More Surface Ice on Mercury than Previously Thought, says New Study

View of Mercury's north pole. based on MESSENGER probe data, showing polar deposits of water ice. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington/National Astronomy and Ionosphere Center, Arecibo Observatory.

Back in 2012, scientists were delighted to discover that within the polar regions of Mercury, vast amounts of water ice were detected. While the existence of water ice in this permanently-shaded region had been the subject of speculation for about 20 years, it was only after the Mercury Surface, Space Environment, Geochemistry, and Ranging (MESSENGER) spacecraft studied the polar region that this was confirmed.

Based on the MESSENGER data, it was estimated that Mercury could have between 100 billion to 1 trillion tons of water ice at both poles, and that the ice could be up to 20 meters (65.5 ft) deep in places. However, a new study by a team of researchers from Brown University indicates that there could be three additional large craters and many more smaller ones in the northern polar region that also contain ice.

The study, titled “New Evidence for Surface Water Ice in Small-Scale Cold Traps and in Three Large Craters at the North Polar Region of Mercury from the Mercury Laser Altimeter“, was recently published in the Geophysical Research Letters. Led by Ariel Deutsch, a NASA ASTAR Fellow and a PhD candidate at Brown University, the team considered how small-scale deposits could dramatically increase the overall amount of ice on Mercury.

Artist’s concept of the MESSENGER spacecraft on approach to Mercury. Credit: NASA/JPL

Despite being the closest planet to the Sun, and experiencing scorching surface temperatures on its Sun-facing side, Mercury’s low axial tilt means that its polar regions are permanently shaded and experience average temperatures of about 200 K (-73 °C; -100 °F). The idea that ice might exist in these regions dates back to the 1990s, when Earth-based radar telescopes detected highly reflective spots within the polar craters.

This was confirmed when the MESSENGER spacecraft detected neutron signals from the planet’s north pole that were consistent with water ice. Since that time, it has been the general consensus that Mercury’s surface ice was confined to seven large craters. But as Ariel Deutsch explained in a Brown University press statement, she and her team sought to look beyond them:

“The assumption has been that surface ice on Mercury exists predominantly in large craters, but we show evidence for these smaller-scale deposits as well. Adding these small-scale deposits to the large deposits within craters adds significantly to the surface ice inventory on Mercury.”

For the sake of this new study, Deutsch was joined by Gregory A. Neumann, a research scientist from NASA’s Goddard Space Flight Center, and James W. Head. In addition to being a professor the Department of Earth, Environmental and Planetary Sciences at Brown, Head was also a co-investigator for the MESSENGER and the Lunar Reconnaissance Orbiter missions.

A view of the crater Prokofiev on Mercury. The crater is the largest one on the planet’s north pole area to have “radar-bright” material, a probable sign of ice. Credit: NASA/JHUAPL/CIW

Together, they examined data from MESSENGER’s Mercury Laser Altimeter (MLA) instrument. This instrument was used by MESSENGER to measure the distance between the spacecraft and Mercury, the resulting data being then used to create detailed topographical maps of the planet’s surface. But in this case, the MLA was used to measure surface reflectance, which indicated the presence of ice.

As an instrument specialist with the MESSENGER mission, Neumann was responsible for calibrating the altimeter’s reflectance signal. These signals can vary based on whether the measurements are taken from overhead or at an angle (the latter of which is refereed to as “off-nadir” readings). Thanks to Neumann’s adjustments, researchers were able to detect high-reflectance deposits in three more large craters that were consistent with water ice.

According to their estimates, these three craters could contain ice sheets that measure about 3,400 square kilometers (1313 mi²). In addition, the team also looked at the terrain surrounding these three large craters. While these areas were not as reflective as the ice sheets inside the craters, they were brighter than the Mercury’s average surface reflectance.

Beyond this, they also looked at altimeter data to seek out evidence of smaller scale deposits. What they found was four smaller craters, each with diameters of less than 5 km (3 mi), which were also more reflective than the surface. From this, they deduced that there were not only more large deposits of ice that were previously undiscovered, but likely many smaller “cold traps” where ice could exist as well.

A forced perspective view of Mercury’s cratered north pole, showing the presence of water ice in yellow. Credit: NASA/JHUAPL/CIW

Between these three newly-discovered large deposits, and what could be hundreds of smaller deposits, the total volume of ice on Mercury could be considerably more than we previously thought. As Deutsch said:

“We suggest that this enhanced reflectance signature is driven by small-scale patches of ice that are spread throughout this terrain. Most of these patches are too small to resolve individually with the altimeter instrument, but collectively they contribute to the overall enhanced reflectance… These four were just the ones we could resolve with the MESSENGER instruments. We think there are probably many, many more of these, ranging in sizes from a kilometer down to a few centimeters.”

In the past, studies of the lunar surface also confirmed the presence of water ice in its cratered polar regions. Further research indicated that outside of the larger craters, small “cold traps”could also contain ice. According to some models, accounting for these smaller deposits could effectively double estimates on the total amounts of ice on the Moon. Much the same could be true for Mercury.

But as Jim Head (who also served as Deutsch Ph.D. advisor for this study) indicated, this work also adds a new take to the critical question of where water in the Solar System came from. “One of the major things we want to understand is how water and other volatiles are distributed through the inner Solar System—including Earth, the Moon and our planetary neighbors,” he said. “This study opens our eyes to new places to look for evidence of water, and suggests there’s a whole lot more of it on Mercury than we thought.”

This shaded relief image shows the Moon’s Shackleton Crater, a 21-km-wide crater permanently shadowed crater near the lunar south pole. The crater’s interior structure is shown in false color based on data from NASA’s LRO probe. Credit: NASA

In addition to indicating the Solar System may be more watery than previously suspected, the presence of abundant ice on Mercury and the Moon has bolstered proposals for building outposts on these bodies. These outposts could be capable of turning local deposits water ice into hydrazine fuel, which would drastically reduce the costs of mounting long-range missions throughout the Solar System.

On the less-speculative side of things, this study also offers new insights into how the Solar System formed and evolved. If water is far more plentiful today than we knew, it would indicate that more was present during the early epochs of planetary formation, presumably when it was being distributed throughout the Solar System by asteroids and comets.

Further Reading: Brown University, Geophysical Research Letters

What is the Weather Like on Mercury?

Weather on Mercury
Mercury

With the dawning of the Space Age in the 1950s, human beings were no longer confined to studying the Solar planets and other astronomical bodies with Earth-based instruments alone. Instead crewed missions have gone into orbit and to the Moon while robotic missions have traveled to every corner of the Solar System. And in the process, we have learned some interesting things about the planets, planetoids, and asteroids in our Solar neighborhood.

For example, we have learned that all the Solar planets have their own particular patterns and cycles. For instance, even though Mercury is an airless body, it does have a tenuous exosphere and experiences seasons of a sort. And while it is known for being extremely hot, it also experiences extremes of cold, to the point that ice can exist on its surface. While it is by no means what we are used to here on Earth, Mercury still experiences a kind of “weather”.

Mercury’s Atmosphere:

As noted, Mercury has no atmosphere to speak of, owing to its small size and extremes in temperature. However, it does have a tenuous and variable exosphere that is made up of hydrogen, helium, oxygen, sodium, calcium, potassium and water vapor, with a combined pressure level of about 10-14 bar (one-quadrillionth of Earth’s atmospheric pressure).

The Fast Imaging Plasma Spectrometer on board MESSENGER has found that the solar wind is able to bear down on Mercury enough to blast particles from its surface into its wispy atmosphere. Shannon Kohlitz, Media Academica, LLC

It is believed this exosphere was formed from particles captured from the Sun (i.e solar wind) as well as volcanic outgassing and debris kicked into orbit by micrometeorite impacts. In any case, Mercury’s lack of a viable atmosphere is the reason why it is unable to retain heat from the Sun, which leads to extreme variations between night and day for the rocky planet.

Orbital Resonance:

Mercury’s temperature variations are also attributed to its orbital eccentricity of 0.2056, which is the most extreme of any planet in the Solar System. Essentially, its distance from the Sun ranges from 46 million km (29 million mi) at its closest (perihelion) to 70 million km (43 million mi) at its farthest (aphelion). As a result, the side facing the Sun reaches temperatures of up to 700 K (427° C), the side in shadow dips down to 100 K (-173° C).

With an average rotational speed of 10.892 km/h (6.768 mph), Mercury also takes 58.646 days to complete a single rotation. This means that Mercury has a spin-orbit resonance of 3:2, where it completes three rotations on its axis for every two rotations completed around the Sun. This does not, however, mean that three days last the same as two years on Mercury.

The Orbit of Mercury during the year 2006. Credit: Wikipedia Commons/Eurocommuter

In fact, its high eccentricity and slow rotation mean that it takes 176 Earth days for the Sun to return to the same place in the sky (aka. a solar day). In short, a single day on Mercury is twice as long as a single year! Mercury also has the lowest axial tilt of any planet in the Solar System – approximately 0.027 degrees compared to Jupiter’s 3.1 degrees (the second smallest).

Polar Ice:

This low tilt means that the polar regions are constantly in shadow, which leads to another interesting feature about Mercury. Yes, despite how hot its Sun-facing side can become, the existence of water ice and even organic molecules have been confirmed on Mercury’s surface. But this only true at the poles, where the floors of deep craters are never exposed to direct sunlight, and temperatures within them therefore remain below the planetary average.

These icy regions are believed to contain about 1014–1015 kg (1 to 10 billion metric tons, 1.1 to 11 billion US tons) of frozen water, and may be covered by a layer of regolith that inhibits sublimation. The origin of the ice on Mercury is not yet known, but the two most likely sources are from outgassing of water from the planet’s interior or deposition by the impacts of comets.

Mercury transit
The Big Bear Solar Observatory Captures a high-res image of this week’s transit of Mercury across the face of the Sun. Image credit: NJIT/BBSO

When one talks about the “weather” on Mercury, they are generally confined to talking about variations between the Sun-facing side and the night side. Over the course of two years, that weather will remain scorching hot or freezing cold. In that respect, we could say that a single season on Mercury lasts a full four years, and includes a “Midnight Sun” that lasts two years, and a “Polar Night” that lasts the same.

Between its rapid and very eccentric orbit, its slow rotation, and its strange diurnal and annual patterns, Mercury is a very extreme planet with a very extreme environment. It only makes sense that its weather would be similarly extreme. Hey, there’s a reason nobody lives there, at least not yet

We have written many interesting articles about the weather on other planets here at Universe Today. Here’s What is the Weather like on Venus?, What is the Weather Like on Mars?, What is the Weather Like on Jupiter?, What is the Weather Like on Saturn?, What is the Weather Like on Uranus?, and What is the Weather Like on Neptune?

If you’d like more information on Mercury, check out NASA’s Solar System Exploration Guide, and here’s a link to NASA’s MESSENGER Misson Page.

We’ve also recorded an entire episode of Astronomy Cast all about Mercury. Listen here, Episode 49:  Mercury.

Sources:

How Does Mercury Compare to Earth?

Mercury and Earth, size comparison. Credit: NASA / APL (from MESSENGER)

Mercury was appropriately named after the Roman messenger of the Gods. This is owed to the fact that its apparent motion in the night sky was faster than that of any of the other planets. As astronomers learned more about this “messenger planet”, they came to understand that its motion was due to its close orbit to the Sun, which causes it to complete a single orbit every 88 days.

Mercury’s proximity to the Sun is merely one of its defining characteristics. Compared to the other planets of the Solar System, it experiences severe temperature variations, going from very hot to very cold. It’s also very rocky, and has no atmosphere to speak of. But to truly get a sense of how Mercury stacks up compared to the other planets of the Solar System, we need to a look at how Mercury compares to Earth.

Size, Mass and Orbit:

The diameter of Mercury is 4,879 km, which is approximately 38% the diameter of Earth. In other words, if you put three Mercurys side by side, they would be a little larger than the Earth from end to end. While this makes Mercury smaller than the largest natural satellites in our system – such as Ganymede and Titan – it is more massive and far more dense than they are.

Mercury, as imaged by the MESSENGER spacecraft, revealing parts of the never seen by human eyes. Image Credit: NASA/JHUAPL/Carnegie Institution of Washington

In fact, Mercury’s mass is approximately 3.3 x 1023 kg (5.5% the mass of Earth) which means that its density – at 5.427 g/cm3 – is the second highest of any planet in the Solar System, only slightly less than Earth’s (5.515 g/cm3). This also means that Mercury’s surface gravity is 3.7 m/s2, which is the equivalent of 38% of Earth’s gravity (0.38 g). This means that if you weighed 100 kg (220 lbs) on Earth, you would weigh 38 kg (84 lbs) on Mercury.

Meanwhile, the surface area of Mercury is 75 million square kilometers, which is approximately 10% the surface area of Earth. If you could unwrap Mercury, it would be almost twice the area of Asia (44 million square km). And the volume of Mercury is 6.1 x 1010 km3, which works out to 5.4% the volume of Earth. In other words, you could fit Mercury inside Earth 18 times over and still have a bit of room to spare.

In terms of orbit, Mercury and Earth probably could not be more different. For one, Mercury has the most eccentric orbit of any planet in the Solar System (0.205), compared to Earth’s 0.0167. Because of this, its distance from the Sun varies between 46 million km (29 million mi) at its closest (perihelion) to 70 million km (43 million mi) at its farthest (aphelion).

This puts Mercury much closer to the Sun than Earth, which orbits at an average distance of 149,598,023 km (92,955,902 mi), or 1 AU. This distance ranges from 147,095,000 km (91,401,000 mi) to 152,100,000 km (94,500,000 mi) – 0.98 to 1.017 AU. And with an average orbital velocity of 47.362 km/s (29.429 mi/s), it takes Mercury a total 87.969 Earth days to complete a single orbit – compared to Earth’s 365.25 days.

The Orbit of Mercury during the year 2006. Credit: Wikipedia Commons/Eurocommuter

However, since Mercury also takes 58.646 days to complete a single rotation, it takes 176 Earth days for the Sun to return to the same place in the sky (aka. a solar day). So on Mercury, a single day is twice as long as a single year. Meanwhile on Earth, a single solar day is 24 hours long, owing to its rapid rotation of 1674.4 km/h. Mercury also has the lowest axial tilt of any planet in the Solar System – approximately 0.027°, compared to Earth’s 23.439°.

Structure and Composition:

Much like Earth, Mercury is a terrestrial planet, which means it is composed of silicate minerals and metals that are differentiated between a solid metal core and a silicate crust and mantle. For Mercury, the breakdown of these elements is higher than Earth. Whereas Earth is primarily composed of silicate minerals, Mercury is composed of 70% metallic and 30% of silicate materials.

Also like Earth, Mercury’s interior is believed to be composed of a molten iron that is surrounded by a mantle of silicate material. Mercury’s core, mantle and crust measure 1,800 km, 600 km, and 100-300 km thick, respectively; while Earth’s core, mantle and crust measure 3478 km, 2800 km, and up to 100 km thick, respectively.

What’s more, geologists estimate that Mercury’s core occupies about 42% of its volume (compared to Earth’s 17%) and the core has a higher iron content than that of any other major planet in the Solar System. Several theories have been proposed to explain this, the most widely accepted being that Mercury was once a larger planet that was struck by a planetesimal that stripped away much of the original crust and mantle.

Internal structure of Mercury: 1. Crust: 100–300 km thick 2. Mantle: 600 km thick 3. Core: 1,800 km radius. Credit: MASA/JPL

Surface Features:

In terms of its surface, Mercury is much more like the Moon than Earth. It has a dry landscape pockmarked by asteroid impact craters and ancient lava flows. Combined with extensive plains, these indicate that the planet has been geologically inactive for billions of years.

Names for these features come from a variety of sources. Craters are named for artists, musicians, painters, and authors; ridges are named for scientists; depressions are named after works of architecture; mountains are named for the word “hot” in different languages; planes are named for Mercury in various languages; escarpments are named for ships of scientific expeditions, and valleys are named after radio telescope facilities.

During and following its formation 4.6 billion years ago, Mercury was heavily bombarded by comets and asteroids, and perhaps again during the Late Heavy Bombardment period. Due to its lack of an atmosphere and precipitation, these craters remain intact billions of years later. Craters on Mercury range in diameter from small bowl-shaped cavities to multi-ringed impact basins hundreds of kilometers across.

The largest known crater is Caloris Basin, which measures 1,550 km (963 mi) in diameter. The impact that created it was so powerful that it caused lava eruptions on the other side of the planet and left a concentric ring over 2 km (1.24 mi) tall surrounding the impact crater. Overall, about 15 impact basins have been identified on those parts of Mercury that have been surveyed.

Enhanced-color image of Munch, Sander and Poe craters amid volcanic plains (orange) near Caloris Basin. Credit: NASA/JHUAPL/Carnegie Institution of Washington

Earth’s surface, meanwhile, is significantly different. For starters, 70% of the surface is covered in oceans while the areas where the Earth’s crust rises above sea level forms the continents. Both above and below sea level, there are mountainous features, volcanoes, scarps (trenches), canyons, plateaus, and abyssal plains. The remaining portions of the surface are covered by mountains, deserts, plains, plateaus, and other landforms.

Mercury’s surface shows many signs of being geologically active in the past, mainly in the form of narrow ridges that extend up to hundreds of kilometers in length. It is believed that these were formed as Mercury’s core and mantle cooled and contracted at a time when the crust had already solidified. However, geological activity ceased billions of years ago and its crust has been solid ever since.

Meanwhile, Earth is still geologically active, owning to convection of the mantle. The lithosphere (the crust and upper layer of the mantle) is broken into pieces called tectonic plates. These plates move in relation to one another and interactions between them is what causes earthquakes, volcanic activity (such as the “Pacific Ring of Fire“), mountain-building, and oceanic trench formation.

Atmosphere and Temperature:

When it comes to their atmospheres, Earth and Mercury could not be more different. Earth has a dense atmosphere composed of five main layers – the Troposphere, the Stratosphere, the Mesosphere, the Thermosphere, and the Exosphere. Earth’s atmosphere is also primarily composed of nitrogen (78%) and oxygen (21%) with trace concentrations of water vapor, carbon dioxide, and other gaseous molecules.

The Fast Imaging Plasma Spectrometer on board MESSENGER has found that the solar wind is able to bear down on Mercury enough to blast particles from its surface into its wispy atmosphere. Credit: Shannon Kohlitz, Media Academica, LLC

Because of this, the average surface temperature on Earth is approximately 14°C, with plenty of variation due to geographical region, elevation, and time of year. The hottest temperature ever recorded on Earth was 70.7°C (159°F) in the Lut Desert of Iran, while the coldest temperature was -89.2°C (-129°F) at the Soviet Vostok Station on the Antarctic Plateau.

Mercury, meanwhile, has a tenuous and variable exosphere that is made up of hydrogen, helium, oxygen, sodium, calcium, potassium and water vapor, with a combined pressure level of about 10-14 bar (one-quadrillionth of Earth’s atmospheric pressure). It is believed this exosphere was formed from particles captured from the Sun, volcanic outgassing and debris kicked into orbit by micrometeorite impacts.

Because it lacks a viable atmosphere, Mercury has no way to retain the heat from the Sun. As a result of this and its high eccentricity, the planet experiences far more extreme variations in temperature than Earth does. Whereas the side that faces the Sun can reach temperatures of up to 700 K (427° C), the side that is in darkness can reach temperatures as low as 100 K (-173° C).

Despite these highs in temperature, the existence of water ice and even organic molecules has been confirmed on Mercury’s surface. The floors of deep craters at the poles are never exposed to direct sunlight, and temperatures there remain below the planetary average. In this respect, Mercury and Earth have something else in common, which is the presence of water ice in its polar regions.

Mercury’s Magnetic Field. Credit: NASA

Magnetic Fields:

Much like Earth, Mercury has a significant, and apparently global, magnetic field, one which is about 1.1% the strength of Earth’s. It is likely that this magnetic field is generated by a dynamo effect, in a manner similar to the magnetic field of Earth. This dynamo effect would result from the circulation of the planet’s iron-rich liquid core.

Mercury’s magnetic field is strong enough to deflect the solar wind around the planet, thus creating a magnetosphere. The planet’s magnetosphere, though small enough to fit within Earth, is strong enough to trap solar wind plasma, which contributes to the space weathering of the planet’s surface.

All told, Mercury and Earth are in stark contrast. While both are terrestrial in nature, Mercury is significantly smaller and less massive than Earth, though it has a similar density. Mercury’s composition is also much more metallic than that of Earth, and its 3:2 orbital resonance results in a single day being twice as long as a year.

But perhaps most stark of all are the extremes in temperature variations that Mercury goes through compared to Earth. Naturally, this is due to the fact that Mercury orbits much closer to the Sun than the Earth does and has no atmosphere to speak of. And its long days and long nights also mean that one side is constantly being baked by the Sun, or in freezing darkness.

We have written many stories about Mercury on Universe Today. Here’s Interesting Facts About Mercury, What Type of Planet is Mercury?, How Long is a Day on Mercury?, The Orbit of Mercury. How Long is a Year on Mercury?, What is the Surface Temperature of Mercury?, Water Ice and Organics Found at Mercury’s North Pole, Characteristics of Mercury,, Surface of Mercury, and Missions to Mercury

If you’d like more information on Mercury, check out NASA’s Solar System Exploration Guide, and here’s a link to NASA’s MESSENGER Misson Page.

We have also recorded a whole episode of Astronomy Cast that’s just about planet Mercury. Listen to it here, Episode 49: Mercury.

Sources:

What is the Smallest Planet in the Solar System?

MESSENGER image of Mercury from its third flyby (NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington)

The Solar Planets are a nice mixed bag of what is possible when it comes to planetary formation. Within the inner Solar System, you have the terrestrial planets – bodies that are composed primarily of silicate minerals and metals. And in the outer Solar System, you have the gas giants and bodies that are composed primarily of ice that lie just beyond in the Trans-Neptunian region.

Of these, the question of which planet is the smallest has been the subject of some controversy. Until recently, the smallest planet was considered to be Pluto. But with the 2006 IAU Resolution that put constraints on what the definition of a planet entails, that status has since passed to Mercury. So in addition to being the closest planet to the Sun, Mercury is also the smallest.

Size and Mass:

With a mean radius of 2440 km, Mercury is the smallest planet in our Solar System, equivalent in size to 0.38 Earths. And given that it has its experiences no flattening at the poles – like Venus, which means it is an almost perfectly spherical body – its radius is the same at the poles as it is the equator.

And while it is smaller than the largest natural satellites in our Solar System – such as Ganymede and Titan – it is more massive. At 3.3011×1023 kg in mass (33 trillion trillion metric tons; 36.3 trillion trillion US tons), it is equivalent to 0.055 Earths in terms of mass.

Mercury and Earth, size comparison. Credit: NASA / APL (from MESSENGER)

Density, Volume:

On top of that, Mercury is significantly more dense than bodies its size. In fact, Mercury’s density (at 5.427 g/cm3) is the second highest in the Solar System, only slightly less than Earth’s (5.515 g/cm3). The result of this is a gravitational force of 3.7 m/s2, which is 0.38 times that of Earth (0.38 g). In essence, this means that if you could stand on the surface of Mercury, you would weight 38% as much as you do on Earth.

In terms of volume, Mercury once again becomes a bit diminutive, at least by Earth standards. Basically, Mercury has a volume of 6.083×1010 km³ (60 billion cubic km; 14.39 trillion cubic miles) which works out to 0.056 times the volume of the Earth. In other words, you could fit Mercury inside Earth almost twenty times over.

Structure and Composition:

Like Earth, Venus and Mars, Mercury is a terrestrial planet, meaning that is primarily composed of silicate minerals and metals that are differentiated between a metallic core and a silicate mantle and crust. But in Mercury’s case, the core is oversized compared to the other terrestrial planets, measuring some 1,800 km (approx. 1,118.5 mi) in radius, and therefore occupying 42% of the planet’s volume (compared to Earth’s 17%).

Internal structure of Mercury: 1. Crust: 100–300 km thick 2. Mantle: 600 km thick 3. Core: 1,800 km radius. Credit: MASA/JPL

Another interesting feature about Mercury’s core is the fact that it has a higher iron content than that of any other major planet in the Solar System. Several theories have been proposed to explain this, the most widely-accepted being that Mercury was once a larger planet that was struck by a planetesimal that stripped away much of the original crust and mantle, leaving behind the core as a major component.

Beyond the core is a mantle that measures 500 – 700 km (310 – 435 mi) in thickness and is composed primarily of silicate material. The outermost layer is Mercury’s crust, which is composed of silicate material that is believed to be 100 – 300 km thick.

Yes, Mercury is a pretty small customer when compared to its brothers, sisters and distant cousins in the Solar System. However, it is also one of the densest, hottest and most irradiated. So while small, no one would ever accuse this planet of not being really tough!

We have written many interesting articles on Mercury and the Solar Planets here at Universe Today. Here’s What is the Biggest Planet in the Solar System?, What is the Second Largest Planet in the Solar System?, How Does Mercury Compare to Earth?, What is the Average Surface Temperature on Mercury?, How Long is a Day on Mercury?, and The Orbit of Mercury, How Long is a Year on Mercury?,

And here’s another take on the smallest planet in the Solar System, and here’s a link to NASA’s Solar System Exploration Guide.

We have recorded a whole series of podcasts about the Solar System at Astronomy Cast.

Sources:

Construction Tips from a Type 2 Engineer: Collaboration with Isaac Arthur

Type 2 Civ Tips!
Type 2 Civ Tips!

By popular request, Isaac Arthur and I have teamed up again to bring you a vision of the future of human space exploration. This time, we bring you practical construction tips from a pair of Type 2 Civilization engineers.

To make this collaboration even better, we’ve teamed up with two artists, Kevin Gill and Sergio Botero. They’re going to help create some special art, just for this episode, to help show what some of these megaprojects might look like.

Continue reading “Construction Tips from a Type 2 Engineer: Collaboration with Isaac Arthur”

What is the Average Surface Temperature of Mercury?

MESSENGER image of Mercury from its third flyby (NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington)

Of all the planets in the Solar System, Mercury is the closest to our Sun. As such, you would think it is the hottest of all the Solar planets. But strangely enough, it is not. That honor goes to Venus, which experiences an average surface temperature of 750 K (477 °C; 890 °F). Not only that, but Mercury is also cold enough in some regions to maintain water in ice form.

Overall, Mercury experiences considerable variations in temperatures, ranging from the extremely hot to the extremely cold. All of this arises from the fact that Mercury has an extremely thin atmosphere, as well as the nature of its orbit. Whereas the side facing the Sun experiences temperatures hot enough to melt lead, the darkened areas are cold enough to freeze water.

Orbital Characteristics:

Mercury has the most eccentric orbit of any planet in the Solar System (0.205). Because of this, its distance from the Sun varies between 46 million km (29 million mi) at its closest (perihelion) to 70 million km (43 million mi) at its farthest (aphelion). And with an average orbital velocity of 47.362 km/s (29.429 mi/s), it takes Mercury a total 87.969 Earth days to complete a single orbit around the Sun.

With an average rotational speed of 10.892 km/h (6.768 mph), Mercury also takes 58.646 days to complete a single rotation. This means that Mercury has a spin-orbit resonance of 3:2, which means that it completes three rotations on its axis for every two orbits around the Sun. This does not, however, mean that three days last the same as two years on Mercury.

In fact, its high eccentricity and slow rotation mean that it takes 176 Earth days for the Sun to return to the same place in the sky (aka. a solar day), which means that one day is twice as long as a single year on Mercury. The planet also has the lowest axial tilt of any planet in the Solar System – approximately 0.027° compared to Jupiter’s 3.1°, (the second smallest). This means that there is virtually no seasonal variation in surface temperature.

Exosphere:

Another factor that affects Mercury’s surface temperatures is its extremely thin atmosphere. Mercury is essentially too hot and too small to retain anything more than a variable “exosphere”, one which is made up of hydrogen, helium, oxygen, sodium, calcium, potassium and water vapor.

The Fast Imaging Plasma Spectrometer on board MESSENGER has found that the solar wind is able to bear down on Mercury enough to blast particles from its surface into its wispy atmosphere. Credit: Carolyn Nowak/Media Academica, LLC

These trace gases have a combined atmospheric pressure of about 10-14 bar (one-quadrillionth of Earth’s atmospheric pressure). It is believed this exosphere was formed from particles captured from the Sun, volcanic outgassing and debris kicked into orbit by micrometeorite impacts.

Surface Temperatures:

Because it lacks a viable atmosphere, Mercury has no way to retain the heat from the Sun. As a result of this and its high eccentricity, the planet experiences considerable variations in temperature between its light side and dark side. Whereas the side that faces the Sun can reach temperatures of up to 700 K (427° C; 800 °F), the side in shadow dips down to 100 K (-173° C: -279 °F).

Despite its extreme highs in temperature, the existence of water ice and even organic molecules has been confirmed on Mercury’s surface, specifically in the cratered northern polar region. Since the floors of these deep craters are never exposed to direct sunlight, temperatures there remain below the planetary average.

View of Mercury’s north pole. based on MESSENGER probe data, showing polar deposits of water ice. Credit: NASA/JHUAPL/Carnegie/National Astronomy and Ionosphere Center, Arecibo Observatory.

These icy regions are believed to contain about 1014–1015 kg of frozen water, and may be covered by a layer of regolith that inhibits sublimation. The origin of the ice on Mercury is not yet known, but the two most likely sources are from outgassing of water from the planet’s interior or deposition by the impacts of comets. There are thought to be craters at the south pole as well, where temperatures are similarly cold enough to sustain water in ice form.

Mercury is a planet of extremes. It has an extremely eccentric orbit, an extremely thin-atmosphere, and experiences extremely hot and cold surface temperatures. Little wonder then why there is no life on the planet (at least, that we know about!) But perhaps someday, human beings may live there, sheltered in the cratered regions and using the water ice to create a habitat.

We have written many interesting articles about the average surface temperatures of the planets. Here’s What is the Average Surface Temperature of the Planets in our Solar System?, What is the Average Surface Temperature of Venus?, What is the Average Surface Temperature of Earth?, What is the Average Surface Temperature of Mars?, What is the Average Surface Temperature of Jupiter?, What is the Average Surface Temperature of Saturn?, What is the Average Surface Temperature of Uranus?, What is the Average Surface Temperature of Neptune?, and What is the Average Surface Temperature of Pluto?

If you’d like more information on Mercury, check out NASA’s Solar System Exploration Guide, and here’s a link to NASA’s MESSENGER Misson Page.

We have also recorded a whole episode of Astronomy Cast that’s just about planet Mercury. Listen to it here, Episode 49: Mercury.

Sources:

See Mercury At Dusk, New Comet Lovejoy At Dawn

Stellarium
Mercury requests the company of your gaze now through the beginning of April, when it shines near Mars low in the west after sunset. Created with Stellarium

March has been a busy month for planet and comet watchers. Lots of action. Venus, the planet that’s captured our attention at dusk in the west for months, is in inferior conjunction with the Sun today. Watch for it to rise before the Sun in the eastern sky at dawn in about a week.

Mercury like Venus and the Moon shows phases when viewed through a telescope. Right now, the planet is in waning gibbous phase. Stellarium

As Venus flees the evening scene, steadfast Mars and a new planet, Mercury keep things lively. For northern hemisphere skywatchers, this is Mercury’s best dusk apparition of the year. If you’d like to make its acquaintance, this week and next are best. And it’s so easy! Just find a spot with a wide open view of the western horizon, bring a pair of binoculars for backup and wait for a clear evening.

Plan to watch starting about 40 minutes after sundown. From most locations, Mercury will appear about 10° or one fist held at arm’s length above the horizon a little bit north of due west. Shining around magnitude +0, it will be the only “star” in that part of the sky. Mars is nearby but much fainter at magnitude +1.5. You’ll have to wait at least an hour after sunset to spot it.

Have a telescope? Check out the planet using a magnification around 50x or higher. You’ll see that it looks like a Mini-Me version of the Moon. Mercury is brightest when closest to full. Over the next few weeks, it will wane to a crescent while increasing in apparent size.

If you have any difficulty finding brilliant Jupiter and its current pal, Spica, just start with the Big Dipper, now high in the northeastern sky at nightfall. Use the Dipper’s handle to “arc to Arcturus” and then “jump to Jupiter.” Credit: Bob King

If you like planets, don’t forget the combo of Jupiter and Spica at the opposite end of the sky. Jupiter climbs out of bed and over the southeastern horizon about 9 p.m. local time in late March, but to see it and Spica, Virgo’s brightest star, give it an hour and look again at 10 p.m. or later. Quite the duo!

You’re not afraid of getting up with the first robins are you? If you set your alarm to a half hour or so before the first hint of dawn’s light and find a location with an open view of the southeastern horizon, you might be first in your neighborhood to spot Terry Lovejoy’s brand new comet. His sixth, the Australian amateur discovered C/2017 E4 Lovejoy on the morning of March 10th in the constellation Sagittarius at about 12th magnitude.

C/2017 E4 Lovejoy glows blue-green this morning March 26. Structure around the nucleus including a small jet is visible. The comet is currently in Aquarius and quickly moving north and will reach perihelion on April 23. Credit: Terry Lovejoy

The comet has rapidly brightened since then and is now a small, moderately condensed fuzzball of magnitude +9, bright enough to spot in a 6-inch or larger telescope. Some observers have even picked it up in large binoculars. Lovejoy’s comet should brighten by at least another magnitude in the coming weeks, putting it within 10 x 50 binocular range.

This map shows the sky tomorrow morning before dawn from the central U.S. (latitude about 41° north). Created with Stellarium

Good news. E4 Lovejoy is moving north rapidly and is now visible about a dozen degrees high in Aquarius just before the start of dawn. I’ll be out the next clear morning, eyepiece to eye, to welcome this new fuzzball from beyond Neptune to my front yard. The map above shows the eastern sky near dawn and a general location of the comet. Use the more detailed map below to pinpoint it in your binoculars and telescope.

This chart shows the comet’s position nightly (5:30 a.m. CDT) through April 9. On the morning of April 1 it passes just a few degrees below the bright globular cluster M15. Click to enlarge, save and then print out for use at the telescope. Map: Bob King, Source: Chris Marriott’s SkyMap

Spring brings with it a new spirit and the opportunity to get out at night free of the bite of mosquitos or cold. Clear skies!

How Long is Day on Mercury?

Mosaic of Mercury. Credit: NASA / JHUAPL / CIW / mosaic by Jason Perry

Mercury is one of the most unusual planets in our Solar System, at least by the standards of us privileged Earthlings. Despite being the closest planet to our Sun, it is not the hottest (that honor goes to Venus). And because of its virtually non-existence atmosphere and slow rotation, temperatures on its surface range from being extremely hot to extremely cold.

Equally unusual is the diurnal cycle on Mercury – i.e. the cycle of day and night. A single year lasts only 88 days on Mercury, but thanks again to its slow rotation, a day lasts twice as long! That means that if you could stand on the surface of Mercury, it would take a staggering 176 Earth days for the Sun to rise, set and rise again to the same place in the sky just once!

Distance and Orbital Period:

Mercury is the closest planet to our Sun, but it also has the most eccentric orbit (0.2056) of any of the Solar Planets. This means that while its average distance (semi-major axis) from the Sun is 57,909,050 km (35,983,015 mi) or 0.387 AUs, this ranges considerably – from 46,001,200 km (2,8583,820 mi) at perihelion (closet) to 69,816,900 km (43,382,210  mi) at aphelion (farthest).

A timelapse of Mercury transiting across the face of the Sun. Credit: NASA

Because of this proximity, Mercury has a rapid orbital period, which varies depending on where it is in its orbit. Naturally, it moves fastest when it is at its closest to the Sun, and slowest when it is farthest. On average, its orbital velocity is 47.362 km/s (29.43 mi/s), which means it takes only 88 days to complete a single orbit of the Sun.

Astronomers used to suspect that Mercury was tidally locked to the Sun, meaning that it always showed the same face to the Sun – similar to how the Moon is tidally locked to the Earth. But radar-Doppler measurements obtained in 1965 demonstrated that Mercury is actually rotating very slowly compared to the Sun.

Sidereal vs. Solar Day:

Based on data obtained by these radar measurements, Mercury is now known to be in 3:2 orbital resonance with the Sun. This means that the planet completes three rotations on its axis for every two orbits it makes around the Sun. At it’s current rotational velocity – 3.026 m/s, or 10.892 km/h (6.77 mph) – it takes Mercury 58.646 days to complete a single rotation on its axis.

While this might lead some to conclude that a single day on Mercury is about 58 Earth days – thus making the length of a day and year correspond to the same 3:2 ratio – this would be inaccurate. Due to its rapid orbital velocity and slow sidereal rotation, a Solar Day on Mercury (the time it takes for the Sun to return to the same place in the sky) is actually 176 days.

In that respect, the ratio of days to years on Mercury is actually 1:2. The only places that are exempt to this day and night cycle are the polar regions. The cratered northern polar region, for example, exists in a state of perpetual shadow. Temperatures in these craters are also cool enough that significant concentrations of water ice can exist in stable form.

For over 20 years, scientists believed that radar-bright images from Mercury’s northern polar regions might indicate the presence of water ice there. In November of 2012, NASA’s MESSENGER probe examined the northern polar region using its neutron spectrometer and laser altimeter and confirmed the presence of both water ice and organic molecules.

View of Mercury’s north pole. based on MESSENGER probe data, showing polar deposits of water ice. Credit: NASA/JHUAPL/Carnegie Institute of Science/NAIC/Arecibo Observatory

Yes, as if Mercury weren’t strange enough, it turns out that a single day on Mercury lasts as long as two years! Just another oddity for a planet that likes to keep things really hot, really cold, and is really eccentric.

We’ve written many articles about Mercury for Universe Today. Here’s How Long is Day on the Other Planets?, Which Planet has the Longest Day?, How Long is a Day on Venus?, How Long is a Day on Earth?, How Long is a Day on the Moon?, How Long is a Day on Mars?, How Long is a Day on Jupiter?, How Long is a Day on Saturn?, How Long is a Day on Uranus?, How Long is a Day on Neptune?, and How Long is a Day on Pluto?

If you’d like more info on Mercury, check out NASA’s Solar System Exploration Guide, and here’s a link to NASA’s MESSENGER Misson Page.

We’ve also recorded an entire episode of Astronomy Cast all about Mercury. Listen here, Episode 49: Mercury.

Sources:

How Far is Mercury from the Sun?

Transiting
NASA's Hinode X-ray telescope captured Mercury in transit against the Sun's corona in Nov. 2006. Similar views are possible in H-alpha light. Credit: NASA

Mercury is famously known for being a scorching hot world. On the side that is facing towards the Sun, conditions can get pretty molten, reaching temperatures of up to 700 K (427 °C; 800°F) in the equatorial region. The surface is also airless, in part because any atmosphere it could generate would be blown away by solar wind. Hardly surprising, considering it is the closest planet to our Sun.

But just how close is it? On average, it’s slightly more than one-third the distance between Earth and the Sun. However, its orbital eccentricity is also the greatest of any planet in the Solar System. In addition, its orbit is subject to perturbations, ones which were not fully understood until the 20th century. Because of this, Mercury goes through some serious changes during its orbital period.

Perihelion and Aphelion:

Mercury orbits the Sun at an average distance (semi-major axis) of 0.387 AU (57,909,050 km; 35,983,015 mi). However, due to its eccentricity of 0.205 – the highest in the Solar System, with the exception of Pluto (0.248) – its distance from the Sun ranges considerably. When it is at its closest (perihelion), it is 46,001,200 km (28,583,820 mi) from the Sun; and when it is farthest away (aphelion), it is 57,909,050 km (35,983,015 mi) from the Sun.

A timelapse of Mercury transiting across the face of the Sun. Credit: NASA

Orbital Resonance:

At one time, scientists believed that Mercury was tidally-locked, meaning that it kept one side facing towards the Sun at all times. However, it has since been discovered that the planet actually has a slow rotational period of 58.646 days. Compared to its orbital period of 88 days, this means that Mercury has a spin-orbit resonance of 3:2. This means that the planet makes three completes rotations on its axis for every two orbits around the Sun.

Another consequences of its spin-orbit resonance is that there is a significance difference between the time it takes the planet to rotate once on its axis (a sidereal day) and the time it takes for the Sun to reappear in the same place in the sky (a solar day). On Mercury, it takes a 176 days for the Sun to rise, set, and return to the same place in the sky. This means, effectively, that a single day on Mercury lasts as long as two years!

It’s slow rotation also means that temperature variations are extreme. On the Sun-facing side, temperatures can reach as high as 700 K (427 °C; 800°F) in the equatorial region and 380 K (107 °C; 224 °F) near the northern polar region. On the side facing away from the Sun, temperatures reach a low of 100 K (-173 °C; -280 °F) in the equatorial region and 80 K (-193 °C; -316 °F) near the northern polar region.

Diagram of Mercury’s eccentric orbit. Credit: solarviews.com

Perihelion Precession:

In addition to its eccentricity, Mercury’s perihelion is also subject to precession. What this means is, during the course of a century, Mercury’s orbit around the Sun shifts by 42.98 arcseconds (0.0119 degrees). This means that after twelve million orbits, Mercury will have performed a full excess turn around the Sun and returned to where it started.

This is much larger than the perihelion precession of other Solar planets – which range from 8.62 arcseconds (0.0024°) per century for Venus, 3.84 (0.001°) for Earth, and 1.35 (0.00037°) for Mars. Until the early 20th century, this behavior remained a mystery to astronomers, as Newtonian mechanics could not account for it. However, Einstein’s General Theory of Relativity provided an explanation, while the precession provided a test for his theory.

You might say Mercury and the Sun are pretty cozy. They dance pretty close, and the dance is powerful and full of some pretty wide swings!

We have written many interesting articles about the distance of the planets from the Sun here at Universe Today. Here’s How Far Are the Planets from the Sun?, How Far is Venus from the Sun?, How Far is Mars from the Sun?, How Far is the Earth from the Sun?, How Far is the Moon from the Sun?, How Far is Jupiter from the Sun?, How Far is Saturn from the Sun?, How Far is Uranus  from the Sun?, How Far is Neptune from the Sun? and How Far is Pluto from the Sun?

If you’d like more info on Mercury, check out NASA’s Solar System Exploration Guide, and here’s a link to NASA’s MESSENGER Misson Page.

We’ve also recorded an entire episode of Astronomy Cast all about Mercury. Listen here, Episode 49: Mercury.

Sources:

The Orbit of Mercury. How Long is a Year on Mercury?

A global view of Mercury, as seen by MESSENGER. Credit: NASA

Mercury is a planet of extremes. As the closest planet to our Sun, it experiences extremely high surface temperatures. But since it has virtually no atmosphere to speak of, and rotates very slowly on its axis, it gravitates between extremes of hot and cold. It also means that it’s Sun-facing side experiences prolonged periods of day while its dark side experiences extremely long periods of night.

It’s proximity to the Sun also means that it orbits the planet quite rapidly. To break it down, Mercury takes roughly 88 Earth days to complete a single orbit around the Sun. Between this rapid orbital period and its slow rotational period, a single year on Mercury is actually shorter than a single day!

Orbital Period:

Mercury orbits the Sun at a distance of 57,909,050 km (35,983,015 mi), which works out to o.387 AU – or slightly more than one-third the distance between the Sun and the Earth. It’s orbit is also highly eccentric, ranging from a distance of 46 million km/28.58 million mi at its closest (perihelion) to 70 million km/43.49 million mi at its most distant (aphelion).

Illustration of the orbit of Kepler-432b (inner, red) in comparison to the orbit of Mercury around the Sun (outer, orange). Credit: Dr. Sabine Reffert.

Like all the planets, Mercury moves fastest when it is at its closest point to the Sun, and slowest when it is at its farthest. However, it’s proximity to the Sun means that its average orbital velocity is a speedy 47.362 kilometers a second or 29.429 miles per second –  approximately 170,500 km/h; 105,945 mph.

At this rate, it takes Mercury 87.969 days, or the equivalent of 0.24 Earth years, to complete a single orbit of the Sun. Thus, it can be said that a year on Mercury lasts almost as long as 3 months here on Earth.

Sidereal and Solar Day:

Astronomers used to think that Mercury was tidally locked to the Sun, where its rotational period matched its orbital period. This would mean that the same side it always pointed towards the Sun, thus ensuring that one side was perennially sunny (and extremely hot) while the other experienced constant night (and freezing cold).

However, improved observations and studies of the planet have led scientists to conclude that in fact, the planet has a slow rotational period of 58.646 days. Compared to its orbital period of 88 days, this means that Mercury has a spin-orbit resonance of 3:2, which means that the planet makes three completes rotations on its axis for every two orbits it makes around the Sun.

Another consequences of its spin-orbit resonance is that there is a significance difference between the time it takes the planet to rotate once on its axis (a sidereal day) and the time it takes for the Sun to reappear in the same place in the sky (a solar day). On Mercury, it takes a 176 days for the Sun to rise, set, and return to the same place in the sky. This means, effectively, that a single day on Mercury lasts as long as two years!

Yes, Mercury is a pretty extreme place. Not only do temperatures on its surface range from molten hot to freezing cold, but a single day lasts as long as six months here on Earth. Add to that the fact that it has virtually no atmosphere, and is exposed to extreme amounts of radiation, and you can begin to understand why life cannot exist there.

At least… not yet!

We have written many interesting articles about Mercury here at Universe Today. Here’s How Long is a Day on Mercury?, How Long is a Year on the Other Planets?, Which Planet has the Longest Day?, How Long is a Year on Venus?, How Long is a Year on Earth?, How Long is a Year on Mars?, How Long is a Year on Jupiter?, How Long is a Year on Saturn?, How Long is a Year on Uranus?, How Long is a Year on Neptune?, and How Long is a Year on Pluto?

If you’d like more info on Mercury, check out NASA’s Solar System Exploration Guide, and here’s a link to NASA’s MESSENGER Misson Page.

We’ve also recorded an entire episode of Astronomy Cast all about Mercury. Listen here, Episode 49: Mercury.

Sources: