s surface in unprecedented detail. Now that 100% of the planet has been successfully mapped by MESSENGER it can spend its second — and last — extended mission investigating specific scientific targets.
“The final year of MESSENGER’s orbital operations will be an entirely new mission,” said Sean Solomon, Principal Investigator for MESSENGER. “With each orbit, our images, our surface compositional measurements, and our observations of the planet’s magnetic and gravity fields will be higher in resolution than ever before. We will be able to characterize Mercury’s near-surface particle environment for the first time. Mercury has stubbornly held on to many of its secrets, but many will at last be revealed.”
Read more in a recent news release from the MESSENGER team here.
Want to explore a high-res map of Mercury and see where MESSENGER is right now? Click here.
Image credits: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
Don’t let furtive Mercury slip through your fingers this spring. The next two and a half weeks will be the best time this year for observers north of the tropics to spot the sun-hugging planet. If you’ve never seen Mercury, you might be surprised how bright it can be. This is especially true early in its apparition when the planet looks like a miniature ‘full moon’.
Both Venus and Mercury pass through phases identical to those of the moon. When between us and the sun, Mercury’s a thin crescent, when off to one side, a ‘half-moon’ and when on the far side of the sun, a full moon. This apparition of the planet is excellent because Mercury’s path it steeply tilted to the horizon in mid-spring.
We start the weekend with Mercury nearly full and brighter than the star Arcturus. Twilight tempers its radiance, but :
* Find a location with a wide open view to the northwest as far down to the horizon as possible.
* Click HERE to get your sunset time and begin looking for the planet about 30-40 minutes after sunset in the direction of the sunset afterglow.
* Reach your arm out to the northwestern horizon and look a little more than one vertically-held fist (10-12 degrees) above it for a singular, star-like object. Found it? Congratulations – that’s Mercury!
* No luck? Start with binoculars instead and sweep the bright sunset glow until you find Mercury. Once you know exactly where to look, lower the binoculars from your eyes and you should see the planet without optical aid. And before I forget – be sure to focus the binoculars on a distant object like a cloud or the moon before beginning your sweeps. I guarantee you won’t find Mercury if it’s out of focus.
Through a telescope, Mercury looks like a gibbous moon right now but its phase will lessen as it moves farther to the ‘left’ or east of the sun. Greatest eastern elongation happens on May 24. On and around that date the planet will be farthest from the sun, standing 12-14 degrees high 40 minutes after sundown from most mid-northern locales.
The planet fades in late May and become difficult to see by early June. Inferior conjunction, when Mercury passes between the Earth and sun, occurs on June 19. Unlike Venus, which remains brilliant right up through its crescent phase, Mercury loses so much reflective surface area as a crescent that it fades to magnitude +3. Its greater distance from Earth, lack of reflective clouds and smaller size can’t compete with closer, brighter and bigger Venus.
Mercury’s 7-degree inclined orbit means it typically glides well above or below the sun’s disk at inferior conjunction. But anywhere from 3 up to 13 years in either November or May the planet passes directly between the Earth and sun at inferior conjunction and we witness a transit. This last happened for U.S. observers on Nov. 8, 2006; the next transit occurs exactly two years from today on May 9, 2016. That event will be widely visible across the Americas, Western Europe and Africa. After having so much fun watching the June 2012 transit of VenusI can’t wait.
In our Solar System, astronomers often divide the planets into two groups — the inner planets and the outer planets. The inner planets are closer to the Sun and are smaller and rockier. The outer planets are further away, larger and made up mostly of gas.
The inner planets (in order of distance from the sun, closest to furthest) are Mercury, Venus, Earth and Mars. After an asteroid belt comes the outer planets, Jupiter, Saturn, Uranus and Neptune. The interesting thing is, in some other planetary systems discovered, the gas giants are actually quite close to the sun.
This makes predicting how our Solar System formed an interesting exercise for astronomers. Conventional wisdom is that the young Sun blew the gases into the outer fringes of the Solar System and that is why there are such large gas giants there. However, some extrasolar systems have “hot Jupiters” that orbit close to their Sun.
The Inner Planets:
The four inner planets are called terrestrial planets because their surfaces are solid (and, as the name implies, somewhat similar to Earth — although the term can be misleading because each of the four has vastly different environments). They’re made up mostly of heavy metals such as iron and nickel, and have either no moons or few moons. Below are brief descriptions of each of these planets based on this information from NASA.
Mercury: Mercury is the smallest planet in our Solar System and also the closest. It rotates slowly (59 Earth days) relative to the time it takes to rotate around the sun (88 days). The planet has no moons, but has a tenuous atmosphere (exosphere) containing oxygen, sodium, hydrogen, helium and potassium. The NASA MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft is currently orbiting the planet.
Venus: Venus was once considered a twin planet to Earth, until astronomers discovered its surface is at a lead-melting temperature of 900 degrees Fahrenheit (480 degrees Celsius). The planet is also a slow rotator, with a 243-day long Venusian day and an orbit around the sun at 225 days. Its atmosphere is thick and contains carbon dioxide and nitrogen. The planet has no rings or moons and is currently being visited by the European Space Agency’s Venus Express spacecraft.
Earth: Earth is the only planet with life as we know it, but astronomers have found some nearly Earth-sized planets outside of our solar system in what could be habitable regions of their respective stars. It contains an atmosphere of nitrogen and oxygen, and has one moon and no rings. Many spacecraft circle our planet to provide telecommunications, weather information and other services.
Mars: Mars is a planet under intense study because it shows signs of liquid water flowing on its surface in the ancient past. Today, however, its atmosphere is a wispy mix of carbon dioxide, nitrogen and argon. It has two tiny moons (Phobos and Deimos) and no rings. A Mars day is slightly longer than 24 Earth hours and it takes the planet about 687 Earth days to circle the Sun. There’s a small fleet of orbiters and rovers at Mars right now, including the large NASA Curiosity rover that landed in 2012.
The Outer Planets:
The outer planets (sometimes called Jovian planets or gas giants) are huge planets swaddled in gas. They all have rings and all of plenty of moons each. Despite their size, only two of them are visible without telescopes: Jupiter and Saturn. Uranus and Neptune were the first planets discovered since antiquity, and showed astronomers the solar system was bigger than previously thought. Below are brief descriptions of each of these planets based on this information from NASA.
Jupiter: Jupiter is the largest planet in our Solar System and spins very rapidly (10 Earth hours) relative to its orbit of the sun (12 Earth years). Its thick atmosphere is mostly made up of hydrogen and helium, perhaps surrounding a terrestrial core that is about Earth’s size. The planet has dozens of moons, some faint rings and a Great Red Spot — a raging storm happening for the past 400 years at least (since we were able to view it through telescopes). NASA’s Juno spacecraft is en route and will visit there in 2016.
Saturn: Saturn is best known for its prominent ring system — seven known rings with well-defined divisions and gaps between them. How the rings got there is one subject under investigation. It also has dozens of moons. Its atmosphere is mostly hydrogen and helium, and it also rotates quickly (10.7 Earth hours) relative to its time to circle the Sun (29 Earth years). Saturn is currently being visited by the Cassini spacecraft, which will fly closer to the planet’s rings in the coming years.
Uranus: Uranus was first discovered by William Herschel in 1781. The planet’s day takes about 17 Earth hours and one orbit around the Sun takes 84 Earth years. Its mass contains water, methane, ammonia, hydrogen and helium surrounding a rocky core. It has dozens of moons and a faint ring system. There are no spacecraft slated to visit Uranus right now; the last visitor was Voyager 2 in 1986.
Neptune: Neptune is a distant planet that contains water, ammmonia, methane, hydrogen and helium and a possible Earth-sized core. It has more than a dozen moons and six rings. The only spacecraft to ever visit it was NASA’s Voyager 2 in 1989.
To learn more about the planets and missions, check out these links: