Messier 51 – the Whirlpool Galaxy

Visible light (left) and infrared image (right) of the Whirlpool Galaxy, taken by NASA’s Hubble Space Telescope. Credit: NASA/ESA/M. Regan & B. Whitmore (STScI), & R. Chandar (U. Toledo)/S. Beckwith (STScI), & the Hubble Heritage Team (STScI/AURA

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at that swirling, starry customer, the Whirlpool Galaxy!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these is the spiral galaxy located in the constellation Canes Venatici known as the Whirlpool Galaxy (aka. Messier 51). Located between 19 and 27 million light-years from the Milky Way, this deep sky object was the very first to be classified as a spiral galaxy. It is also one of the best known galaxies among amateur astronomers, and is easily observable using binoculars and small telescopes.

Description:

Located some 37 million light years away, M51 is the largest member of a small group of galaxies, which also houses M63 and a number of fainter galaxies. To this time, the exact distance of this group isn’t properly known… Even when a 2005 supernova event should have helped astronomers to correctly calculate! As K. Takats stated in a study:

“The distance to the Whirlpool galaxy (M51, NGC 5194) is estimated using published photometry and spectroscopy of the Type II-P supernova SN 2005cs. Both the expanding photosphere method (EPM) and the standard candle method (SCM), suitable for SNe II-P, were applied. The average distance (7.1 +/- 1.2 Mpc) is in good agreement with earlier surface brightness fluctuation and planetary nebulae luminosity function based distances, but slightly longer than the distance obtained by Baron et al. for SN 1994I via the spectral fitting expanding atmosphere method. Since SN 2005cs exhibited low expansion velocity during the plateau phase, similarly to SN 1999br, the constants of SCM were recalibrated including the data of SN 2005cs as well. The new relation is better constrained in the low-velocity regime, that may result in better distance estimates for such SNe.”

Visible light (left) and infrared image (right) of M51, taken by the Kitt Peak National Observatory and NASA’s Spitzer Space Telescope, respectively. Credit: NASA/JPL-Caltech/R. Kennicutt (Univ. of Arizona)/DSS

Of course, one of the most outstanding features of the Whirlpool Galaxy is its beautiful spiral structure – perhaps result of the close interaction between it and its companion galaxy NGC 5195? As S. Beckwith,

“This sharpest-ever image of the Whirlpool Galaxy, taken in January 2005 with the Advanced Camera for Surveys aboard NASA’s Hubble Space Telescope, illustrates a spiral galaxy’s grand design, from its curving spiral arms, where young stars reside, to its yellowish central core, a home of older stars. At first glance, the compact galaxy appears to be tugging on the arm. Hubble’s clear view, however, shows that NGC 5195 is passing behind the Whirlpool. The small galaxy has been gliding past the Whirlpool for hundreds of millions of years. As NGC 5195 drifts by, its gravitational muscle pumps up waves within the Whirlpool’s pancake-shaped disk. The waves are like ripples in a pond generated when a rock is thrown in the water. When the waves pass through orbiting gas clouds within the disk, they squeeze the gaseous material along each arm’s inner edge. The dark dusty material looks like gathering storm clouds. These dense clouds collapse, creating a wake of star birth, as seen in the bright pink star-forming regions. The largest stars eventually sweep away the dusty cocoons with a torrent of radiation, hurricane-like stellar winds, and shock waves from supernova blasts. Bright blue star clusters emerge from the mayhem, illuminating the Whirlpool’s arms like city streetlights.”

But there were more surprises just waiting to be found – like a black hole, surrounded by a ring of dust. What makes it even more odd is a secondary ring crosses the primary ring on a different axis, a phenomenon that is contrary to expectations and a pair of ionization cones extend from the axis of the main dust ring. As H. Ford,

“This image of the core of the nearby spiral galaxy M51, taken with the Wide Field Planetary camera (in PC mode) on NASA’s Hubble Space Telescope, shows a striking , dark “X” silhouetted across the galaxy’s nucleus. The “X” is due to absorption by dust and marks the exact position of a black hole which may have a mass equivalent to one-million stars like the sun. The darkest bar may be an edge-on dust ring which is 100 light-years in diameter. The edge-on torus not only hides the black hole and accretion disk from being viewed directly from earth, but also determines the axis of a jet of high-speed plasma and confines radiation from the accretion disk to a pair of oppositely directed cones of light, which ionize gas caught in their beam. The second bar of the “X” could be a second disk seen edge on, or possibly rotating gas and dust in MS1 intersecting with the jets and ionization cones.”

History of Observation:

The Whirlpool Galaxy was first discovered by Charles Messier on October 13th, 1773 and re-observed again for his records on January 11th, 1774. As he wrote of his discovery in his notes:

“Very faint nebula, without stars, near the eye of the Northern Greyhound [hunting dog], below the star Eta of 2nd magnitude of the tail of Ursa Major: M. Messier discovered this nebula on October 13, 1773, while he was watching the comet visible at that time. One cannot see this nebula without difficulties with an ordinary telescope of 3.5 foot: Near it is a star of 8th magnitude. M. Messier reported its position on the Chart of the Comet observed in 1773 & 1774. It is double, each has a bright center, which are separated 4’35”. The two “atmospheres” touch each other, the one is even fainter than the other.”

It would be his faithful friend and assistant, Pierre Mechain who would discover NGC 5195 on March 21st, 1781. Even though it would be many, many years before it was proven that galaxies were indeed independent systems, historic astronomers were much, much sharper than we gave them credit for. Sir William Herschel would observe M51 many times, but it would be his son John who would be the very first to comment on M51’s scheme:

“This very singular object is thus described by Messier: – “Nebuleuse sans etoiles.” “On ne peut la voir que difficilement avec une lunette ordinaire de 3 1/2 pieds.” “Elle est double, ayant chacune un centre brillant eloigne l’un de l’autre de 4′ 35″. Les deux atmospheres se touchent.” By this description it is evident that the peculiar phenomena of the nebulous ring which encircles the central nucleus had escaped his observation, as might have been expected from the inferior light of his telescopes. My Father describes it in his observations of Messier’s nebulae as a bright round nebula, surrounded by a halo or glory at a distance from it, and accompanied by a companion; but I do not find that the partial subdivision of the ring into two branches throughout its south following limb was noticed by him. This is, however, one of its most remarkable and interesting features. Supposing it to consist of stars, the appearance it would present to a spectator placed on a planet attendant on one of them eccentrically situated towards the north preceding quarter of the central mass, would be exactly similar to that of our Milky Way, traversing in a manner precisely analogous the firmament of large stars, into which the central cluster would be seen projected, and (owing to its distance) appearing, like it, to consist of stars much smaller than those in other parts of the heavens. Can it, then, be that we have here a brother-system bearing a real physical resemblance and strong analogy of structure to our own? Were it not for the subdivision of the ring, the most obvious analogy would be that of the system of Saturn, and the idea of Laplace respecting the formation of that system would be powerfully recalled by this object. But it is evident that all idea of symmetry caused by rotation on an axis must be relinquished, when we consider that the elliptic form of the inner subdivided portion indicates with extreme probability an elevation of that portion above the plane of the rest, so that the real form must be that of a ring split through half its circumference, and having the split portions set asunder at an angle of about 45 deg each to the plane of the other.”

Sketch of M51 by William Parsons, 3rd Earl of Rosse (Lord Rosse) in 1845. Credit: Public Domain

As with other Messier Objects, Admiral Smyth also had some insightful and poetic observations to add. As he wrote of this galaxy in September of 1836:

“We have then an object presenting an amazing display of the uncontrollable energies of the Omnipotence, the contemplation of which compels reason and admiration to yield to awe. On the outermost verge of telescopic reach we perceive a stellar universe similar to that to which we belong, whose vast amplitudes no doubt are peopled with countless numbers of percipient beings; for those beautiful orbs cannot be considered as mere masses of inert matter.

And it is interesting to know that, if there be intelligent existence, an astronomer gazing at our distant universe, will see it, with a good telescope, precisely under the lateral aspect which theirs presents to us. But after all what do we see? Both that wonderful universe, our own, and all which optical assistance has revealed to us, may be only the outliers of a cluster immensely more numerous.

The millions of suns we perceive cannot comprise the Creator’s Universe. There are no bounds to infinitude; and the boldest views of the elder Herschel only placed us as commanding a ken whose radius is some 35,000 times longer than the distance of Sirius from us. Well might the dying Laplace explain: “That which we know is little; that which we know not is immense.”

Lord Rosse would continue on in 1844 with his 6-feet (72-inch) aperture, 53-ft FL “Leviathan” telescope, but he was a man of fewer words.

“The greater part of the observations were made when the eye was affected by lamp-light, which made it difficult to estimate correctly the centre of the nucleus; it was of importance that no time should be unnecessarily spent, and after the lamp had been used a new measure was taken, as it was judged that the object was sufficiently seen. With the brighter stars this would frequently happen before the nucleus was well defined, as all impediments to vision seem to affect nebulae much more than stars the light of which would be estimated as of the same intensity. In the foregoing list the greatest discrepancies are in the measures of bright objects, and this is probably the proper account of it. No stars have been inserted in the sketch which are not in the table of the measurements. The general appearance of the object would have been better given if the minute stars had been put in from the eye-sketch, but it would have created confusion.”

May the stars from this distant island universe fill your eyes!

The Whirlpool Galaxy (Spiral Galaxy M51, NGC 5194), a classic spiral galaxy located in the Canes Venatici constellation, and its companion NGC 5195. Credit: NASA/ESA

Locating Messier 51:

Locating M51 isn’t too hard if you have dark skies, but this particular galaxy is very difficult where light pollution of moonlight is present. To find it, start with Eta UM, the star at the handle of the Big Dipper. In the finderscope or binoculars, you’ll clearly see 24 UM to the southwest. Now, center your optics there and move slowly southwest towards Cor Caroli (Alpha CVn) and you’ll find it!

In locations where skies are clear and dark, it is easy to see spiral structure in even small telescopes, or to make out the galaxy in binoculars – but even a change in sky conditions can hide it from a good location. Rich field telescopes with fast focal lengths to an outstanding job on this galaxy and companion and you may be able to make out the nucleus of both galaxies on a good night from even a bad location.

Object Name: Messier 51
Alternative Designations: M51, NGC 5194, The Whirlpool Galaxy
Object Type: Type Sc Galaxy
Constellation: Canes Venatici
Right Ascension: 13 : 29.9 (h:m)
Declination: +47 : 12 (deg:m)
Distance: 37000 (kly)
Visual Brightness: 8.4 (mag)
Apparent Dimension: 11×7 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

 

Messier 50 – the NGC 2323 Open Star Cluster

The Messier 50 open star cluster, shown in proximity to the Seagull Nebula (IC 2177). Credit: Wikisky

Welcome back to Messier Monday! We continue our tribute to our dear friend, Tammy Plotner, by looking at the open star cluster of Messier 50. Enjoy!

In the 18th century, while searching the night sky for comets, French astronomer Charles Messier kept noting the presence of fixed, diffuse objects in the night sky. In time, he would come to compile a list of approximately 100 of these objects, with the purpose of making sure that astronomers did not mistake them for comets. However, this list – known as the Messier Catalog – would go on to serve a more important function.

One of these objects is the open star cluster known as Messier 50 (aka. NGC 2323). Located at a distance of about 3,200 light-years from Earth, this object sits near the border between the Monoceros and Canis Major constellations. It is described as a ‘heart-shaped’ figure, occupies an area about half the size of the full Moon, and is easy to find because of its proximity to Sirius (the brightest star in the night sky).

Description:

Located about 3,200 light years from our solar system, this stellar gathering could be perhaps as much as 20 light years across, but the central concentration is believed to only span across roughly 10 light years. While that doesn’t seem that large, it’s lit by the candlepower of what could be 200 stars! And picking such a group of stars out of a well-known OB1 association isn’t easy. It requires photometry. As J.J. Claria (et al) remarked in a 1997 study:

“UBV and DDO photoelectric photometry in the field of the open cluster NGC 2323 is presented. The analysis yields 109 probable members; one of them being a red giant, and 3 possible members. The basic cluster parameters are derived. NGC 2323 appears not to be physically connected to the CMa OB1 association.”

Close up of the Messier 50 open star cluster. Credit: Wikisky

In this region of the sky are vast molecular clouds compressing into star forming regions known as OB1 associations. The stars spawned by these vast clouds form into open clusters containing dozens to thousands of members and, over time, disassociate with not only the molecular cloud, but their sibling star clusters as well. Sure, it took 100-120 million years for it to happen, but as the group of stars cut away from the field, each member also aged differently.

By studying open clusters like M50 and its relative M35, we can learn more about the dynamics of star clusters which formed roughly at the same time in the same area. As Jasonjot Kalirai (et al) indicated in their 2003 study:

“The color-magnitude diagrams for the clusters exhibit clear main sequences stretching over 14 mag in the (V, B-V)-plane. Comparing these long main sequences with those of earlier clusters in the survey, as well as with the Hyades, has allowed for accurate distances to be established for each cluster. Analysis of the luminosity and mass functions suggests that, despite their young ages, both clusters are somewhat dynamically relaxed, exhibiting signs of mass segregation. This is especially interesting in the case of NGC 2323, which has an age of only 1.3 times the dynamical relaxation time. The present photometry is also deep enough to detect all of the white dwarfs in both clusters. We discuss some interesting candidates that may be the remnants of quite massive (M>=5Msolar) progenitor stars. The white dwarf cooling age of NGC 2168 is found to be in good agreement with the main-sequence turnoff age. These objects are potentially very important for setting constraints on the white dwarf initial-final mass relationship and the upper mass limit for white dwarf production.”

So, did age or movement produce the colorful display of stars we can observe in M50 – or was it simply the chemical ingredients responsible? According to a 2005 study conducted by Bragaglia and Monica:

“We describe a long-term project aimed at deriving information on the chemical evolution of the Galactic disk from a large sample of open clusters. The main property of this project is that all clusters are analyzed in a homogeneous way to guarantee the robustness of the ranking in age, distance, and metallicity. Special emphasis is devoted to the evolution of the earliest phases of the Galactic disk evolution, for which clusters have superior reliability with respect to other types of evolution indicators. The project is twofold: on one hand we derive the age, distance, and reddening (and indicative metallicity) by interpreting deep and accurate photometric data with stellar evolution models, and on the other hand, we derive the chemical abundances from high-resolution spectroscopy. The importance of quantifying the theoretical uncertainties by deriving the cluster parameters with various sets of stellar models is emphasized. Stellar evolution models assuming overshooting from convective regions appear to better reproduce the photometric properties of the cluster stars. The examined clusters show a clear metallicity dependence on the galactocentric distance and no dependence on age. The tight relation between cluster age and magnitude difference between the main-sequence turnoff and the red clump is confirmed.”

The M50 open cluster. Credit: Ole Nielsen

History of Observation:

While M50 was possibly discovered by G.D. Cassini 1711, it was independently recovered by Charles Messier on the night of April 5th, 1772. In his notes, he wrote of his discovery:

“Cluster of small stars, more or less brilliant, above the right loins of the Unicorn, above the star Theta of the ear of Canis Major, & near a star of 7th magnitude. It was while observing the Comet of 1772 that M. Messier observed this cluster. He has reported it on the chart of that comet, on which its trace has been drawn.”

It would later be observed by William Hershel, but not until his son John cataloged it before anyone began to notice colors in the stars. However, Admiral Smyth did!

“This is an irregularly round and very rich mass, occupying with its numerous outliers more than the field, and composed of stars from the 8th to the 16th magnitudes; and there are certain spots of splendour which indicate minute masses beyond the power of my telescope. The most decided points are, a red star towards the southern verge, and a pretty little equilateral triangle of 10th sizers, just below, or north of it. The double star here noted was carefully estimated under a full knowledge of the vertical and parallel lines of the field of view: this was made triple by H. [John Herschel], whose 2357 of the Fifth Series it is; but he must be mistaken in calling it Struve 748, which is Theta Orionis. It is sufficiently conspicuous as a double star, and though I perceive an infinitesimal point exactly om the vertical of A, I cannot ascertain whether it is H.’s C. This superb object was discovered by Messier in 1771 [actually 1772], and registered “a mass of small stars more or less brilliant.” It is 9 deg north-north-east of Sirius, and rather more than one-third of the distance between that star and Procyon.”

Locating Messier 50:

Because M50 is such a big and bright open star cluster, it’s relatively easy to find with complicated starhop instructions. Actually, the constellation of Monoceros is more difficult! Begin by identifying the brightest star in northern hemisphere skies – Alpha Canis Major – Sirius. Roughly a handspan to the northeast you’ll see another prominent bright star – Alpha Canis Minor – Procyon.

The location of Messier 50 in the Monoceros constellation. Credit: IAU/Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

 

Between these two lay the faint and indistinguishable constellation of Monoceros, and slightly southwest of the center point is Messier 50. In small binoculars and a telescope finderscope, you’ll quickly spot a compression in the starfield, and may even be able to see it as a slight contrast change with the unaided eye. In larger binoculars and small telescopes, it blooms into a cloud of stars, well resolved against the grainy backdrop of fainter stars.

In large aperture telescopes, even more stars resolve and colors begin to appear. Because of magnitude and the nature of star clusters, Messier 50 makes an outstanding target for high light pollution areas, moonlit nights and even less than perfect sky conditions.

Enjoy your own “colorful” observations of this rich and beautiful star cluster!

And as always, here are the quick facts on this Messier Object to help you get started:

Object Name: Messier 50
Alternative Designations: M50, NGC 2323
Object Type: Open Galactic Star Cluster
Constellation: Monoceros
Right Ascension: 07 : 03.2 (h:m)
Declination: -08 : 20 (deg:m)
Distance: 3.2 (kly)
Visual Brightness: 5.9 (mag)
Apparent Dimension: 16.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier ObjectsM1 – The Crab Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

Messier 46 – the NGC 2437 Open Star Cluster

The open star clusters of Messier 46 and Messier 47, located in the southern skies in the Puppis constellation. Credit: Wikisky

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at Orion’s Nebula’s “little brother”, the De Marian’s Nebula!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects is the open star cluster known as Messier 46, which is located about 5,500 light years away in the southern Puppis constellation. Located in close proximity to another open cluster (Messier 47), this bright, rich cluster is about 300 million years old and is home to many stars – an estimated 500 – and some impressive nebulae too.

Description:

Crammed into about 30 light years of space, around 150 resolvable stars and up to 500 possible stellar members all took off together on a journey through space some 300 million years ago. At this point in time, they are about 5,400 light years away from our solar system, but they aren’t standing still. They’re pulling away from us at a speed of 41.4 kilometers per second.

The Messier 46 open star cluster. Credit: Jose Luis Martinez

If you notice something just a bit different about one of the stars along the northern edge – then you’ve caught on to one of the most famous features of Messier 46 – its resident planetary nebula. While radial velocities show it probably isn’t a true member of the cluster, it’s still a cool feature!

But, is there more to this cluster than that? You bet. Messier 46 has also been highly studied for its core properties. As Saurabh Sharma (et al) indicated in a 2006 study:

“The study of Galactic open clusters is of great interest in several astrophysical aspects. Young open clusters provide information about current star formation processes and are key objects for clarifying questions of Galactic structure, while observations of old and intermediate-age open clusters play an important role in studying the theories of stellar and Galactic evolution. A detailed analysis of the structure of coronae of open clusters is needed to understand the effects of external environments, like the Galactic tidal field and impulsive encounters with interstellar clouds, etc., on dynamical evolution of open clusters. Extensive studies of the coronal regions of clusters have not been carried out so far mainly because of unavailability of photometry in a large field around open star clusters. The ability to obtain improved photometry of thousands of stars means that large-scale studies of open clusters can be conducted to study the spatial structure and stability of Galactic open clusters. With the addition of photometry of a nearby field region it is possible to construct luminosity functions (LFs) and MFs, which are useful for understanding cluster-formation processes and the theory of star formation in open clusters.”

History of Observation:

Messier 46 is an original discovery of Charles Messier, caught on February 19, 1771, just after he released his first catalog of entries. In his journal, he wrote:

“A cluster of very small stars, between the head of the Great Dog and the two hind feet of the Unicorn, [its position] determined by comparing this cluster with the star 2 Navis, of 6th-magnitude, according to Flamsteed; one cannot see these stars but with a good refractor; the cluster contains a bit of nebulosity.”

Messier 46 and NGC 2437. Credit: NASA

At the time of its discovery, Messier had not published his findings quite as immediately as we do today, so another astronomer also independently discovered this cluster as well… Caroline Herschel. “March 4th, [17]83. 1 deg S following the nebula near the 2nd Navis… a Nebula the figure is done by memory. My Brother observed it with 227 and found it to be, an astonishing number of stars. it is not in Mess. catalogue.”

It would be John Herschel in 1833 who would discover the planetary nebula while cataloging it: “The brightest part of a very fine rich cluster; stars of 10th magnitude; which fills the field. Within the cluster at its northern edge is a fine planetary nebula.”

But, as always, Admiral Symth has a way with words and observations. As he wrote of the object:

“A very delicate double star in a fine cluster, outlying the Galaxy, over Argo’s poop. A 8 1/2 [mag], and B 11, both pale white.A noble though rather loose assemblage of stars from the 8th to the 13th magnitude, more than filling the field, especially in length, with power 93; the most compressed part trending sf [south following, SE] and np [north preceding, NW]. Among the larger [brighter] stars on the northern verge is an extremely faint planetary nebula, which is 39 H. IV. [NGC 2438], and 464 of his son’s Catalogue. This was discovered by Messier in 1769, who considered it as being “rather enveloped in nebulous matter;” this opinion, however, must have arisen from the splendid glow of mass, for judging from his own remark, it is not likely that he perceived the planetary nebula on the north. WH [William Herschel], who observed it in 1786, expressly says, “no connexion with the cluster, which is free from nebulosity.” Such is my own view of attentively gazing; but the impression left on the senses, is that of awful vastness and bewildering distance, – yet including the opinion, that those bodies bespangled the vastness of space, may differ in magnitude and other attributes.”

Pretty amazing considering these gentlemen did all of their observations visually and knew nothing about today’s parallaxes, radial velocities or any other type of thing. May your own observations be as talented…

Locating Messier 46:

There is no simple way of finding Messier 46 in the finderscope of a telescope, but it’s not too hard with binoculars. Begin your hunt a little more than a fistwidth east/northeast of bright Sirius (Alpha Canis Majoris)… or about 5 degrees (3 finger widths) south of Alpha Monoceros. There you will find two open clusters that will usually appear in the same average binocular field of view. M46 is the easternmost of the pair.

Messier 46 location. Credit: IAU/Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

It will appear slightly dimmer and the stars will be more concentrated. In the finderscope it will appear as a slightly foggy patch, while neighboring western M47 will try to begin resolution. Because M46’s stars are fainter, it is better suited to darker sky conditions, showing as a compression in binoculars and will resolve fairly well with even a small telescope. However, you will need at least a 6″ telescope to perceive the planetary nebula.

And here are the quick facts on this Messier Object to help you get started:

Object Name: Messier 46
Alternative Designations: M46, NGC 2437
Object Type: Open Galactic Star Cluster
Constellation: Puppis
Right Ascension: 07 : 41.8 (h:m)
Declination: -14 : 49 (deg:m)
Distance: 5.4 (kly)
Visual Brightness: 6.0 (mag)
Apparent Dimension: 27.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

Messier 45 – The Pleiades Cluster

Pleiades stars. Image: NASA, ESA, AURA/Caltech, Palomar Observatory. Credit: D. Soderblom and E. Nelan (STScI), F. Benedict and B. Arthur (U. Texas), and B. Jones (Lick Obs.)

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the universally-renowned cluster known for its seven major points of light – The Pleiades Cluster!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these is the famous Pleiades Cluster, also known as the Seven Sisters (and countless other names). An open star cluster located approximately 390 to 456 light years from Earth in the constellation of Taurus, this cluster is dominated by very bright, hot blue stars. Being both bright and of one of the nearest star clusters to Earth, this cluster is easily visible to the naked eye in the night sky.

Description:

The nine brightest stars of the Pleiades are named for the Seven Sisters of Greek mythology: Sterope, Merope, Electra, Maia, Taygete, Celaeno, and Alcyone, along with their parents Atlas and Pleione. To the X-ray telescopes on board the orbiting ROSAT observatory, the cluster also presents an impressive, but slightly altered, appearance.

An optical image of the Pleiades. Credit: NOAO/AURA/NSF

This false color image was produced from ROSAT observations by translating different X-ray energy bands to visual colors – the lowest energies are shown in red, medium in green, and highest energies in blue. (The green boxes mark the position of the seven brightest visual stars.)

The Pleiades stars seen in X-rays have extremely hot, tenuous outer atmospheres called coronas and the range of colors corresponds to different coronal temperatures. This helps to determine mass and the presence of brown dwarf stars within Messier 45. As Greg Ushomirsky (et al) said in a 1998 study:

“We present an analytic calculation of the thermonuclear depletion of the light elements lithium, beryllium, and boron in fully convective, low-mass stars. Under the presumption that the pre-main-sequence star is always fully mixed during contraction, we find that the burning of these rare light elements can be computed analytically, even when the star is degenerate. Using the effective temperature as a free parameter, we constrain the properties of low-mass stars from observational data, independently of the uncertainties associated with modeling their atmospheres and convection. Our analytic solution explains the dependence of the age at a given level of elemental depletion on the stellar effective temperature, nuclear cross sections, and chemical composition. These results are also useful as benchmarks to those constructing full stellar models. Most importantly, our results allow observers to translate lithium nondetections in young cluster members into a model-independent minimum age for that cluster. Using this procedure, we have found lower limits to the ages of the Pleiades (100 Myr) and Alpha Persei (60 Myr) clusters. Dating an open cluster using low-mass stars is also independent of techniques that fit upper main-sequence evolution. Comparison of these methods provides crucial information on the amount of convective overshooting (or rotationally induced mixing) that occurs during core hydrogen burning in the 5-10 Mo stars typically at the main-sequence turnoff for these clusters.”

As one of the closest of star clusters to our solar system, M45 is dominated by hot blue stars that have only formed within the last 100 million years. Alongside Maia is a reflection nebula discovered by Tempel faint nebula which accompanies Merope was discovered by master observer E.E. Barnard. These were first believed to be left over from the formation of the cluster.

Messier 45. Credit: Boris Stromar

However, it didn’t take many years of observation of proper motion for astronomers to realize the Pleiades were actually moving through a cloud of interstellar dust. While this pleasing blue group is still only 440 light years away, it only has about another 250 million years left before tidal interactions will tear it apart. By then, its relative motion will have carried it from the constellation of Taurus to the southern portion of Orion!

Of course, many observers aren’t quite sure if they are seeing the nebulosity in M45 or not. Chances are, if you’re seeing what appears to be a “fog” around the bright stars – you’re on it. Only large aperture or photography reveals the full extent of the reflection nebula… and there’s a whole lot of scientific reasons for it. Said Steven Gibson (et al) in a 2003 study:

“The scattering geometry analysis is complicated by the blending of light from many stars and the likely presence of more than one scattering layer. Despite these complications, we conclude that most of the scattered light comes from dust in front of the stars in at least two scattering layers, one far in front and extensive, the other nearer the stars and confined to areas of heavy nebulosity. The first layer can be approximated as an optically thin, foreground slab whose line-of-sight separation from the stars averages ~0.7 pc. The second layer is also optically thin in most locations and may lie at less than half the separation of the first layer, perhaps with some material among or behind the stars. The association of nebulosity peripheral to the main condensation around the brightest stars is not clear. Models with standard grain properties cannot account for the faintness of the scattered UV light relative to the optical. Some combination of significant changes in grain model albedo and phase function asymmetry values is required. Our best-performing model has a UV albedo of 0.22+/-0.07 and a scattering asymmetry of 0.74+/-0.06. Hypothetical optically thick dust clumps missed by interstellar sight line measurements have little effect on the nebular colors but might shift the interpretation of our derived scattering properties from individual grains to the bulk medium.”

Since the Pleaides really is close to our solar system, have astronomers been able to detect anything within its boundaries that has surprised them? The answer is yes. according to a 1998 study by E.L. Martin:

“We present the discovery of an object in the Pleiades open cluster, named Teide 2, with optical and infrared photometry that places it on the cluster sequence slightly below the expected substellar mass limit. We have obtained low- and high-resolution spectra that allow us to determine its spectral type (M6), radial velocity, and rotational broadening and to detect H? in emission and Li I in absorption. All the observed properties strongly support the membership of Teide 2 in the Pleiades. This object has an important role in defining the reappearance of lithium below the substellar limit in the Pleiades.”

The M45 cluster. Credit: Wikipedia Commons/Did23

And what star is that? One cataloged as known as HD 23514, which has a mass and luminosity a bit greater than our Sun. But it’s a star surrounded by an extraordinary number of hot dust particles.  “Unusually massive amounts of dust, as seen at the Pleiades and Aries stars, cannot be primordial but rather must be the second-generation debris generated by collisions of large objects,” said Song, “”Collisions between comets or asteroids wouldn’t produce anywhere near the amount of dust we are seeing.”

The astronomers analyzed emissions from countless microscopic dust particles and concluded that the most likely explanation is that the particles are debris from the violent collision of planets or planetary embryos. Song calls the dust particles the “building blocks of planets,” which can accumulate into comets and small asteroid-size bodies and then clump together to form planetary embryos, eventually becoming full-fledged planets.

“In the process of creating rocky, terrestrial planets, some objects collide and grow into planets, while others shatter into dust,” Song said. “We are seeing that dust.”

History of Observation:

The recognition of the Pleiades dates back to antiquity, and its stars are known by many names in many cultures. The Greeks and Romans referred to them as the “Starry Seven,” the “Net of Stars,” “The Seven Virgins,” “The Daughters of Pleione,” and even “The Children of Atlas.” The Egyptians referred to them as “The Stars of Athyr;” the Germans as “Siebengestiren” (the Seven Stars); the Russians as “Baba” after Baba Yaga – the witch who flew through the skies on her fiery broom.

The Pleiades by Elihu Vedder (1885). Credit: Metropolitan Museum of Art, New York City.

The Japanese call them “Subaru;” Norsemen saw them as packs of dogs; and the Tongans as “Matarii” (the Little Eyes). American Indians viewed the Pleiades as seven maidens placed high upon a tower to protect them from the claws of giant bears, and even Tolkien immortalized the star group in The Hobbit as “Remmirath.” The Pleiades were even mentioned in the Bible! So, you see, no matter where we look in our “starry” history, this cluster of seven bright stars has been part of it.

Charles Messier would log it on March 4, 1769 where his only comment would be: “Cluster of stars known by the name Pleiades: the position reported is that of the star Alcyone.” Even though historic astronomers did little more than comment on M45’s presence, we’re still glad the Charles logged it – for it never received another “official” catalog designation!

Locating Messier 45:

Most normally the Pleiades are easily found with the unaided eye as a very visible cluster of stars about a hand span northwest of Orion. However, if sky conditions are bright, M45 might be a little more difficult to spot. If so, look for bright, red star Aldebaran and set your sights about 10 degrees (an average fist width) northwest.

It will show very easily in any size optics and under virtually any conditions – except for clouds and daylight! Messier 45’s large size makes it an ideal candidate for binoculars, where it will cover about half the average field of view. When using a telescope, chose the least amount of magnification possible to see the entire cluster and use higher magnification to study individual stars.

The location of the Centaurus constellation in the southern sky. Credit: IAU/Sky & Telescope magazine/Roger Sinnott & Rick Fienberg

And as always, here are the quick facts on this Messier Object to help you get started:

Object Name: Messier 45
Alternative Designations: M45, the Pleiades, Seven Sisters, Subaru
Object Type: Open Galactic Star Cluster, Reflection Nebula
Constellation: Taurus
Right Ascension: 03 : 47.0 (h:m)
Declination: +24 : 07 (deg:m)
Distance: 0.44 (kly)
Visual Brightness: 1.6 (mag)
Apparent Dimension: 110.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

Messier 42 – The Orion Nebula

The stunning, shaped clouds of gas in the Orion Nebula make it beautiful, but also make it difficult to see inside of. This image of the Orion Nebula was captured by the Hubble Telescope. Image: NASA, ESA, M. Robberto (STScI/ESA) and The Hubble Space Telescope Orion Treasury Project Team
The stunning, shaped clouds of gas in the Orion Nebula make it beautiful, but also make it difficult to see inside of. This image of the Orion Nebula was captured by the Hubble Telescope. Image: NASA, ESA, M. Robberto (STScI/ESA) and The Hubble Space Telescope Orion Treasury Project Team

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at that Great and most brightest of nebulae – the Orion Nebula!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects is the Orion Nebula, a diffuse nebula situated just south of Orion’s Belt in the Orion constellation. Located between 1,324 and 1,364 light years distant, it is the closest massive star forming region to Earth. Little wonder then why it  is the brightest nebula in the night sky and can be seen on a clear evening with the naked eye.

Description:

Known as “The Great Orion Nebula,” let’s learn what makes it glow. M42 is a great cloud of gas spanning more than 20,000 times the size of our own solar system and its light is mainly florescent. For most observers, it appears to have a slight greenish color – caused by oxygen being stripped of electrons by radiation from nearby stars.

A pair of binoculars will make the “Curlicue” pop in Orion’s Belt. Although the stars aren’t related, they form a delightfully curvy line-of-sight pattern. Credit: Bob King

At the heart of this immense region is an area known as the “Trapezium” – its four brightest stars form perhaps the most celebrated multiple star system in the night sky. The Trapezium itself belongs to a faint cluster of stars now approaching main sequence and resides in an area of the nebula known as the “Huygenian Region” (named after 17th century astronomer and optician Christian Huygens who first observed it in detail).

Buried amidst the bright ribbons and curls of this cloud of predominately hydrogen gas are many star forming regions. Appearing like “knots,” these Herbig-Haro objects are thought to be stars in the earliest stages of condensation. Associated with these objects are a great number of faint red stars and erratically luminous variables – young stars, possibly of the T Tauri type.

There are also “flare stars,” whose rapid variations in brightness mean an ever changing view. “Orion may seem very peaceful on a cold winter night, but in reality it holds very massive, luminous stars that are destroying the dusty gas cloud from which they formed,” said Tom Megeath, an astronomer at the Harvard-Smithsonian Center for Astrophysics.

While studying M42, you’ll note the apparent turbulence of the area – and with good reason. The “Great Nebula’s” many different regions move at varying speeds. The rate of expansion at the outer edges may be caused by radiation from the very youngest stars present. Said Massimo Roberto, an astronomer at the Space Science Telescope Institute in Baltimore:

“In this bowl of stars we see the entire formation history of Orion printed into the features of the nebula: arcs, blobs, pillars and rings of dust that resemble cigar smoke. Each one tells a story of stellar winds from young stars that impact the environment and the material ejected from other stars.”

The star Alnitak and Flame Nebula in Orion. Credit and copyright: César Cantú.

Although M42 may have been luminous for as long as 23,000 years, it is possible that new stars are still forming, while others were ejected by gravitation – known as “runaway” stars. A tremendous X-ray source (2U0525-06) is quite near the Trapezium and hints at the possibility of a black hole present within M42. The Trapezium’s stellar winds also are responsible for the formation of stars inside the nebula – their shock waves compressing the medium and igniting starbirth.

“When you look closely, you see that the nebula is filled with hundreds of visible shock waves,” said Bob O’Dell, an astronomer from Vanderbilt University. O’Dell was fortunate enough to use Hubble to map Orion’s stellar winds and create a map of two of Orion’s three star-forming regions… Regions where the winds have been blowing continuously for nearly 1,500 years!

What else have we learned about the Great Orion nebula in recent years? Try the discovery of 13 drifting gas planets. These rare, “free-floating” objects were confirmed by Patrick Roche of the University of Oxford and Philip Lucas of the University of Hertfordshire just before the turn of the century. They were found with the Hubble Space Telescope while looking for faint stars and brown dwarfs. As he explained:

“The objects are likely to be large gas planets similar in size to Jupiter and consisting primarily of hydrogen and helium. From the measured brightness and the known distance to the Orion nebula, we knew they did not have enough material for any nuclear processing in their interiors.”

Orion's Horsehead Nebula Credit & Copyright Ryan Steinberg & Family, Adam Block, NOAO, AURA, NSF
Orion’s Horsehead Nebula Credit & Copyright Ryan Steinberg & Family, Adam Block, NOAO, AURA, NSF

Chances are very good these planets may be failed stars – much like our own Jupiter. But these planets don’t orbit a star the same way our solar system’s planets orbit the Sun… they simply roam around. Dr. Roche said that the 13 objects “probably formed in a different way from the planets in our solar system” in that they were not made “out of the residue of material left over from the birth of the sun.”

Instead, they formed “like stars via the collapse of a cloud of cold gas,” explained Lucas. “But they possess most of the physical properties and structure of gas giant planets,” added Lucas.

History of Observation:

Messier 42 was possibly discovered 1610 by Nicholas-Claude Fabri de Peiresc and was recorded by by Johann Baptist Cysatus, Jesuit astronomer, in 1611. For fans of the great Galileo, he was the first to mention the Trapezium cluster in 1617, but did not see the nebula. (However, do not despair! For it is my belief that he was simply using too much magnification and therefore could not see the extent of what he was looking at.)

The first known drawing of the Orion nebula was created by Giovanni Batista Hodierna, and after all of these documents were lost, the Orion nebula was once again credited to Christian Huygens 1656, documented by Edmund Halley in 1716. It then went on to Jean-Jacques d’Ortous de Mairan in his nebulae descriptions, to be added by Philippe Loys de Chéseaux to his list, expounded by Guillaume Legentil in his review.

Horsehead Nebula at the Orion Credit & Copyright Adam Block, Mt. Lemmon SkyCenter, U. Arizona
Horsehead Nebula at the Orion. Credit & Copyright Adam Block, Mt. Lemmon SkyCenter, U. Arizona

At last, Charles Messier added the nebula to his catalog on March 4, 1769. As he wrote of the stunning objectL

“The drawing of the nebula in Orion, which I present at the Academy, has been traced with the greatest care which is possible for me. The nebula is represented there as I have seen it several times with an excellent achromatic refractor of three and a half feet focal length, with a triple lens, of 40 lignes [3.5 inches] aperture, and which magnifies 68 times. This telescope made in London by Dollond, belongs to M. President de Saron. I have examined that nebula with the greatest attention, in an entirely serene sky, as follows: February 25 & 26, 1773. Orion in the Meridian. March 19, between 8 & 9 o’clock in the evening. [March] 23, between 7 & 8 o’clock. The 25th & 26th of the same month, at the same time. These combined observations and the drawings brought together, have enabled me to represent with care and precision its shape and its appearances.

“This drawing will serve to recognize, in following times, if this nebula is subject to any changes. There may be already cause to presume this; for, if one compares this drawing with those given by MM. Huygens, Picard, Mairan and by le Gentil, one finds there such a change that one would have difficulty to figure out that this was the same. I will make these observations in the following with the same telescope and the same magnification. In the figure which I give, the circle represents the field of the telescope in its true aperture; it contains the Nebula and thirty Stars of different magnitudes. The figure is inverted, as it is shown in the instrument; one recognizes there also the extension and the limits of this nebula, the sensible difference between its clearest or most apparent light with that which merges gradually with the background of the sky. The jet of light, directed from the star no. 8 to the star no. 9, passing by a small star of the 10th magnitude, which is extremely rare, as well as the light directed to the star no. 10, and that which is opposite, where there are the eight stars contained in the nebula; among these stars, there is one of the eighth magnitude, six of the tenth, and the eighth of the eleventh magnitude. M. de Mairan, in his Traite de l’Aurore Boreale, speaks of the star no. 7. I report it in my drawing below such as it is at present, and as I have seen; so to speak surrounded by a thin nebulosity. In the night of October 14 to 15, 1764, in a serene sky, I determined with regard to Theta in the nebula, the positions of the more apparent stars in right ascension and declination, by the means of a micrometer adapted to a Newtonian telescope of 4 1/2 feet length. These stars are numbered up to ten; I have reported them in the drawing containing the field of the telescope; and an eleventh of them is beyond the circle. The positions of the stars which are not marked with numbers have been fixed by estimating their relative alignments. One will know easily also the magnitude of the Stars by the model which I have reported on the figure. Those of the tenth and the eleventh magnitude are absolutely telescopic and very difficult to find.”

However, it would be Sir William Herschel who would devote much love, time, and attention to the Great Orion Nebula – even though his findings would never be made public. As a true master observer, he had quite a talent for sensing what truly might lay beyond the boundary:

“In 1783, I reexamined the nebulous star, and found it to be faintly surrounded with a circular glory of whitish nebulosity, faintly joined to the great nebula. About the latter end of the same year I remarked that it was not equally surrounded, but most nebulous toward the south. In 1784 I began to entertain an opinion that the star was not connected with the nebulosity of the great nebula in Orion, but was one of those which are scattered over that part of the heavens. In 1801, 1806, and 1810 this opinion was fully confirmed, by the gradual change which happened in the great nebula, to which the nebulosity surrounding this star belongs. For the intensity of the light about the nebulous star had by this time been considerably reduced, by attenuation or dissipation of nebulous matter; and it seemed now to be pretty evident that the star is far behind the nebulous matter, and that consequently its light in passing through it is scattered and deflected, so as to produce the appearance of a nebulous star. A similar phenomenon may be seen whenever a planet or a star of the 1st or 2nd magnitude happens to be involved in haziness; for a diffused circular light will then be seen, to which, but in a much inferior degree, that which surrounds this nebulous star bears a great resemblance.”

But of course, the great Sir William Herschel also had nights from his many notes on M42 where he simply said: “The nebula in Orion which I saw by the front-view was so glaring and beautiful that I could not think of taking any place of its extent.”

Locating Messier 42:

Finding Messier 42 is very easy from a dark sky location by centering on the glowing region in the center of Orion’s “sword”. However, from urban locations, these stars might not be visible, so aim your binoculars or telescope about a fist width south of the three prominent stars that make the asterism known as Orion’s Belt. It’s a very bright and large object well suited to all sky conditions and instruments!

This chart shows the location of Messier 78 in the famous constellation of Orion (The Hunter). Credit: ESO, IAU and Sky & Telescope

Remember to use low power to get the full majesty of M42 and to increase magnification to study various regions. And trust us when we tell you, you are in for some pretty awesome viewing!

And of course, here are the quick facts on Messier 42 to help you get started:

Object Name: Messier 42
Alternative Designations: M42, NGC 1976, The Great Orion Nebula, Home of the Trapezium
Object Type: Emission and Reflection Nebula with Open Galactic Star Cluster
Constellation: Orion
Right Ascension: 05 : 35.4 (h:m)
Declination: -05 : 27 (deg:m)
Distance: 1.3 (kly)
Visual Brightness: 4.0 (mag)
Apparent Dimension: 85×60 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

Messier 41 – the NGC 2287 Open Star Cluster

Image of the open star cluster Messier 41, highlighting its combination of red dwarf, white dwarf and K3-type class stars. Credit: Wikisky

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the double star known as Messier 41. Enjoy!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects is the open star cluster known as Messier 41 (aka. M41, NGC 2287). Located in the Canis Major constellation – approximately 4,300 light years from Earth – this cluster lies just four degrees south of Sirius, the brightest star in the night sky. Like most open clusters, it is relatively young – 190 million years old – and contains over 100 stars in a region measuring 25 to 26 light years in diameter.

Description:

Running away from us at a speed of about 34 kilometers per second, this field of about 100 stars measures about 25 light years across. Born about 240 million years ago, it resides in space approximately 2300 light years away from our solar system. Larger aperture telescopes will reveal the presence of many red (or orange) giant stars and the hottest star in this group is a spectral type A.

View of the night sky in North Carolina, showing the constellations of Orion, Hyades, Canis Major and Canis Minor. Credit: NASA

As G.L.H. Harris (et al) explained in a 1993 study:

“We have obtained photoelectric UBV photometry for 100 stars, uvbyb photometry for 39 stars and MK spectral types for 80 stars in the field of NGC 2287. After combination with data from other sources, several interesting cluster properties are apparent. Both the UBV and uvbyb photometry point to a small but nonzero reddening, while our spectral types confirm previous results indicating a high binary frequency for the cluster. Based on our spectral and photometric data for the cluster members, we find a minimum binary frequency of 40% and discuss the possibility that the results may imply a binary frequency closer to 80%. The cluster age is found to be based on both the main-sequence turnoff and the red giant distribution; the width of the turn up region can probably be explained by a combination of duplicity and a range in stellar rotation.”

But there’s more than just red giant stars and various spectral types to be found hiding in Messier 41. There’s at least two white dwarf stars, too. As P.D Dobbie explained in a 2009 study:

“[W]e use our estimates of their cooling times together with the cluster ages to constrain the lifetimes and masses of their progenitor stars. We examine the location of these objects in initial mass-final mass space and find that they now provide no evidence for substantial scatter in initial mass-final mass relation (IFMR) as suggested by previous investigations. This form is generally consistent with the predictions of stellar evolutionary models and can aid population synthesis models in reproducing the relatively sharp drop observed at the high mass end of the main peak in the mass distribution of white dwarfs.”

Messier 41 and Collinder 121. Image: Wikisky

As you view Messier 41, you’ll be impressed with its wide open appearance… and knowing it’s simply what happens to star clusters as they get passed around our galaxy. As Giles Bergond (et al.) stated in their 2001 study:

“Taking into account observational biases, namely the galaxy clustering and differential extinction in the Galaxy, we have associated these stellar overdensities with real open cluster structures stretched by the galactic gravitational field. As predicted by theory and simulations, and despite observational limitations, we detected a general elongated (prolate) shape in a direction parallel to the galactic Plane, combined with tidal tails extended perpendicularly to it. This geometry is due both to the static galactic tidal field and the heating up of the stellar system when crossing the Disk. The time varying tidal field will deeply affect the cluster dynamical evolution, and we emphasize the importance of adiabatic heating during the Disk-shocking. During the 10-20 Z-oscillations experienced by a cluster before its dissolution in the Galaxy, crossings through the galactic Disk contribute to at least 15% of the total mass loss. Using recent age estimations published for open clusters, we find a destruction time-scale of about 600 million years for clusters in the solar neighborhood.”

That means we’ve only got another 360 million years to observe it before it’s completely gone (though some estimates place it at about 500 million). Either way, this star cluster is destined to disappear, perhaps before we are!

History of Observation:

Messier 41 was “possibly” recorded by Aristotle about 325 B.C. as a patch in the Milky Way… quite understandable since it is very much within unaided eye visibility from a dark sky location. Said Aristotle:

“.. some of the fixed stars have tails. And for this we need not rely only on the evidence of the Egyptians who say they have observed it; we have observed it also ourselves. For one of the stars in the thigh of the Dog had a tail, though a dim one: if you looked hard at it the light used to become dim, but to less intent glance it was brighter.”

Messier 41 and Sirius. Image: Wikisky

However, Giovanni Batista Hodierna was the first to catalog it in 1654, and the star cluster became a bit more astronomically known when John Flamsteed independently found it again on February 16, 1702. Doing his duty, Charles Messier also logged it:

“In the night of January 16 to 17, 1765, I have observed below Sirius and near the star Rho of Canis Major a star cluster; when examining it with a night refractor, this cluster appeared nebulous; instead, there is nothing but a cluster of small stars. I have compared the middle with the nearest known star; and I found its right ascension of 98d 58′ 12″, and its declination 20d 33′ 50″ north.”

Following suit, other historical astronomers also observed M41 – including Sir John Herschel to include it in the NGC catalog. While none found it particularly thrilling… their notes range from a “coarse collection of stars” to “very large, bright, little compressed”, perhaps you will feel much differently about this easy, bright target!

Locating Messier 41:

Finding Messier 41 isn’t very difficult for binoculars and small telescopes – all you have to know is the brightest star in the northern hemisphere, Sirius, and south! Simply aim your optics at Sirius and move due south approximately four degrees. That’s about one standard field of view for binoculars, about one field of view for the average telescope finderscope and about 6 fields of view for the average wide field, low power eyepiece.

The location of Messier 41 in the Canis Major constellation. Credit: IAU and Sky & Telescope magazine/Roger Sinnott & Rick Fienberg

Because Messier 41 is a large star cluster, remember to use lowest magnification to get the best effect. Higher magnification can always be used once the star cluster is identified to study individual members. M41 is quite bright and easily resolved and makes a wonderful target for urban skies and moonlit nights!

Because you understand what’s there…

Object Name: Messier 41
Alternative Designations: M41, NGC 2287
Object Type: Open Galactic Star Cluster
Constellation: Canis Major
Right Ascension: 06 : 46.0 (h:m)
Declination: -20 : 44 (deg:m)
Distance: 2.3 (kly)
Visual Brightness: 4.5 (mag)
Apparent Dimension: 38.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

Messier 40 – the Winnecke 4 Double Star

The double star Messier 40 (Winnecke 4), along with PGC 39934, NGC 4290 and NGC 4284. Credit: Wikisky

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the double star known as Messier 40. Enjoy!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects is Messier 40, this double star is now known to be an optical double star (i.e. two independent stars at different distances that appear aligned based on our perspective). It is also included in the Winnecke Catalogue of Double Stars as number 4, and is located in the constellation of Ursa Major (aka. the Big Dipper).

Description:

At roughly 500 light years away from us, no one is quite sure if this pair of stars is truly a binary system or an optical double star. According to Richard Nugent’s 2002 data, “The observed relative proper motion, as measured in separation and position angle, is consistent with a straight, independent motion of the two stars, one crossing between us and the other.”

The double star Messier 40 (Winnecke 4), along with PGC 39934, NGC 4290 and NGC 4284. Credit: Wikisky

The two stars are nearly the same brightness as each other, with the primary star being magnitude 9 and the secondary being magnitude 9.3 and they are separated by about 49 arc seconds – a wide gap. At one time, the angular separation of the pair was measured at 49.2″, but has gradually changed to about 52.8″ in more recent years.

History of Observation:

Messier 40 was discovered by Charles Messier in 1764 while he was searching for a nebula that had been reported in the area by Johann Hevelius. As he wrote at the time:

“The same night on October 24-25, [1764], I searched for the nebula above the tail of the Great Bear [Ursa Major], which is indicated in the book Figure of the Stars, second edition: it should have, in 1660, the right ascension 183d 32′ 41″, and the northern declination 60d 20′ 33″. I have found, by means of this position, two stars very near to each other and of equal brightness, about the 9th magnitude, placed at the beginning of the tail of Ursa Major: one has difficulty to distinguish them with an ordinary refractor of 6 feet. Here are their position: right ascension, 182 deg 45′ 30″, and 59 deg 23′ 50″ northern declination. There is reason to presume that Hevelius mistook these two stars for a nebula.”

History often credits Messier for being a little bit crazy for cataloging a double star, but upon having read Messier’s report, I feel like he was an astronomer doing his job. If Hevelius reported a nebula here – then he was bound to look and write down what he saw. He didn’t just stumble on a double star and catalog it for no reason!

Close-up of the double star Messier 40. Credit: Wikisky

Later astronomers would also search for M40 and report a double star, and it was cataloged by such as by Friedrich August Theodor Winnecke at Pulkovo Observatory in 1863 as WNC 4. However, to give the good Hevelius credit, John Mallas reports, “the Hevelius object is the 5th-magnitude star 74 Ursae Majoris, more than one degree away, as reference to his star catalogue will show.”

In 1991, the separation between the stars was measured at 52.8 arcseconds, which represented an increase since 1966, when it was measured at 51.7. In 2001 and 2002, studies conducted by Brian Skiff and Richard L. Nugent suggested that the stars comprising the double star (HD 238107 and HD 238108) were in fact an optical double star, rather than a double star system.

In 2016, by using parallax measurements from the Gaia satellite, this theory was proven for the first time. Distance estimates were also produced, indicating that the two components are 350±30 and 140±5 parsecs (~1141±98 and 456±16 light years).

Locating Messier 40:

Finding Messier 40 isn’t very difficult for fairly large binoculars and small telescopes – but you need to remember that it’s a double star. First locate the easily recognized constellation of Ursa Major and focus on the ‘Big Dipper’ and look for the two stars that form the edge that connect to the handle – Gamma and Delta.

The location of Messier 40 in Ursa Major, above and to the left of MegrezCredit: IAU and Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

Aim your telescope’s finderscope at Delta – the point where the ‘handle’ would connect. In the finder, you will see a fainter star to the northeast. Hop there. Now, using a low power eyepiece, scan slightly further northeast and you will locate M40. Once located, you may go to higher magnification to more closely examine this Messier catalog curiosity.

While this pair of stars will show easily in binoculars, you must remember that binoculars give such a wide field that it will be difficult to distinguish them from surrounding stars. However, this is a great object for light-polluted skies and moonlit nights!

Enjoy the controversy… and this pair! And here are the quick facts on M40 to help you get started:

Object Name: Messier 40
Alternative Designations: M40, WNC 4
Object Type: Double Star
Constellation: Ursa Major
Right Ascension: 12 : 22.4 (h:m)
Declination: +58 : 05 (deg:m)
Distance: 0.51 (kly)
Visual Brightness: 8.4 (mag)
Apparent Dimension: 0.8 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

Messier 38 – The Starfish Cluster

The open star cluster Messier 38, in proximity to Messier 36 and Messier 37. Credit: Wikisky

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the Starfish Cluster, otherwise known as Messier 38. Enjoy!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects it the Starfish Cluster, also known as Messier 38 (or M38). This open star cluster is located in the direction of the northern Auriga constellation, along with the open star clusters M36 and M37. While not the brightest of the three, the location of the Starfish within the polygon formed by the brightest stars of Auriga makes it very easy to find.

Description:

Cruising around our Milky Way some 4200 light years from our solar system, this 220 million year old group of stars spreads itself across about 25 light years of space. If you’re using a telescope, you may have noticed its not alone… Messier 38 might very well be a binary star cluster! As Anil K. Pandey (et al) explained in a 2006 study:

“We present CCD photometry in a wide field around two open clusters, NGC 1912 and NGC 1907. The stellar surface density profiles indicate that the radii of the clusters NGC 1912 and NGC 1907 are 14′ and 6′ respectively. The core of the cluster NGC 1907 is found to be 1′.6±0′.3, whereas the core of the cluster NGC 1912 could not be defined due to its significant variation with the limiting magnitude. The clusters are situated at distances of 1400±100 pc (NGC 1912) and 1760±100 pc (NGC 1907), indicating that in spite of their close locations on the sky they may be formed in different parts of the Galaxy.”

The Starfish Cluster also known as Messier 38. Credit: Wikisky

So what’s happening here? Chances are, when you’re looking at M38, you’re looking at a star cluster that’s currently undergoing a real close encounter! Said M.R. de Oliveira (et al) said in their 2002 study:

“The possible physical relation between the closely projected open clusters NGC 1912 (M 38) and NGC 1907 is investigated. Previous studies suggested a physical pair based on similar distances, and the present study explores in more detail the possible interaction. Spatial velocities are derived from available radial velocities and proper motions, and the past orbital motions of the clusters are retrieved in a Galactic potential model. Detailed N-body simulations of their approach suggest that the clusters were born in different regions of the Galaxy and presently experience a fly-by.”

However, it was Sang Hyun Lee and See-Woo Lee who gave us the estimates of M38’s distance and age. As they wrote in their 1996 study, “UBV CCD Photometry of Open Cluster NGC 1907 and NGC 1912“: The distance difference of the two clusters is 300pc and the age difference is 150 Myr. These results imply that the two clusters are not physically connected.”

So, how do we know they are two clusters passing in the night? The credit for that goes to de Oliveira and colleagues, who also asserted in their 2002 study:

“These simulations also shows that the faster the clusters approach the weaker the tidal debris in the bridge region, which explain why there is, apparently, no evidence of a material link between the clusters and why it should not be expected. It would be necessary to analyse deep wide field CCD photometry for a more conclusive result about the apparent absence of tidal link between the clusters.”

Atlas image mosaic of the Starfish Cluster (Messier 38), obtained as part of the Two Micron All Sky Survey (2MASS). Credit: NASA/NSF/Caltech/UofMass/IPAC

History of Observation:

This wonderful star cluster was originally discovered by Giovanni Batista Hodierna before 1654 and independently rediscovered by Le Gentil in 1749. However, it was Charles Messier’s catalog which brought it to attention:

“In the night of September 25 to 26, 1764, I have discovered a cluster of small stars in Auriga, near the star Sigma of that constellation, little distant from the two preceding clusters: this one is of square shape, and doesn’t contain any nebulosity, if one examines it with a good instrument: its extension may be 15 minutes of arc. I have determined its position: its right ascension was 78d 10′ 12″, and its declination 36d 11′ 51″ north.”

By correcting cataloging its position, M38 could later be studied by other astronomers who would also add their own notes. Caroline, then William Herschel would observe it, where the good Sir William would add to his private notes: “A cluster of scattered, pretty large [bright] stars of various magnitudes, of an irregular figure. It is in the Milky Way.”

Messier Object 38 would then later be added to the New General Catalog by John Herschel, who wasn’t particularly descriptive, either. However, there was an historic astronomer who was determined to examine this star cluster and it was Admiral Symth:

“A rich cluster of minute stars, on the Waggoner’s left thigh, of which a remarkable pair in the following are here estimated. A [mag] 7, yellow; and B 9, pale yellow; having a little companion about 25″ off in the sf [south following, SE] quarter. Messier discovered this in 1764, and described it as ‘a mass of stars of a square form without any nebulosity, extending to about 15′ of a degree;’ but it is singular that the palpable cruciform shape of the most clustering part did not attract his notice. It is an oblique cross, with a pair of large [bright] stars in each arm, and a conspicuous single one at the centre; the whole followed by a bright individual of the 7th magnitude. The very unusual shape of this cluster, recalls the sagacity of Sir William Herschel’s speculations upon the subject, and very much favours the idea of an attractive power lodged in the brightest part. For although the form be not globular, it is plainly to be seen that there is a tendency toward sphericity, by the swell of the dimensions as they draw near the most luminous place, denoting, as it were, a stream, or tide, of stars, setting toward the centre. As the stars in the same nebula must be very merely all at the same relative distance from us, and they appear to be about the same size [brightness], Sir William infers that their real magnitudes must be nearly equal. Granting, therefore, that these nebulae and clusters of stars are formed by their mutual attraction, he concludes that we may judge of their relative age, by the disposition of their component parts, those being the oldest which are the most compressed.”

Open Cluster M38, photographed on Feb 19, 2015. Credit: Wikipedia Commons/Miguel Garcia

Perhaps by taking his time and really observing, Smyth gained some insight into the true nature of M38! Observe it yourself, and see if you can also locate NGC 1907. It’s quite a pair!

Locating Messier 38:

Locating Messier 38 is relatively easy once you understand the constellation of Auriga. Looking roughly like a pentagon in shape, start by identifying the brightest of these stars – Capella. Due south of it is the second brightest star which shares its border with Beta Tauri, El Nath. By aiming binoculars at El Nath, go north about 1/3 the distance between the two and enjoy all the stars!

You will note two very conspicuous clusters of stars in this area, and so did Le Gentil in 1749. Binoculars will reveal the pair in the same field, as will telescopes using lowest power. The dimmest of these is the M38, and will appear vaguely cruciform in shape. At roughly 4200 light years away, larger aperture will be needed to resolve the 100 or so fainter members. About 2 1/2 degrees to the southeast (about a finger width) you will see the much brighter M36.

More easily resolved in binoculars and small scopes, this “jewel box” galactic cluster is quite young and about 100 light years closer. If you continue roughly on the same trajectory about another 4 degrees southeast you will find open cluster M37. This galactic cluster will appear almost nebula-like to binoculars and very small telescopes – but comes to perfect resolution with larger instruments.

The location of Messier 38 open star cluster in the Auriga constellation. Credit: IAU and Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

While all three open star clusters make fine choices for moonlit or light polluted skies, remember that high sky light means less faint stars which can be resolved – robbing each cluster of some of its beauty. Messier 38 is faintest and northernmost of the trio and located almost in the center of the Auriga pentagon. Binoculars and small telescopes will easily spot its cross-shaped pattern.

And here are the quick facts on the Starfish Nebula to help you get started:

Object Name: Messier 38
Alternative Designations: M38, NGC 1912
Object Type: Galactic Open Star Cluster
Constellation: Auriga
Right Ascension: 05 : 28.4 (h:m)
Declination: +35 : 50 (deg:m)
Distance: 4.2 (kly)
Visual Brightness: 7.4 (mag)
Apparent Dimension: 21.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

Messier 37 – the NGC 2099 Open Star Cluster

The open star cluster Messier 38, in proximity to Messier 36 and Messier 37. Credit: Wikisky

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the open star cluster known as Messier 37. Enjoy!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects is the open star cluster known as Messier 37 (aka M37 and NGC 2099). Located in the direction of the Auriga constellation, Messier 37 is one of three open star clusters (including Messier 36 and Messier 38) in this portion of the night sky – and also the brightest.

Description:

Of the trio of Messier star clusters in this area, M37 is by far the most stellar populated. It contains at least 150 stars that are around magnitude 12 and easily resolved by even small telescopes – and science is still counting actual members! At around 347 – 550 million years old, you’ll find at least a dozen red giants living here about 4,500 light years away from Earth… and they do it in a neighborhood that spans anywhere from 20 to 25 light years across!

The open star cluster Messier 37. Credit: Wikisky

Just how many stars might be inside this intermediate-aged cluster? As R. Sagar and Nilakshi of the Indian Institute for Astrophysics said in their 2002 study:

“The CCD observations of the rich open star cluster NGC 2099 and its surrounding field region have been carried out up to a limiting magnitude of V ~ 22 mag in B, V and I passbands for the first time. A total of ~ 12 000 stars have been observed in the area of about 24 arcmin x 34 arcmin in the cluster region, as well as ~ 2180 stars in the ~ 12arcmin x 12arcmin area of the field region located ~ 45arcmin away from the cluster center.”

Out of this huge number of stars, astronomers have been able to observe white dwarfs, too. This helps us to understand how they develop and what affects their helium or hydrogen content. Jasonjot Singh Kalirai et al. had the following to say in a 2004 study:

“Spectra have been obtained of 21 white dwarfs (WDs) in the direction of the young, rich open star cluster NGC 2099. This represents an appreciable fraction (>30%) of the cluster’s total WD population. The mean derived mass of the sample is 0.8 M—about 0.2 M larger than the mean seen among field WDs. A surprising result is that all of the NGC 2099 WDs have hydrogen-rich atmospheres (DAs); none exhibit helium-rich ones (DBs) or any other spectral class. We explore possible reasons for the lack of DBs in these clusters and conclude that the most promising scenario for the DA/DB number ratio discrepancy in young clusters is that hot, high-mass WDs do not develop large enough helium convection zones to allow helium to be brought to the surface and turn a hydrogen-rich WD into a helium-rich one.”

So, we’re setting the stage with number of stars and types. We have white dwarfs – but what about variables? Y.B. Kang (et al), put it this way in a 2007 study:

“Time-series CCD photometric observations of the intermediate-age open cluster NGC 2099 were performed to search for variable stars. We also carried out BV photometry to study physical properties of variables in the cluster. Using V-band time-series data, we carefully examined light variations of about 12,000 stars in the range of 10 < V < 22 mag. A total of 24 variable stars have been identified; seven stars are previously known variables and 17 stars are newly identified. On the basis of observational properties such as light curve shape, period, and amplitude, we classified the new variable stars as nine delta Scuti-type pulsating stars, seven eclipsing binaries, and one peculiar variable star. Judging from the position of delta Scuti-type stars in the color-magnitude diagram, only two stars are likely to have the cluster membership. One new variable KV10 shows peculiar light variations with a delta Scuti-type short period of about 0.044 day as well as a long period of 0.417 day.”

M37 (NGC 2099) open cluster. Credit: Wikipedia Commons

So what does knowing about these two types of stars help with our understanding of stellar evolution? That’s one of the goals of the RACE-OC project. As S. Messina (et al) said in 2008:

“Rotation and solar-type magnetic activity are closely related to each other in main-sequence stars of G or later spectral types. The presence and level of magnetic activity depend on star’s rotation, and rotation itself is strongly influenced by strength and topology of the magnetic fields. Open clusters represent especially useful targets to investigate the connection between rotation and activity. The open cluster NGC 2099 has been studied as a part of the RACE-OC project (Rotation and ACtivity Evolution in Open Clusters), which is aimed at exploring the evolution of rotation and magnetic activity in the late-type members of open clusters of different ages. We collected time series CCD photometric observations of this cluster in January 2004, and we determined the presence of periodicities in the flux variation related to the stellar rotation by Fourier analysis. We investigate the relations between activity manifestations, such as the light curve amplitude, and global stellar parameters. Results: We have discovered 135 periodic variables, 122 of which are candidate cluster members. Determination of rotation periods of G- and K-type stars has allowed us to better explore the evolution of angular momentum at an age of about 500 Myr. In our analysis, we have also identified 3 new detached eclipsing binary candidates among cluster members. A comparison with the older Hyades cluster (~625 Myr) shows that the newly-determined distribution of rotation periods is consistent with the scenario of rotational braking of main-sequence spotted stars as they age. However, a comparison with the younger M 34 cluster (~200 Myr) shows that the G8-K5 members of these clusters have the same rotation period distribution. That is, G8-K5 members in NGC 2099 seem to have experienced no significant braking in the age range from ~200 to ~500 Myr. Finally, NGC 2099 members have a smaller level of photospheric magnetic activity, as measured by light curve amplitude, than in younger stars of the same mass and rotation, suggesting that the activity level also depends on some other age-dependent parameters.”

History of Observation:

Although this great star cluster was originally recorded Giovanni Batista Hodierna before 1654, it would be 230 years before his records would be uncovered, so when Charles Messier first logged as Messier 37, it was believed to be an independent discovery.

“In the same night [September 2 to 3, 1764], I have observed a second cluster of small stars which were not very distant from the preceding, near the right leg of Auriga and on the parallel of the star Chi of that constellaiton: the stars there are smaller than that of the preceding cluster: they are also closer to each other, and contain a nebulosity. With an ordinary refractor of 3 feet and a half, one has difficulty to see these stars; but one distinguishes them with an instrument of greater effectivity. I have determined the position fo this cluster, which may have an extension of 8 to 9 minutes of arc: its right ascension was 84d 15′ 12″, and its declination 32d 11′ 51″ north.”

While William Herschel would return in later years to study Messier’s object, he did not publish his notes – but gives some great observing advice:

“A useful, coarse step; it will serve to learn to see nebulae, because it contains many small stars mixed with others in various magnitudes, many of which are not to be seen without great and long attention.” Messier 37 would be later given its NGC catalog designation by John Herschel who was the first to make a guess at its true stellar population: “Very fine large cluster, all resolved into stars of 10th to 13th magnitude. It fills 1 1/2 field, but the straggling stars extend very far. There may be 500 stars.”

As always, Admiral Smyth was the most poetical about his observing, and of M37 he writes:

“A magnificent object, the whole field being strewed as it were with sparkling gold-dust; and the group is resolvable into about 500 stars, from the 10th to the 14th magnitudes, besides the outliers. It was found and fixed by Messier in 1764, who described it as “a mass of small stars, much enveloped in nebulous matter.” This nebulous matter, however, yields to my telescope, and resolves into infinitely minute points of lucid light, among the distinct little individuals.”

The location of Messier 37 in the constellation Auriga. Credit: IAU and Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

Locating Messier 37:

Locating Messier 37 is relatively easy once you understand the constellation of Auriga. Looking roughly like a pentagon in shape, start by identifying the brightest of these stars – Capella. Due south of it is the second brightest star which shares its border with Beta Tauri, El Nath. By aiming binoculars at El Nath, go north about 1/3 the distance between the two and enjoy all the stars! You will note two very conspicuous clusters of stars in this area, and so did Le Gentil in 1749.

Binoculars will reveal the pair in the same field, as will telescopes using lowest power. The dimmest of these is the M38, and will appear vaguely cruciform in shape. At roughly 4200 light years away, larger aperture will be needed to resolve the 100 or so fainter members. About 2 1/2 degrees to the southeast (about a finger width) you will see the much brighter M36.

More easily resolved in binoculars and small scopes, this “jewel box” galactic cluster is quite young and about 100 light years closer. If you continue roughly on the same trajectory about another 4 degrees southeast you will find open cluster M37. This galactic cluster will appear almost nebula-like to binoculars and very small telescopes – but comes to perfect resolution with larger instruments.

While all three open star clusters make fine choices for moonlit or light polluted skies, remember that high sky light means less faint stars which can be resolved – robbing each cluster of some of its beauty. Messier 37 is the brightest and easternmost of the trio and you’ll very much notice its density.

When you view this cluster with binoculars, you’ll be seeing it much as Messier did… But use the power of a telescope if you can. Because this cloud of stars is quite worth your time and attention!

Object Name: Messier 37
Alternative Designations: M37, NGC 2099
Object Type: Galactic Open Star Cluster
Constellation: Auriga
Right Ascension: 05 : 52.4 (h:m)
Declination: +32 : 33 (deg:m)
Distance: 4.4 (kly)
Visual Brightness: 6.2 (mag)
Apparent Dimension: 24.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

Messier 36 – The Pinwheel Cluster

The open star cluster Messier 38, in proximity to Messier 36 and Messier 37. Credit: Wikisky

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the Pinweel Cluster, otherwise known as Messier 36. Enjoy!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

Included in this list is the open star cluster Messier 36, also known as the Pinwheel Cluster. This cluster is so-named because of its association with the Auriga constellation (aka. “the Charioteer”). Though similar in size and make-up to the Pleiades Cluster (Messier 45), the Pinwheel Cluster is actually ten times farther away from Earth – and one of the most distant of any clusters catalogued by Messier.

What You Are Looking At:

Located a little more than 4000 light years from our solar system, this group of about 60 stars spans across about 14 light years of space. As you are studying it, you’ll notice one star which seems brighter than the rest… With good reason! Its a spectral type B2 and about 360 more luminous than our Sun. Many of the cluster members here are also B-type stars and rapid rotators.

Close-up of the central region of Messier 36. Credit: Wikisky

This means that 25 million year old Messier 36 shares a lot in common with another nearby star cluster, the Pleiades. By taking a deep look at young clusters with stars of varying ages, astronomers are able to how long circumstellar disks may last – giving us a clue as to whether or not planet-forming stars may lay within them.

As Karl E. Haisch, Jr. (et al), wrote in a 2001 study “Disk Frequencies and Lifetimes in Young Clusters“:

“We have completed the first systematic and homogeneous survey for circumstellar disks in a sample of young clusters that both span a significant range in age and contain statistically significant numbers of stars whose masses span nearly the entire stellar mass spectrum. Analysis of the combined survey indicates that the cluster disk fraction is initially very high and rapidly decreases with increasing cluster age, such that one-half the stars within the clusters lose their disks in 3 million years. Moreover, these observations yield an overall disk lifetime of ~6 million years in the surveyed cluster sample. This is the timescale for essentially all the stars in a cluster to lose their disks. This should set a meaningful constraint for the planet-building timescale in stellar clusters.”

ut, can M36 hold surprises? You betcha’. As Bo Reipurth stated in a 2008 study titled “Star Formation and Molecular Clouds towards the Galactic Anti-Center“:

“The open cluster M36 (NGC 1960), which apparently forms the center of the Aur OB1 association, has been the subject of numerous analyses, and of these the earliest studies are today of historical interest only. NGC 1960 has recently attracted attention as the most likely origin of a massive OB star that exploded about 40,000 yr ago, creating the supernova remnant Simeis 147, an old supernova remnant listed in the catalog compiled at Simeiz by Gaze & Shajn (1952). A pulsar, PSR J0538+2817, has been found near the center of Simeis 147.”

2MASS Atlas Image Mosaic of the open star cluster Messier 36. Credit: NASA/IPAC/Caltech/University of Massachusetts

And the search for planet-building stars within M36 hasn’t stopped yet. The Spitzer Space telescope will also be investigating it, thanks to a proposal made by George Rieke:

“We propose a deep IRAC/MIPS survey of NGC 1960, a ~20 Myr-old massive cluster unexplored in the mid infrared. This cluster is at a key stage in terrestrial planet formation. Our survey will likely detect infrared excess emission from debris disks and transition disks from ~ 100 intermediate-mass (1-3 solar mass) stars. Together with ground-based photometry/spectroscopy of this cluster, proposed observations of 10 Myr-old NGC 6871, scheduled cycle 4 observations of the massive 13 Myr old clusters h and chi Persei, and existing data on NGC 2547 at 30 Myr, this survey will yield robust constraints on the frequency of debris/transition disks as a function of spectral type, age, and cluster environment at a critical age range for planet formation. This survey will provide a benchmark study of the observable signatures of terrestrial planet formation that will inform James Webb Space Telescope observations of planet-forming disks a decade from now.”

History of Observation:

The presence of this awesome star cluster was first recorded by Giovanni Batista Hodierna before 1654 and re-discovered by Le Gentil in 1749. However, it was Charles Messier who took the time to carefully record its position for future generations:

“In the night of September 2 to 3, 1764, I have determined the position of a star cluster in Auriga, near the star Phi of that constellation. With an ordinary refractor of 3 feet and a half, one has difficulty to distinguish these small stars; but when employing a stronger instrument, one sees them very well; they don’t contain between them any nebulosity: their extension is about 9 minutes of arc. I have compared the middle of this cluster with the star Phi Aurigae, and I have determined its position; its right ascension was 80d 11′ 42″, and its declination 34d 8′ 6″ north.”

M36 Open Cluster. Credit: NOAO/AURA/NSF

It would be observed again by Caroline, William and John Herschel who would be the first to note the double star in M36’s center. Although none of their notes are particularly glowing on this awesome star cluster, Admiral Symth does come to the historic rescue!

“A neat double star in a splendid cluster, on the robe below the Waggoner’s left thigh, and near the centre of the Galaxy stream. A [mag] 8 and B 9, both white; in a rich though open splash of stars from the 8th to the 14th magnitudes, with numerous outliers, like the device of a star whose rays are formed by very small stars. This object was registered by M. [Messier] in 1764; and the double star, as H. [John Herschel] remarks, is admirably placed, for future astronomers to ascertain whether there be internal motion in clusters. A line carried from the central star in Orion’s belt, through Zeta Tauri, and continued about 13deg beyond, will reach the cluster, following Phi Aurigae by about two degrees.”

Locating Messier 36:

Locating Messier 36 is relatively easy once you understand the constellation of Auriga. Looking roughly like a pentagon in shape, start by identifying the brightest of these stars – Capella. Due south of it is the second brightest star which shares its border with Beta Tauri, El Nath. By aiming binoculars at El Nath, go north about 1/3 the distance between the two and enjoy all the stars!

You will note two very conspicuous clusters of stars in this area, and so did Le Gentil in 1749. Binoculars will reveal the pair in the same field, as will telescopes using lowest power. The dimmest of these is the M38, and will appear vaguely cruciform in shape. At roughly 4200 light years away, larger aperture will be needed to resolve the 100 or so fainter members. About 2 1/2 degrees to the southeast (about a finger width) you will see the much brighter M36.

The location of M36 in the Auriga constellation. Credit: IAU and Sky and Telescope Magazine (Roger Sinnott & Rick Fienberg)

More easily resolved in binoculars and small scopes, this “jewel box” galactic cluster is quite young and about 100 light years closer. If you continue roughly on the same trajectory about another 4 degrees southeast you will find open cluster M37. This galactic cluster will appear almost nebula-like to binoculars and very small telescopes – but comes to perfect resolution with larger instruments.

While all three open star clusters make fine choices for moonlit or light polluted skies, remember that high sky light means less faint stars which can be resolved – robbing each cluster of some of its beauty. Messier 36 is intermediate brightness of the trio and you’ll quite enjoy its “X” shape and many pairings of stars!

Has the central double changed with time? Why not observe for yourself and see!

Object Name: Messier 36
Alternative Designations: M36, NGC 1960, Pinwheel Cluster
Object Type: Galactic Open Star Cluster
Constellation: Auriga
Right Ascension: 05 : 36.1 (h:m)
Declination: +34 : 08 (deg:m)
Distance: 4.1 (kly)
Visual Brightness: 6.3 (mag)
Apparent Dimension: 12.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources: