Messier 77 – the Cetus A Barred Spiral Galaxy

The spiral galaxy M77, shown in proximity to Delta Ceti. Credit: Wikisky

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at Cetus A, the barred spiral galaxy known as Messier 77!

During the 18th century, famed French astronomer Charles Messier noticed the presence of several “nebulous objects”  while surveying the night sky. Originally mistaking these objects for comets, he began to catalog them so that others would not make the same mistake. Today, the resulting list (known as the Messier Catalog) includes over 100 objects and is one of the most influential catalogs of Deep Space Objects.

One of these objects is known as Messier 77 (aka. Cetus A), a barred spiral galaxy located 47 million light-years from Earth in the constellation Cetus. Measuring some 170,000 light-years in diameter, it is one of the largest galaxies included in the Messier Catalog. Its size and bright core also make it relatively easy to spot with binoculars or small telescopes.

Continue reading “Messier 77 – the Cetus A Barred Spiral Galaxy”

Messier 76 – the NGC 650/651 Planetary Nebula

Little Dumbbell Nebula and Andromeda Galaxy. Credit: Wikisky

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the “little dumbbell” itself, the planetary nebula known as Messier 76!

During the 18th century, famed French astronomer Charles Messier noticed the presence of several “nebulous objects”  while surveying the night sky. Originally mistaking these objects for comets, he began to catalog them so that others would not make the same mistake. Today, the resulting list (known as the Messier Catalog) includes over 100 objects and is one of the most influential catalogs of Deep Space Objects.

One of these objects is the Messier 76 (aka. the Little Dumbbell Nebula, the Barbell Nebula, or the Cork Nebula) a planetary nebula located about 2,500 light years away in the Perseus Constellation. While it is easy to find because of its proximity to the Cassiopeia Constellation (located just south of it), the faintness of this nebula makes it one of the more difficult Messier Objects to observe. Continue reading “Messier 76 – the NGC 650/651 Planetary Nebula”

Messier 75 – the NGC 6864 Globular Cluster

Hubble image of the globular cluster known as Messier 75. Credits: NASA, ESA, STScI, and G. Piotto (Università degli Studi di Padova) and E. Noyola (Max Planck Institut für extraterrestrische Physik)

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the globular cluster known as Messier 75!

During the 18th century, famed French astronomer Charles Messier noticed the presence of several “nebulous objects”  while surveying the night sky. Originally mistaking these objects for comets, he began to catalog them so that others would not make the same mistake. Today, the resulting list (known as the Messier Catalog) includes over 100 objects and is one of the most influential catalogs of Deep Space Objects.

One of these objects is Messier 75 (aka. NGC 6864), a globular cluster roughly 67,500 light years from Earth near the southern constellation Sagittarius. This object is also about 14,700 light years away from the Galactic Center, and on the located on the other side relative to Earth. Because of its distance and location, this object is virtually impossible to see binoculars and difficult to resolve with small telescopes. Continue reading “Messier 75 – the NGC 6864 Globular Cluster”

Messier 74 – the NGC 628 Spiral Galaxy

The location of Messier 74. Credit: Wikisky

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the “Phantom Galaxy” known as Messier 74!

During the 18th century, famed French astronomer Charles Messier noticed the presence of several “nebulous objects”  while surveying the night sky. Originally mistaking these objects for comets, he began to catalog them so that others would not make the same mistake. Today, the resulting list (known as the Messier Catalog) includes over 100 objects and is one of the most influential catalogs of Deep Space Objects.

One of these objects is the spiral galaxy known as Messier 74 (aka. the Phantom Galaxy) which appears face-on to observers from Earth. Located about 30 million light years from Earth in the direction of the Pisces constellation, this galaxy measures around 95,000 light years in diameter (almost as big as the Milky Way) and is home to about 100 billion stars. Continue reading “Messier 74 – the NGC 628 Spiral Galaxy”

Messier 72 – the NGC 6981 Globular Cluster

Messier 72 and Messier 73. Credit: Wikisky

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the globular cluster known as Messier 72.

During the 18th century, famed French astronomer Charles Messier noticed the presence of several “nebulous objects”  while surveying the night sky. Originally mistaking these objects for comets, he began to catalog them so that others would not make the same mistake. Today, the resulting list (known as the Messier Catalog) includes over 100 objects and is one of the most influential catalogs of Deep Space Objects.

One of these objects is Messier 72, a globular cluster about 54,570 light years away in the direction of the Aquarius constellation. Originally discovered by French astronomer Pierre Méchain a few years prior, Messier would go on to include this star cluster in his catalog. Located in close proximity to Messier 73, this globular cluster is one of the smaller and fainter Messier objects in the night sky. Continue reading “Messier 72 – the NGC 6981 Globular Cluster”

Messier 71 – the NGC 6838 Globular Cluster

Chart showing the M71 Globular Cluster. Credit: astronomycentral.co.uk

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the unusual globular cluster known as Messier 71.

If you look up into the night sky, on a particularly clear night when there’s not a lot of bright lights nearby, you may be able to make out a series of faint objects. Similar to the Milky Way, that cloudy, ghostly band that reaches across the night sky, these small pockets of fuzzy light are in fact collections of stars located thousands of light years away.

Continue reading “Messier 71 – the NGC 6838 Globular Cluster”

Messier 69 – the NGC 6637 Globular Cluster

The globular clusters M69 and M70, which lie in the Sagittarius Constellation. Image: Wikisky

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the globular cluster known as Messier 69.

In the 18th century, while searching the night sky for comets, French astronomer Charles Messier kept noting the presence of fixed, diffuse objects he initially mistook for comets. In time, he would come to compile a list of approximately 100 of these objects, hoping to prevent other astronomers from making the same mistake. This list – known as the Messier Catalog – would go on to become one of the most influential catalogs of Deep Sky Objects.

One of these objects is known as Messier 69 (NGC 6637), a globular cluster located in the constellation Sagittarius. Located about about 29,700 light-years away from Earth, this cluster lies close to Messier 70 (both of which were discovered Charles Messier on August 31st, 1780). Both objects lie close to the galactic center, and M69 is one of the most metal-rich globular clusters known. Continue reading “Messier 69 – the NGC 6637 Globular Cluster”

Messier 67 – the King Cobra Open Star Cluster

The location of the King Cobra open star cluster (aka. Messier 67). Credit: Wikisky

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the big snake – the King Cobra Cluster (aka. Messier 67).

In the 18th century, while searching the night sky for comets, French astronomer Charles Messier kept noting the presence of fixed, diffuse objects he initially mistook for comets. In time, he would come to compile a list of approximately 100 of these objects, hoping to prevent other astronomers from making the same mistake. This list – known as the Messier Catalog – would go on to become one of the most influential catalogs of Deep Sky Objects.

One of these objects is the open star cluster known as Messier 67, aka. the King Cobra Cluster. Located in the Cancer Constellation, and with age estimates ranging from 3.2 and 5 billion years, this cluster is one of the oldest clusters known. And at a distance of roughly 2610 and 2930 (800 – 900 pc) from Earth, it is the closest of any of the older open star clusters. Continue reading “Messier 67 – the King Cobra Open Star Cluster”

Messier 66 – the NGC 3627 Intermediate Spiral Galaxy

The Leo Triplet, featuring Messier 65, Messier 66 and NGC 3628. Image: Wikisky

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the intermediate spiral galaxy known as Messier 66.

In the 18th century, while searching the night sky for comets, French astronomer Charles Messier kept noting the presence of fixed, diffuse objects he initially mistook for comets. In time, he would come to compile a list of approximately 100 of these objects, hoping to prevent other astronomers from making the same mistake. This list – known as the Messier Catalog – would go on to become one of the most influential catalogs of Deep Sky Objects.

One of these objects is the intermediate elliptical galaxy known as Messier 66 (NGC 3627). Located about 36 million light-years from Earth in the direction of the Leo constellation, this galaxy measures 95,000 light-years in diameter. It is also the brightest and largest member of the Leo Triplet of galaxies and is well-known for its bright star clusters, dust lanes, and associated supernovae.

Description:

Enjoying life some 35 million light years from the Milky Way, the group known as the “Leo Trio” is home to bright galaxy Messier 66 – the easternmost of the two M objects. In the telescope or binoculars, you’ll find this barred spiral galaxy far more visible and much easier to see details within its knotted arms and bulging core.

Hubble image of the intermediate spiral galaxy Messier 66. Credits: NASA, ESA and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration/Davide De Martin/Robert Gendler

Because of interaction with its neighboring galaxies, M66 shows signs of a extremely high central mass concentration as well as a resolved noncorotating clump of H I material apparently removed from one of the spiral arms. Even one of its spiral arms got it noted in Halton Arp’s collection of Peculiar Galaxies! So exactly what did it collide with?As   Xiaolei Zhang (et al) indicated in a 1993 study:

“The combined CO and H I data provide new information, both on the history of the past encounter of NGC 3627 with its companion galaxy NGC 3628 and on the subsequent dynamical evolution of NGC 3627 as a result of this tidal interaction. In particular, the morphological and kinematic information indicates that the gravitational torque experienced by NGC 3627 during the close encounter triggered a sequence of dynamical processes, including the formation of prominent spiral structures, the central concentration of both the stellar and gas mass, the formation of two widely separated and outwardly located inner Lindblad resonances, and the formation of a gaseous bar inside the inner resonance. These processes in coordination allow the continuous and efficient radial mass accretion across the entire galactic disk. The observational result in the current work provides a detailed picture of a nearby interacting galaxy which is very likely in the process of evolving into a nuclear active galaxy. It also suggests one of the possible mechanisms for the formation of successive instabilities in postinteraction galaxies, which could very efficiently channel the interstellar medium into the center of the galaxy to fuel nuclear starburst and Seyfert activities.”

Ah, yes! Star forming regions… And what better way to look deeper than through the eyes of the Spitzer Space Telescope? As R. Kennicutt (University of Arizona) and the SINGS Team observed:

“M66’s blue core and bar-like structure illustrates a concentration of older stars. While the bar seems devoid of star formation, the bar ends are bright red and actively forming stars. A barred spiral offers an exquisite laboratory for star formation because it contains many different environments with varying levels of star-formation activity, e.g., nucleus, rings, bar, the bar ends and spiral arms. The SINGS image is a four-channel false-color composite, where blue indicates emission at 3.6 microns, green corresponds to 4.5 microns, and red to 5.8 and 8.0 microns. The contribution from starlight (measured at 3.6 microns) in this picture has been subtracted from the 5.8 and 8 micron images to enhance the visibility of the dust features.”

Colour composite image of the spiral galaxy M66 (or NGC 3627) obtained with the FORS1 and FORS2 multi-mode instruments (at VLT MELIPAL and YEPUN, respectively). Credit: ESO

Messier 66 has also been deeply studied for evidence of forming super star clusters, too. As David Meier indicated:

“Super star clusters are thought to be precursors of globular clusters and are some of the most extreme star formation regions in the universe. They tend to occur in actively starbursting galaxies or near the cores of less active galaxies. Radio super star clusters cannot be seen in optical light because of extreme extinction, but they shine brightly in infrared and radio observations. We can be certain that there are many massive O stars in these regions because massive stars are required to provide the UV radiation that ionizes the gas and creates a thermally bright HII regions. Not many natal SSCs are currently known, so detection is an important science goal in its own right. In particular, very few SSCs are known in galactic disks. We need more detections to be able to make statistical statements about SSCs and fill in the mass range of forming star clusters. With more detections, we will be able to investigate the effects of other environments (e.g. bars, bubbles, and galactic interaction) on SSCs, which could potentially be followed up in the far future with the Square Kilometer Array to discover their effects on individual forming massive stars.”

But there’s still more. Try magnetic properties in M66’s spiral patterns. As M. Soida (et al) indicated in their 2001 study:

“By observing the interacting galaxy NGC 3627 in radio polarization we try to answer the question; to which degree does the magnetic field follow the galactic gas flow. We obtained total power and polarized intensity maps at 8.46 GHz and 4.85 GHz using the VLA in its compact D-configuration. In order to overcome the zero-spacing problems, the interferometric data were combined with single-dish measurements obtained with the Effelsberg 100-m radio telescope. The observed magnetic field structure in NGC 3627 suggests that two field components are superposed. One component smoothly fills the interarm space and shows up also in the outermost disk regions, the other component follows a symmetric S-shaped structure. In the western disk the latter component is well aligned with an optical dust lane, following a bend which is possibly caused by external interactions. However, in the SE disk the magnetic field crosses a heavy dust lane segment, apparently being insensitive to strong density-wave effects. We suggest that the magnetic field is decoupled from the gas by high turbulent diffusion, in agreement with the large Hi line width in this region. We discuss in detail the possible influence of compression effects and non-axisymmetric gas flows on the general magnetic field asymmetries in NGC 3627. On the basis of the Faraday rotation distribution we also suggest the existence of a large ionized halo around this galaxy.”

History of Observation:

Both M65 and M66 were discovered on the same night – March 1, 1780 – by Charles Messier, who described M66 as, “Nebula discovered in Leo; its light is very faint and it is very close to the preceding: They both appear in the same field in the refractor. The comet of 1773 and 1774 has passed between these two nebulae on November 1 to 2, 1773. M. Messier didn’t see them at that time, no doubt, because of the light of the comet.”

Both galaxies would be observed and cataloged by the Herschel family and further expounded upon by Admiral Smyth:

“A large elongated nebula, with a bright nucleus, on the Lion’s haunch, trending np [north preceding, NW] and sf [south following, SE]; this beautiful specimen of perspective lies just 3deg south-east of Theta Leonis. It is preceded at about 73s by another of a similar shape, which is Messier’s No. 65, and both are in the field at the same time, under a moderate power, together with several stars. They were pointed out by Mechain to Messier in 1780, and they appeared faint and hazy to him. The above is their appearance in my instrument.

“These inconceivably vast creations are followed, exactly on the same parallel, ar Delta AR=174s, by another elliptical nebula of even a more stupendous character as to apparent dimensions. It was discovered by H. [John Herschel], in sweeping, and is No. 875 in his Catalogue of 1830 [actually, probably an erroneous position for re-observed M66]. The two preceding of these singular objects were examined by Sir William Herschel, and his son [JH] also; and the latter says, “The general form of elongated nebulae is elliptic, and their condensation towards the centre is almost invariably such as would arise from the superposition of luminous elliptic strata, increasing in density towards the centre. In many cases the increase of density is obviously attended with a diminution of ellipticity, or a nearer approach to the globular form in the central than in the exterior strata.” He then supposes the general constitution of those nebulae to be that of oblate spheroidal masses of every degree of flatness from the sphere to the disk, and of every variety in respect of the law of their density, and ellipticity towards the centre. This must appear startling and paradoxical to those who imagine that the forms of these systems are maintained by forces identical with those which determine the form of a fluid mass in rotation; because, if the nebulae be only clusters of discrete stars, as in the greater number of cases there is every reason to believe them to be, no pressure can propagate through them. Consequently, since no general rotation of such a system as one mass can be supposed, Sir John suggests a scheme which he shows is not, under certain conditions, inconsistent with the law of gravitation. “It must rather be conceived,” he tells us, ” as a quiescent form, comprising within its limits an indefinite magnitude of individual constituents, which, for aught we can tell, may be moving one among the other, each animated by its own inherent projectile force, and deflected into an orbit more or less complicated, by the influence of that law of internal gravitation which may result from the compounded attractions of all its parts.”

Messier 66 location. Credit: IAU and Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

Locating Messier 66:

Even though you might think by its apparent visual magnitude that M66 wouldn’t be visible in small binoculars, you’d be wrong. Surprisingly enough, thanks to its large size and high surface brightness, this particular galaxy is very easy to spot directly between Iota and Theta Leonis. In even 5X30 binoculars under good conditions you’ll easy see both it and M65 as two distinct gray ovals.

A small telescope will begin to bring out structure in both of these bright and wonderful galaxies, but to get a hint at the “Trio” you’ll need at least 6″ in aperture and a good dark night. If you don’t spot them right away in binoculars, don’t be disappointed – this means you probably don’t have good sky conditions and try again on a more transparent night. The pair is well suited to modestly moonlit nights with larger telescopes.

May you equally be attracted to this galactic pair!

And here are the quick facts on M66 to help you get started:

Object Name: Messier 66
Alternative Designations: M66, NGC 3627, (a member of the) Leo Trio, Leo Triplet
Object Type: Type Sb Spiral Galaxy
Constellation: Leo
Right Ascension: 11 : 20.2 (h:m)
Declination: +12 : 59 (deg:m)
Distance: 35000 (kly)
Visual Brightness: 8.9 (mag)
Apparent Dimension: 8×2.5 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier ObjectsM1 – The Crab Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

Messier 63 – the Sunflower Galaxy

The Sunflower Galaxy, a spiral galaxy located in the northern constellation Canes Venatici, as imaged by the NASA/ESA Hubble Space Telescope. Credits: ESA/Hubble & NASA

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the “Sunflower Galaxy”, otherwise known as Messier 63.

In the 18th century, while searching the night sky for comets, French astronomer Charles Messier kept noting the presence of fixed, diffuse objects he initially mistook for comets. In time, he would come to compile a list of approximately 100 of these objects, hoping to prevent other astronomers from making the same mistake. This list – known as the Messier Catalog – would go on to become one of the most influential catalogs of Deep Sky Objects.

One of these objects is the spiral galaxy known as Messier 63 – aka. the Sunflower Galaxy. Located in the Canes Venatici constellation, this galaxy is located roughly 37 million light-years from Earth and has an active nucleus. Messier 63 is part of the M51 Group, a group of galaxies that also includes Messier 51 (the ‘Whirlpool Galaxy’), and can be easily spotted using binoculars and small telescopes.

Description:

Messier 63 is what is known as a a flocculent spiral galaxy, consisting of a central disc surrounded by many short spiral arm segments – one not connected by a central bar structure. Drifting along in space some 37,000 light years from our own galaxy, we known it interacts gravitationally with M51 (the Whirlpool Galaxy) and we also know that its outer regions are rotating so quickly that if it weren’t for dark matter – it would rip itself apart.

Infrared image of the Sunflower Galaxy (Messier 63) taken by the Spitzer Space Telescope. Credit: NASA/JPL-Caltech/SINGS Team

As Michele D. Thornley and Lee G. Mundy, of the Maryland University Department of Astronomy, indicated in a 1997 study:

“The morphology and inematics described by VLA observations of H I emission and FCRAO and Berkeley-Illinois-Maryland Association (BIMA) Array observations of CO emission provide evidence for the presence of low-amplitude density waves in NGC 5055. The distribution of CO and H I emission suggests enhanced gas surface densities along the NIR spiral arms, and structures similar to the giant molecular associations found in the grand design spirals M51 and M100 are detected. An analysis of H I and H? velocity fields shows the kinematic signature of streaming motions similar in magnitude to those of M100 in both tracers. The lesser degree of organization along the spiral arms of NGC 5055 may be due to the lower overall gas surface density, which in the arms of NGC 5055 is a factor of 2 lower than in M100 and a factor of 6 lower than in M51; an analysis of gravitational instability shows the gas in the arms is only marginally unstable and the interarm gas is marginally stable. The limited extent of the spiral arm pattern is consistent with an isolated density wave with a relatively high pattern speed.”

There very well could be a massive object hidden within. As Sebastien Blais-Ouellette of the Universite de Montreal said in a 1998 study:

“In a global kinematical study of NGC 5055 using high resolution Fabry-Perot, intriguing spectral line profiles have been observed in the center of the galaxy. These profiles seem to indicate a rapidly rotating disk with a radius near 365 pc and tilted 50 deg with respect to the major axis of the galaxy. In the hypothesis of a massive dark object, a naive keplerian estimate gives a mass around 10^7.2 to 10^7.5 M.”

Infrared image of the M63 galaxy made by Médéric Boquien, using data retrieved on the SINGS project public archives of the Spitzer Space Telescope. Credit: NASA/JPL-Caltech

But that’s not all they’ve found either… How about a lopsided, chemically unbalanced nucleus! As V.L. Afanasiev (et al) pointed out in their 2002 study:

“We have found a resolved chemically distinct core in NGC 5055, with the magnesium-enhanced region shifted by 2″.5 (100 pc) to the south-west from a photometric center, toward a kinematically identified circumnuclear stellar disk. Mean ages of stellar populations in the true nucleus, defined as the photometric center, and in the magnesium-enhanced substructure are coincident and equal to 3-4 Gyr being younger by several Gyr with respect to the bulge stellar population.”

Yep. It might be beautiful, but it’s warped. As G. Battaglia of the Kapteyn Astronomical Institute indicated in a 2005 study:

“NGC 5055 shows remarkable overall regularity and symmetry. A mild lopsidedness is noticeable, however, both in the distribution and kinematics of the gas. The tilted ring analysis of the velocity field led us to adopt different values for the kinematical centre and for the systemic velocity for the inner and the outer parts of the system. This has produced a remarkable result: the kinematical and geometrical asymmetries disappear, both at the same time. These results point at two different dynamical regimes: an inner region dominated by the stellar disk and an outer one, dominated by a dark matter halo offset with respect to the disk.”

Sunflower Galaxy (Messier 63). Credit: Adam Block/Mount Lemmon SkyCenter/University of Arizona

History of Observation:

Messier Object 63 was the very first discovery by Charles Messier’s friend and assistant Pierre Mechain, who turned it up on June 14, 1779. While Mechain himself did not write the notes, Messier did:

“Nebula discovered by M. Mechain in Canes Venatici. M. Messier searched for it; it is faint, it has nearly the same light as the nebula reported under no. 59: it contains no star, and the slightest illumination of the micrometer wires makes it disappear: it is close to a star of 8th magnitude, which precedes the nebula on the hour wire. M. Messier has reported its position on the Chart of the path of the Comet of 1779.”

Messier 63 would go on to be observed and resolved by Sir William Herschel and cataloged by his son John. It would be descriptively narrated by Admiral Symth and exclaimed over by many astronomers – one of the best of which was Lord Rosse: “Spiral? Darkness south flowing nucleus.” Of all the descriptions, perhaps the best belongs to Curtis, who first photographed it with the Crossley Reflector at Lick Observatory: “Has an almost stellar nucleus. The whorls are narrow, very compactly arranged, and show numerous almost stellar condensations.”

Locating Messier 63:

The beautiful Sunflower Galaxy is among one of the easiest of the Messier objects to find. It’s located almost precisely between Cor Caroli (Alpha Canes Venetici) and Eta Ursa Majoris. With the slightest of optical aid, stars 19, 20 and 23 CnV will show easily in finderscope or binoculars and M63 will be positioned right around two degrees away towards Eta UM.

The location of Messier 63 in the Canes Venatici constellation. Credit: IAU/Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

While this spiral galaxy has a nice overall brightness, it’s going to be very faint for binoculars, only showing as the tiniest contrast change in smaller models. However, even a modest telescope will easily see a faint oval shape with a concentrated nucleus. The more aperture you apply, the more details you will see. As size approaches 8″ and larger, expect to see spiral structure!

Power up… And look for the spiral in the Sunflower!

Object Name: Messier 63
Alternative Designations: M63, NGC 5055, Sunflower Galaxy
Object Type: Type Sb Spiral Galaxy
Constellation: Canes Venatici
Right Ascension: 13 : 15.8 (h:m)
Declination: +42 : 02 (deg:m)
Distance: 37000 (kly)
Visual Brightness: 8.6 (mag)
Apparent Dimension: 10×6 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier ObjectsM1 – The Crab Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources: