Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the Cigar Galaxy – also known as Messier 82!
During the 18th century, famed French astronomer Charles Messier noticed the presence of several “nebulous objects” while surveying the night sky. Originally mistaking these objects for comets, he began to catalog them so that others would not make the same mistake. Today, the resulting list (known as the Messier Catalog) includes over 100 objects and is one of the most influential catalogs of Deep Space Objects.
One of these objects is the starbust galaxy known as Messier 82, which is also called the “Cigar Galaxy” because of its distinctive shape. Located about 12 million light-years away in the constellation Ursa Major, this galaxy’s starburst action is thought to have been triggered by interactions with the neighboring galaxy M81 (aka. Bode’s Galaxy).
Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the globular cluster known as Messier 70.
In the late 18th century, French astronomer Charles Messier spent much of his time looking up at the night sky in search of comets. Over time, he discovered 100 fixed, diffuse objects that resembled comets, but were something else entirely. Messier compiled a list of these objects, hoping to prevent other astronomers from making the same mistake. What resulted was the Messier Catalog, one of the influential catalogs of Deep Sky Objects.
One of the objects he catalogued is Messier 70 (aka. NGC 6681), a globular cluster located 29,300 light years away from Earth and close to the Galactic Center. It’s location within the asterism known as the “Tea Pot” (which is part of the northern Sagittarius constellation). It is also in close proximity to both the M54 and M69 globular clusters. Continue reading “Messier 70 – the NGC 6681 Globular Cluster”
Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the intermediate spiral galaxy known as Messier 65.
In the 18th century, while searching the night sky for comets, French astronomer Charles Messier kept noting the presence of fixed, diffuse objects he initially mistook for comets. In time, he would come to compile a list of approximately 100 of these objects, hoping to prevent other astronomers from making the same mistake. This list – known as the Messier Catalog – would go on to become one of the most influential catalogs of Deep Sky Objects.
One of these objects is the intermediate spiral galaxy known as Messier 65 (aka. NGC 3623), which is located about 35 million light-years from Earth in the Leo constellation. Along with with Messier 66 and NGC 3628, it is part of a small group of galaxies known as the Leo Triplet, which makes it one of the most popular targets among amateur astronomers.
Description:
Enjoying life some 35 million light years from the Milky Way, the group known as the “Leo Trio” is home to bright galaxy Messier 65 – the westernmost of the two M objects. To the casual observer, it looks like a very normal spiral galaxy and thus its classification as Sa – but M65 is a galaxy which walks on the borderline. Why? Because of close gravitational interaction with its nearby neighbors. Who can withstand the draw of gravity?!
Chances are very good that Messier 65 is even quite a bit larger than we see optically as well. As E. Burbidge (et al) said in a 1961 study:
“A fragmentary rotation-curve for NGC 3623 was obtained from measures of the absorption features Ca ii X 3968 and Na I X 5893 and the emission lines [N ii] X 6583 and Ha. The measures from two outer regions are discordant if only circular velocities are assumed, and it is concluded that the measured velocity of one of these regions-the only prominent H ii region in the galaxy-has a large non-circular component. The approximate mass derived from the velocity in the outer arm relative to the center is 1.4 X 1011 M0. It is concluded that the total mass is larger than this, perhaps between 2 and 3 X 1011 M0. This would suggest that the mass-to-light ratio in solar units (photographic) for this galaxy, which is intermediate in type between Sa and Sb, lies between 10 and 20.”
But just how much interaction has been going on between the three galaxies which coexist so closely? Sometimes it takes things like studying in multicolor photometry data to understand. As Zhiyu Duan of the Chinese Academy of Sciences Astronomical Observatory indicated in a 2006 study:
“By comparing the observed SEDs of each part of the galaxies with the theoretical ones generated by instantaneous burst evolutionary synthesis models with different metallicities (Z = 0.0001, 0.008, 0.02, and 0.05), two-dimensional relative age distribution maps of the three galaxies were obtained. NGC 3623 exhibits a very weak age gradient from the bulge to the disk. This gradient is absent in NGC 3627. The ages of the dominant stellar populations of NGC 3627 and NGC 3628 are consistent, and this consistency is model independent (0.5-0.6 Gyr, Z = 0.02), but the ages of NGC 3623 are systematically older (0.7-0.9 Gyr, Z = 0.02). The results indicate that NGC 3627 and NGC 3628 have undergone synchronous evolution and that the interaction has likely triggered starbursts in both galaxies. The results indicate that NGC 3627 and NGC 3628 have undergone synchronous evolution and that the interaction has likely triggered starbursts in both galaxies. For NGC 3623, however, the weak age gradient may indicate recent star formation in its bulge, which has caused its color to turn blue. Evidence is found for a potential bar existing in the bulge of NGC 3623, and my results support the view that NGC 3623 does interact with NGC 3627 and NGC 3628.”
So, let’s try looking at things in a slightly different color – integral-field spectroscopy. As V.L. Afanasiev (et al) said in a 2004 study:
“The mean ages of their circumnuclear stellar populations are quite different, and the magnesium overabundance of the nucleus in NGC 3627 is evidence for a very brief last star formation event 1 Gyr ago whereas the evolution of the central part of NGC 3623 looks more quiescent. In the center of NGC 3627 we observe noticeable gas radial motions, and the stars and the ionized gas in the center of NGC 3623 demonstrate more or less stable rotation. However, NGC 3623 has a chemically distinct core – a relic of a past star formation burst – which is shaped as a compact, dynamically cold stellar disk with a radius of ?250-350 pc which has been formed not later than 5 Gyr ago.”
Now, let’s take a look at that gas – and the properties for the gases that exist and co-exist in the galactic trio. As David Hogg (et al) explained in a 2001 study:
“We have studied the distribution of cool, warm, and hot interstellar matter in three of the nearest bright Sa galaxies. New X-ray data for NGC 1291, the object with the most prominent bulge, confirm earlier results that the ISM in the bulge is dominated by hot gas. NGC 3623 has a lesser amount of hot gas in the bulge but has both molecular gas and ionized hydrogen in the central regions. NGC 2775 has the least prominent bulge; its X-ray emission is consistent with an origin in X-ray binary stars, and there is a strict upper limit on the amount of molecular present in the bulge. All three galaxies have a ring of neutral hydrogen in the disk. NGC 3623 and NGC 2775 each have in addition a molecular ring coincident with the hydrogen ring. We conclude that even within the morphological class Sa there can be significant differences in the gas content of the bulge, with the more massive bulges being likely to contain hot, X-ray–emitting gas. We discuss the possibility that the X-ray gas is part of a cooling flow in which cool gas is produced in the nucleus.”
Even more studies have been done to take a look a disc properties associated with M65. According to M. Bureau (et al);
“NGC 3623 (M 65) is another highly-inclined galaxy in the Leo group, but it is of much later type than NGC 3377, SABa(rs). It is part of the Leo triplet with NGC 3627 and NGC 3628 but does not appear to be interacting. NGC 3623’s kinematics an has barely been studied and observations provide a glimpse of its dynamics. The large-scale velocity reveals minor-axis rotation, in agreement with the presence of a bar. In addition, a quasi edge-on disk is present in the center, where the iso velocity contours flatten out abruptly.”
History of Observation:
Both M65 and M66 were discovered on the same night – March 1, 1780 – by Charles Messier, who described M65 as “Nebula discovered in Leo: It is very faint and contains no star.” Sir William Herschel would later observe M65 as well, describing it as “A very brilliant nebula extended in the meridian, about 12′ long. It has a bright nucleus, the light of which suddenly diminishes on its border, and two opposite very faint branches.”
However, it would be Lord Rosse who would be the first to see structure: “March 31, 1848. – A curious nebula with a bright nucleus; resolvable; a spiral or annular arrangement about it; no other portion of the nebula resolved. Observed April 1, 1848 and April 3, with the same results.”
Locating Messier 65:
Even though you might think by its apparent visual magnitude that M65 wouldn’t be visible in small binoculars, you’d be wrong. Surprisingly enough, thanks to its large size and high surface brightness, this particular galaxy is very easy to spot directly between Iota and Theta Leonis. In even 5X30 binoculars under good conditions you’ll easy see both it and M66 as two distinct gray ovals.
A small telescope will begin to bring out structure in both of these bright and wonderful galaxies, but to get a hint at the “Trio” you’ll need at least 6″ in aperture and a good dark night. If you don’t spot them right away in binoculars, don’t be disappointed – this means you probably don’t have good sky conditions and try again on a more transparent night. The pair is well suited to modestly moonlit nights with larger telescopes.
Capture one of the Trio tonight! And here are the quick facts on this Messier Object:
Object Name: Messier 65 Alternative Designations: M65, NGC 3623, (a member of the) Leo Trio, Leo Triplet Object Type: Type Sa Spiral Galaxy Constellation: Leo Right Ascension: 11 : 18.9 (h:m) Declination: +13 : 05 (deg:m) Distance: 35000 (kly) Visual Brightness: 9.3 (mag) Apparent Dimension: 8×1.5 (arc min)
Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the globular cluster known as Messier 62.
In the 18th century, while searching the night sky for comets, French astronomer Charles Messier kept noting the presence of fixed, diffuse objects he initially mistook for comets. In time, he would come to compile a list of approximately 100 of these objects, hoping to prevent other astronomers from making the same mistake. This list – known as the Messier Catalog – would go on to become one of the most influential catalogs of Deep Sky Objects.
One of these objects is the globular cluster known as Messier 62, which spans about 100 light-years in diameter and is approximately 22,200 light years from Earth. Located in the southern constellation of Ophiuchus, this cluster is easy to find because of its proximity to Antares – the brightest star in Scorpius constellation – and is easily viewed suing binoculars and small telescopes.
Description:
Positioned about 22,500 light years away from Earth, this glorious gravitationally bound ball of stars could span as much as 100 light years of space. Captured within its confines are 89 known variable stars – most of them RR Lyrae types. M62 has a very dense core… One which may have experienced core collapse during its long history. An ordinary globular cluster? Not hardly. It’s one that holds some optical surprises.
As G. Cocozza (et al) indicated in their 2008 study:
“We report on the optical identification of the companion to the eclipsing millisecond pulsar PSR J1701-3006B in the globular cluster NGC 6266. A relatively bright star with an anomalous red color and an optical variability (~0.2 mag) that nicely correlates with the orbital period of the pulsar (~0.144 days) has been found nearly coincident with the pulsar nominal position. This star is also found to lie within the error box position of an X-ray source detected by Chandra observations, thus supporting the hypothesis that some interaction is occurring between the pulsar wind and the gas streaming off the companion. Although the shape of the optical light curve is suggestive of a tidally deformed star which has nearly completely filled its Roche lobe, the luminosity (~1.9 Lsolar) and the surface temperature (~6000 K) of the star, deduced from the observed magnitude and colors, would imply a stellar radius significantly larger than the Roche lobe radius.”
Is it possible that this is the smoking gun for intermediate mass black holes in globular clusters? Julio Chaname seems to think so. As he explained in his 2009 study:
“The existence of intermediate-mass black holes [IMBHs] in star clusters has been predicted by a variety of theoretical arguments and, more recently, by several large, realistic sets of collisional N-body simulations. Establishing their presence or absence at the centers of globular clusters would profoundly impact our understanding of problems ranging from the formation and long-term dynamical evolution of stellar systems, to the nature of the seeds and the growth mechanisms of the supermassive black holes {BHs} that inhabit the centers of most large, luminous galaxies. Observationally, the unambiguous signature of a massive central BH would be the discovery of central, unresolved X-ray or radio emission that is not consistent with more common stellar-mass accreting objects or pulsars. Yet, due to the largely uncertain details of accretion modeling, a precise mass determination of a central BH must necessarily come from stellar dynamics. This goal has not been achieved to date at the centers of Galactic globular clusters because of lack of adequate data as well as the use of too simplified methods of analysis. This situation can be overcome today through the combination of HST proper-motion measurements and state-of-the-art dynamical models specifically designed to take full advantage of this type of dataset. In this project, we will use two HST orbits to obtain another epoch of observations of NGC 6266. This cluster has photometric and structural properties that are consistent with current theoretical expectations for a cluster harboring an IMBH. Even more importantly, it is the only Galactic globular cluster for which there exists a detection of radio emission coincident with the cluster’s core, and with a flux density that appears to rule out a stellar or binary origin. The goal of our project is to obtain proper motion measurements to either confirm an IMBH in this cluster and measure its mass, or to set limits to its mass and existence.”
History of Observation:
While Charles Messier first discovered this globular cluster on June 7, 1771 – he didn’t accurately record its position until June 4, 1779.
“”Very beautiful nebula, discovered in Scorpio, it resembles a little Comet, the center is brilliant and surrounded by a faint glow. Its position determined, by comparing it with the star Tau of Scorpius. M. Messier had already seen this nebula on June 7, 1771, without having determined the position where it is close to. Seen again on March 22, 1781.”
Sir William Herschel would resolve it two years after Messier cataloged it, but it was Admiral Smyth who gave it a little more historic significance when he writes in his notes:
“A fine large resolvable nebula, at the root of the creature’s [Scorpion’s] tail, and in the preceding part of the Galaxy [Milky Way band]. It is an aggregated mass of small stars running up to a blaze in the centre, which renders the differentiating comparatively easy and satisfactory; and in this instance it was referred to its neighbor, 26 Ophiuchi, which is 5deg distant to the north: and it lies only about 7deg from Antares, on the south-east. This was registered in 1779, and Messier described it as “a very pretty nebula, resembling a little comet, the centre bright, and surrounded by a faint light.” Sir William Herschel, who first resolved it, pronounced it a miniature of Messier’s No. 3, and adds, “By the 20-foot telescope, which at the time of these observations was of the Newtonian construction, the profundity of this cluster is of the 734th order.” To my annoyance, it was started as a comet a few years ago, by a gentleman who ought to have known better.”
Locating Messier 62:
M62 is easily located about 5 degrees (3 finger widths) southeast of Antares – but because it is small, it can easily be overlooked in binoculars. Take your time, because it is only just a little more than an average binocular field away from an easy marker star and bright enough to be seen even with smaller instruments under not so good skies.
In the finderscope of a telescope, begin with Antares in the center and shift southwest. At 5X magnification, it will show as a faint haze. In a small telescope, you may get some resolution – but expect this globular cluster to appear more comet-like. Larger telescopes can expect a wonderful explosion of stars!
Enjoy your observations! And as always, here are the quick facts on this Messier Object to help you get started:
Object Name: Messier 62 Alternative Designations: M62, NGC 6266 Object Type: Class IV Globular Cluster Constellation: Ophiuchus Right Ascension: 17 : 01.2 (h:m) Declination: -30 : 07 (deg:m) Distance: 22.5 (kly) Visual Brightness: 6.5 (mag) Apparent Dimension: 15.0 (arc min)
Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at globular cluster known as Messier 54!
During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of these objects so others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.
One of these objects is the globular cluster known as Messier 54. Located in the direction of the Sagittarius constellation, this cluster was once thought to be part of the Milky Way, located about 50,000 light years from Earth, In recent decades, astronomers have come to realize that it is actually part of the Sagittarius Dwarf Galaxy, located some 87,000 light-years away.
What You Are Looking At:
Running away from us at a speed of 142 kilometers per second, this compact globe of stars could be as wide as 150 light years in diameter and as far away as 87,400 light years. Wait… Hold the press… Almost 90 thousand light years? Yeah. Messier 54 isn’t part of our own Milky Way Galaxy!
In 1994 astronomers made a rather shocking discovery… this tough to resolve globular was actually part of the Sagittarius Dwarf Elliptical Galaxy. As Michael H. Siegal (et al) said in their study:
“As part of the ACS Survey of Galactic Globular Clusters, we present new Hubble Space Telescope photometry of the massive globular cluster M54 (NGC 6715) and the superposed core of the tidally disrupted Sagittarius (Sgr) dSph galaxy. Our deep (F606W ~ 26.5), high-precision photometry yields an unprecedentedly detailed color-magnitude diagram showing the extended blue horizontal branch and multiple main sequences of the M54+Sgr system. Multiple turnoffs indicate the presence of at least two intermediate-aged star formation epochs with 4 and 6 Gyr ages and [Fe/H]=-0.4 to -0.6. We also clearly show, for the first time, a prominent, ~2.3 Gyr old Sgr population of near-solar abundance. A trace population of even younger (~0.1-0.8 Gyr old), more metal-rich ([Fe/H]~0.6) stars is also indicated. The Sgr age-metallicity relation is consistent with a closed-box model and multiple (4-5) star formation bursts over the entire life of the satellite, including the time since Sgr began disrupting.”
Inside its compact depths lurk at least 82 known variable stars – 55 of which are the RR Lyrae type. But astronomers using the Hubble Space telescope have have also discovered there are two semi-regular red variables with periods of 77 and 101 days. Kevin Charles Schlaufman and Kenneth John Mighell of the National Optical Astronomy Observatory explained in their study:
“Most of our candidate variable stars are found on the PC1 images of the cluster center – a region where no variables have been reported by previous ground-based studies of variables in M54. These observations cannot be done from the ground, even with AO as there are far too many stars per resolution element in ground-based observations.”
But what other kinds of unusual stars could be discovered inside such distant cosmic stellar evolutionary laboratory? Try a phenomena known as blue hook stars! As Alfred Rosenberg (et al) said in their study:
“We present BV photometry centered on the globular cluster M54 (NGC 6715). The color-magnitude diagram clearly shows a blue horizontal branch extending anomalously beyond the zero-age horizontal-branch theoretical models. These kinds of horizontal-branch stars (also called “blue hook” stars), which go beyond the lower limit of the envelope mass of canonical horizontal-branch hot stars, have so far been known to exist in only a few globular clusters: NGC 2808, Omega Centauri (NGC 5139), NGC 6273, and NGC 6388. Those clusters, like M54, are among the most luminous in our Galaxy, indicating a possible correlation between the existence of these types of horizontal-branch stars and the total mass of the cluster. A gap in the observed horizontal branch of M54 around Teff = 27,000 K could be interpreted within the late helium flash theoretical scenario, which is a possible explanation for the origin of blue hook stars.”
But with the stars packaged together so tightly, even more has been bound to occur inside of Messier 54. As Tim Adams (et al) indicated in their study:
“We investigate a means of explaining the apparent paucity of red giant stars within post-core-collapse globular clusters. We propose that collisions between the red giants and binary systems can lead to the destruction of some proportion of the red giant population, by either knocking out the core of the red giant or by forming a common envelope system which will lead to the dissipation of the red giant envelope. Treating the red giant as two point masses, one for the core and another for the envelope (with an appropriate force law to take account of the distribution of mass), and the components of the binary system also treated as point masses, we utilize a four-body code to calculate the time-scales on which the collisions will occur. We then perform a series of smooth particle hydrodynamics runs to examine the details of mass transfer within the system. In addition, we show that collisions between single stars and red giants lead to the formation of a common envelope system which will destroy the red giant star. We find that low-velocity collision between binary systems and red giants can lead to the destruction of up to 13 per cent of the red giant population. This could help to explain the colour gradients observed in PCC globular clusters. We also find that there is the possibility that binary systems formed through both sorts of collision could eventually come into contact perhaps producing a population of cataclysmic variables.”
But the discoveries haven’t ended yet…. Because 2009 studies have revealed evidence for an intermediate mass black hole inside Messier 54 – the first known to have ever been discovered in a globular cluster.
“We report the detection of a stellar density cusp and a velocity dispersion increase in the center of the globular cluster M54, located at the center of the Sagittarius dwarf galaxy (Sgr). The central line-of-sight velocity dispersion is 20.2 ± 0.7 km s-1, decreasing to 16.4 ± 0.4 km s-1 at 2farcs5 (0.3 pc). Modeling the kinematics and surface density profiles as the sum of a King model and a point-mass yields a black hole mass of ~9400 M sun.” says R. Ibata (et al), “However, the observations can alternatively be explained if the cusp stars possess moderate radial anisotropy. A Jeans analysis of the Sgr nucleus reveals a strong tangential anisotropy, probably a relic from the formation of the system.”
History of Observation:
On July 24, 1778 when Charles Messier first laid eyes on this faint fuzzy, he had no clue that he was about to discover the very first extra-galactic globular cluster. In his notes he writes: “Very faint nebula, discovered in Sagittarius; its center is brilliant and it contains no star, seen with an achromatic telescope of 3.5 feet. Its position has been determined from Zeta Sagittarii, of 3rd magnitude.”
Years later Sir William Herschel would also study M54, and in his private notes he writes: “A round, resolvable nebula. Very bright in the middle and the brightness diminishing gradually, about 2 1/2′ or 3′ in diameter. 240 shews too pretty large stars in the faint part of the nebulosity, but I rather suppose them to have no connection with the nebula. I believe it to be no other than a miniature cluster of very compressed stars.”
Countless other observations would follow as the M54 became cataloged by other astronomers and each would in turn describe it only as having a much brighter core and some resolution around the edges. Have fun trying to crack this one!
Locating Messier 54:
M54 isn’t hard to find… Just skip down to Zeta Sagittarii, the southwestern-most star of Sagittarius “teapot” and hop a half degree south and a finger width (1.5 degrees) west. The problem is seeing it! In small optics, such as binoculars or a finder scope, it will appear almost stellar because of its small size. However, if you just look for what appears like a larger, dim star that won’t quite come into perfect focus, then you’ve found it.
In smaller telescopes, you’ll get no resolution on this class III globular cluster because it is so dense. Large aperture doesn’t fare much better either, with only some individual stars making their appearance at the outer perimeters. Because of magnitude and size, Messier 54 is better suited to dark sky conditions.
And here are the quick facts on this Messier Object to help you get started:
Object Name: Messier 54 Alternative Designations: M54, NGC 6715 Object Type: Class III Extragalactic Globular Cluster Constellation: Sagittarius Right Ascension: 18 : 55.1 (h:m) Declination: -30 : 29 (deg:m) Distance: 87.4 (kly) Visual Brightness: 7.6 (mag) Apparent Dimension: 12.0 (arc min)
Welcome back to Messier Monday! We continue our tribute to our dear friend, Tammy Plotner, by looking at the open star cluster of Messier 50. Enjoy!
In the 18th century, while searching the night sky for comets, French astronomer Charles Messier kept noting the presence of fixed, diffuse objects in the night sky. In time, he would come to compile a list of approximately 100 of these objects, with the purpose of making sure that astronomers did not mistake them for comets. However, this list – known as the Messier Catalog – would go on to serve a more important function.
One of these objects is the open star cluster known as Messier 50 (aka. NGC 2323). Located at a distance of about 3,200 light-years from Earth, this object sits near the border between the Monoceros and Canis Major constellations. It is described as a ‘heart-shaped’ figure, occupies an area about half the size of the full Moon, and is easy to find because of its proximity to Sirius (the brightest star in the night sky).
Description:
Located about 3,200 light years from our solar system, this stellar gathering could be perhaps as much as 20 light years across, but the central concentration is believed to only span across roughly 10 light years. While that doesn’t seem that large, it’s lit by the candlepower of what could be 200 stars! And picking such a group of stars out of a well-known OB1 association isn’t easy. It requires photometry. As J.J. Claria (et al) remarked in a 1997 study:
“UBV and DDO photoelectric photometry in the field of the open cluster NGC 2323 is presented. The analysis yields 109 probable members; one of them being a red giant, and 3 possible members. The basic cluster parameters are derived. NGC 2323 appears not to be physically connected to the CMa OB1 association.”
In this region of the sky are vast molecular clouds compressing into star forming regions known as OB1 associations. The stars spawned by these vast clouds form into open clusters containing dozens to thousands of members and, over time, disassociate with not only the molecular cloud, but their sibling star clusters as well. Sure, it took 100-120 million years for it to happen, but as the group of stars cut away from the field, each member also aged differently.
By studying open clusters like M50 and its relative M35, we can learn more about the dynamics of star clusters which formed roughly at the same time in the same area. As Jasonjot Kalirai (et al) indicated in their 2003 study:
“The color-magnitude diagrams for the clusters exhibit clear main sequences stretching over 14 mag in the (V, B-V)-plane. Comparing these long main sequences with those of earlier clusters in the survey, as well as with the Hyades, has allowed for accurate distances to be established for each cluster. Analysis of the luminosity and mass functions suggests that, despite their young ages, both clusters are somewhat dynamically relaxed, exhibiting signs of mass segregation. This is especially interesting in the case of NGC 2323, which has an age of only 1.3 times the dynamical relaxation time. The present photometry is also deep enough to detect all of the white dwarfs in both clusters. We discuss some interesting candidates that may be the remnants of quite massive (M>=5Msolar) progenitor stars. The white dwarf cooling age of NGC 2168 is found to be in good agreement with the main-sequence turnoff age. These objects are potentially very important for setting constraints on the white dwarf initial-final mass relationship and the upper mass limit for white dwarf production.”
So, did age or movement produce the colorful display of stars we can observe in M50 – or was it simply the chemical ingredients responsible? According to a 2005 study conducted by Bragaglia and Monica:
“We describe a long-term project aimed at deriving information on the chemical evolution of the Galactic disk from a large sample of open clusters. The main property of this project is that all clusters are analyzed in a homogeneous way to guarantee the robustness of the ranking in age, distance, and metallicity. Special emphasis is devoted to the evolution of the earliest phases of the Galactic disk evolution, for which clusters have superior reliability with respect to other types of evolution indicators. The project is twofold: on one hand we derive the age, distance, and reddening (and indicative metallicity) by interpreting deep and accurate photometric data with stellar evolution models, and on the other hand, we derive the chemical abundances from high-resolution spectroscopy. The importance of quantifying the theoretical uncertainties by deriving the cluster parameters with various sets of stellar models is emphasized. Stellar evolution models assuming overshooting from convective regions appear to better reproduce the photometric properties of the cluster stars. The examined clusters show a clear metallicity dependence on the galactocentric distance and no dependence on age. The tight relation between cluster age and magnitude difference between the main-sequence turnoff and the red clump is confirmed.”
History of Observation:
While M50 was possibly discovered by G.D. Cassini 1711, it was independently recovered by Charles Messier on the night of April 5th, 1772. In his notes, he wrote of his discovery:
“Cluster of small stars, more or less brilliant, above the right loins of the Unicorn, above the star Theta of the ear of Canis Major, & near a star of 7th magnitude. It was while observing the Comet of 1772 that M. Messier observed this cluster. He has reported it on the chart of that comet, on which its trace has been drawn.”
It would later be observed by William Hershel, but not until his son John cataloged it before anyone began to notice colors in the stars. However, Admiral Smyth did!
“This is an irregularly round and very rich mass, occupying with its numerous outliers more than the field, and composed of stars from the 8th to the 16th magnitudes; and there are certain spots of splendour which indicate minute masses beyond the power of my telescope. The most decided points are, a red star towards the southern verge, and a pretty little equilateral triangle of 10th sizers, just below, or north of it. The double star here noted was carefully estimated under a full knowledge of the vertical and parallel lines of the field of view: this was made triple by H. [John Herschel], whose 2357 of the Fifth Series it is; but he must be mistaken in calling it Struve 748, which is Theta Orionis. It is sufficiently conspicuous as a double star, and though I perceive an infinitesimal point exactly om the vertical of A, I cannot ascertain whether it is H.’s C. This superb object was discovered by Messier in 1771 [actually 1772], and registered “a mass of small stars more or less brilliant.” It is 9 deg north-north-east of Sirius, and rather more than one-third of the distance between that star and Procyon.”
Locating Messier 50:
Because M50 is such a big and bright open star cluster, it’s relatively easy to find with complicated starhop instructions. Actually, the constellation of Monoceros is more difficult! Begin by identifying the brightest star in northern hemisphere skies – Alpha Canis Major – Sirius. Roughly a handspan to the northeast you’ll see another prominent bright star – Alpha Canis Minor – Procyon.
Between these two lay the faint and indistinguishable constellation of Monoceros, and slightly southwest of the center point is Messier 50. In small binoculars and a telescope finderscope, you’ll quickly spot a compression in the starfield, and may even be able to see it as a slight contrast change with the unaided eye. In larger binoculars and small telescopes, it blooms into a cloud of stars, well resolved against the grainy backdrop of fainter stars.
In large aperture telescopes, even more stars resolve and colors begin to appear. Because of magnitude and the nature of star clusters, Messier 50 makes an outstanding target for high light pollution areas, moonlit nights and even less than perfect sky conditions.
Enjoy your own “colorful” observations of this rich and beautiful star cluster!
And as always, here are the quick facts on this Messier Object to help you get started:
Object Name: Messier 50 Alternative Designations: M50, NGC 2323 Object Type: Open Galactic Star Cluster Constellation: Monoceros Right Ascension: 07 : 03.2 (h:m) Declination: -08 : 20 (deg:m) Distance: 3.2 (kly) Visual Brightness: 5.9 (mag) Apparent Dimension: 16.0 (arc min)
Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at Orion’s Nebula’s “little brother”, the De Marian’s Nebula!
During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.
One of these objects is the elliptical galaxy known as Messier 49 (aka. NGC 4472). Located in the southern skies in the constellation of Virgo, this galaxy is one several members of the Virgo Cluster of galaxies and is located 55.9 million light years from Earth. On a clear night, and allowing for good light conditions, it can be seen with binoculars or a small telescope, and will appear as a hazy patch in the sky.
Description:
Messier 49 is the brightest of the Virgo Cluster member galaxies, which is pretty accurate considering it’s only about 60 million light years away and may span an area as large as 160,000 light years. It is a huge system of globular clusters, much less concentrated than Virgo cluster member M87 – but a giant none the less. As Stephen E. Zep (et al) wrote in a 2000 study:
“We present new radial velocities for 87 globular clusters around the elliptical galaxy NGC 4472 and combine these with our previously published data to create a data set of velocities for 144 globular clusters around NGC 4472. We utilize this data set to analyze the kinematics of the NGC 4472 globular cluster system. The new data confirm our previous discovery that the metal-poor clusters have significantly higher velocity dispersion than the metal-rich clusters in NGC 4472. The very small angular momentum in the metal-rich population requires efficient angular momentum transport during the formation of this population, which is spatially concentrated and chemically enriched. Such angular momentum transfer can be provided by galaxy mergers, but it has not been achieved in other extant models of elliptical galaxy formation that include dark matter halos. We also calculate the velocity dispersion as a function of radius and show that it is consistent with roughly isotropic orbits for the clusters and the mass distribution of NGC 4472 inferred from X-ray observations of the hot gas around the galaxy.”
However, there was something going on in the mass structure of M49 that astronomers were curious about… Something they couldn’t quite explain. Was it dark matter? As M. Lowenstein wrote in a 1992 study:
“An attempt to constrain the total mass distribution of the well-observed giant elliptical galaxy NGC 4472 is realized by constructing simultaneous equilibrium models for the gas and stars using all available relevant optical and X-ray data. The value of <?>, the emission-weighted average value of kT, derived from the Ginga spectrum, <?> = 1.9 ± 0.2 keV, can be reproduced only in hydrostatic models where nonluminous matter comprises at least 90% of the total mass. However, in general, these mass models are not consistent with observed projected stellar and globular cluster velocity dispersions at moderate radii.”
The next thing you know, nuclear outburst were discovered – the product of interaction with a neighboring galaxy. As B. Biller (et al) indicated in a 2004 study:
“We present the analysis of the Chandra ACIS observations of the giant elliptical galaxy NGC 4472. The Chandra Observatory’s arcsec resolution reveals a number of new features. Specifically: 1) an ~8 arc min streamer or arm (this corresponds to a linear size of 36 kpc) extending southwest of the galaxy and an assymetrical, somewhat truncated streamer to the northeast. Smaller, morphologically similar structures are observed in NGC 4636 and are explained as shocks from a nuclear outburst in the recent past. The larger size of the NGC 4472 streamers requires a correspondingly higher energy input compared to the NGC 4636 case. The asymmetry of the streamers may be due to the interaction of NGC 4472 with the ambient Virgo cluster gas. 2) A string of small, extended sources south of the nucleus. These sources may stem from an interaction of NGC 4472 with the galaxy UGC 7637. 3) X-ray cavities corresponding to radio lobes, where expanding radio plasma has evacuated the X-ray emitting gas. We also present a luminosity function for the X-ray point sources detected within NGC 4472 which we compare to that for other early type galaxies.”
But the very best was yet to come… the discovery of a black hole! According to NASA, the results from NASA’s Chandra X-ray Observatory, combined with new theoretical calculations, provide one of the best pieces of evidence yet that many supermassive black holes are spinning extremely rapidly. The images on the left show 4 out of the 9 large galaxies included in the Chandra study, each containing a supermassive black hole in its center.
The Chandra images show pairs of huge bubbles, or cavities, in the hot gaseous atmospheres of the galaxies, created in each case by jets produced by a central supermassive black hole. Studying these cavities allows the power output of the jets to be calculated. This sets constraints on the spin of the black holes when combined with theoretical models. The Chandra images were also used to estimate how much fuel is available for each supermassive black hole, using a simple model for the way matter falls towards such an object.
The artist’s impression on the right side of the main graphic shows gas within a “sphere of influence” falling straight inwards towards a black hole before joining a rapidly spinning disk of matter near the center. Most of the material in this disk is swallowed by the black hole, but some of it is swept outwards in jets (colored blue) by quickly spinning magnetic fields close to the black hole.
Previous work with these Chandra data showed that the higher the rate at which matter falls towards these supermassive black holes, the higher their power output is in jets. However, without detailed theory the implications of this result for black hole behavior were unclear. The new study uses these Chandra results combined with leading theoretical models for the production of jets, plus general relativity, to show that the supermassive black holes in these galaxies must be spinning at close to the maximum rate. If black holes are spinning at this limit, material can be dragged around them at close to the speed of light, the speed limit from Einstein’s theory of relativity.
History of Observation:
According to SEDS, M49 was the first member of the Virgo cluster of galaxies to be discovered, by Charles Messier, who cataloged it on February 19th, 1771. As he recorded in his notes at the time:
“Nebula discovered near the star Rho Virginis. One cannot see it without difficulty with an ordinary telescope of 3.5-feet [FL]. The Comet of 1779 was compared by M. Messier with this nebula on April 22 and 23: The comet and the nebula had the same light. M. Messier has reported this nebula on the chart of the route of the comet, which appeared in the volume of the Academy of the same year 1779. Seen again on April 10, 1781.” Eight years later, on April 22, 1779, on the occasion of following the comet of that year, and on the hunt for finding more nebulous objects in competition to other observers, Barnabas Oriani independently rediscovered this ‘nebula’: “Very pale and looking exactly like the comet [1779 Bode, C/1779 A1].”
In his Bedford Catalogue of 1844, Admiral William H. Smyth confused this finding with Messier’s discovery:
“A bright, round, and well-defined nebula, on the Virgin’s left shoulder; exactly on the line between Delta Virginis and Beta Leonis, 8deg, or less than half-way, from the former star. With an eyepiece magnifying 93 times, there are only two telescopic stars in the field, one of which is in the sp and the other in the sf quadrant; and the nebula has a very pearly aspect. This object was discovered by Oriani in 1771 [this is wrong: it was Messier who discovered it that year; Oriani found it only in 1779], and registered by Messier as a “faint nebula, not seen without difficulty,” with a telescope of 3 1/2 feet in length. It is a pity that this active and very assiduous astronomer could not have been furnished with one of the giant telescopes of the present days. Had he possessed efficient means, there can be no doubt of the augmentation of his useful and, in its day, unique Catalogue: a collection of objects for which sidereal astronomy must ever remain indebted to him.” This error was repeated by John Herschel in his General Catalogue of 1864 (GC), who also erroneously assigned this object to “1771 Oriani,” and also found its way into J.L.E. Dreyer’s NGC.
Let’s hope you don’t mistake it with the many other galaxies nearby!
Locating Messier 49:
Galaxy hopping isn’t an easy chore and it takes some practice. Starting looking for M49 about halfway between Epsilon and Beta Virginis. Use Gamma to help triangulate your position. At near magnitude 8, Messier 49 is quite binocular possible and would show under dark sky conditions as a faint, very small egg shaped fog. However, it will not show in a finderscope of a telescope – but the nearby stars will.
Use their patterns to help guide you there. Because galaxies require dark skies, M49 cannot be found under urban conditions or during moonlit nights. In telescopes as small as 70mm, it will appear as a nebulous egg shape and become brighter – but no more resolved to larger instruments. To assist in location, begin with lowest magnification and increase magnification once found to darken background field.
And here are the quick facts to help you get started!
Object Name: Messier 49 Alternative Designations: M49, NGC 4472 Object Type: Elliptical Galaxy Constellation: Virgo Right Ascension: 12 : 29.8 (h:m) Declination: +08 : 00 (deg:m) Distance: 60000 (kly) Visual Brightness: 8.4 (mag) Apparent Dimension: 9×7.5 (arc min)
Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at Orion’s Nebula’s “little brother”, the De Marian’s Nebula!
During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.
One of these objects is the open star cluster known as Messier 46, which is located about 5,500 light years away in the southern Puppis constellation. Located in close proximity to another open cluster (Messier 47), this bright, rich cluster is about 300 million years old and is home to many stars – an estimated 500 – and some impressive nebulae too.
Description:
Crammed into about 30 light years of space, around 150 resolvable stars and up to 500 possible stellar members all took off together on a journey through space some 300 million years ago. At this point in time, they are about 5,400 light years away from our solar system, but they aren’t standing still. They’re pulling away from us at a speed of 41.4 kilometers per second.
If you notice something just a bit different about one of the stars along the northern edge – then you’ve caught on to one of the most famous features of Messier 46 – its resident planetary nebula. While radial velocities show it probably isn’t a true member of the cluster, it’s still a cool feature!
But, is there more to this cluster than that? You bet. Messier 46 has also been highly studied for its core properties. As Saurabh Sharma (et al) indicated in a 2006 study:
“The study of Galactic open clusters is of great interest in several astrophysical aspects. Young open clusters provide information about current star formation processes and are key objects for clarifying questions of Galactic structure, while observations of old and intermediate-age open clusters play an important role in studying the theories of stellar and Galactic evolution. A detailed analysis of the structure of coronae of open clusters is needed to understand the effects of external environments, like the Galactic tidal field and impulsive encounters with interstellar clouds, etc., on dynamical evolution of open clusters. Extensive studies of the coronal regions of clusters have not been carried out so far mainly because of unavailability of photometry in a large field around open star clusters. The ability to obtain improved photometry of thousands of stars means that large-scale studies of open clusters can be conducted to study the spatial structure and stability of Galactic open clusters. With the addition of photometry of a nearby field region it is possible to construct luminosity functions (LFs) and MFs, which are useful for understanding cluster-formation processes and the theory of star formation in open clusters.”
History of Observation:
Messier 46 is an original discovery of Charles Messier, caught on February 19, 1771, just after he released his first catalog of entries. In his journal, he wrote:
“A cluster of very small stars, between the head of the Great Dog and the two hind feet of the Unicorn, [its position] determined by comparing this cluster with the star 2 Navis, of 6th-magnitude, according to Flamsteed; one cannot see these stars but with a good refractor; the cluster contains a bit of nebulosity.”
At the time of its discovery, Messier had not published his findings quite as immediately as we do today, so another astronomer also independently discovered this cluster as well… Caroline Herschel. “March 4th, [17]83. 1 deg S following the nebula near the 2nd Navis… a Nebula the figure is done by memory. My Brother observed it with 227 and found it to be, an astonishing number of stars. it is not in Mess. catalogue.”
It would be John Herschel in 1833 who would discover the planetary nebula while cataloging it: “The brightest part of a very fine rich cluster; stars of 10th magnitude; which fills the field. Within the cluster at its northern edge is a fine planetary nebula.”
But, as always, Admiral Symth has a way with words and observations. As he wrote of the object:
“A very delicate double star in a fine cluster, outlying the Galaxy, over Argo’s poop. A 8 1/2 [mag], and B 11, both pale white.A noble though rather loose assemblage of stars from the 8th to the 13th magnitude, more than filling the field, especially in length, with power 93; the most compressed part trending sf [south following, SE] and np [north preceding, NW]. Among the larger [brighter] stars on the northern verge is an extremely faint planetary nebula, which is 39 H. IV. [NGC 2438], and 464 of his son’s Catalogue. This was discovered by Messier in 1769, who considered it as being “rather enveloped in nebulous matter;” this opinion, however, must have arisen from the splendid glow of mass, for judging from his own remark, it is not likely that he perceived the planetary nebula on the north. WH [William Herschel], who observed it in 1786, expressly says, “no connexion with the cluster, which is free from nebulosity.” Such is my own view of attentively gazing; but the impression left on the senses, is that of awful vastness and bewildering distance, – yet including the opinion, that those bodies bespangled the vastness of space, may differ in magnitude and other attributes.”
Pretty amazing considering these gentlemen did all of their observations visually and knew nothing about today’s parallaxes, radial velocities or any other type of thing. May your own observations be as talented…
Locating Messier 46:
There is no simple way of finding Messier 46 in the finderscope of a telescope, but it’s not too hard with binoculars. Begin your hunt a little more than a fistwidth east/northeast of bright Sirius (Alpha Canis Majoris)… or about 5 degrees (3 finger widths) south of Alpha Monoceros. There you will find two open clusters that will usually appear in the same average binocular field of view. M46 is the easternmost of the pair.
It will appear slightly dimmer and the stars will be more concentrated. In the finderscope it will appear as a slightly foggy patch, while neighboring western M47 will try to begin resolution. Because M46’s stars are fainter, it is better suited to darker sky conditions, showing as a compression in binoculars and will resolve fairly well with even a small telescope. However, you will need at least a 6″ telescope to perceive the planetary nebula.
And here are the quick facts on this Messier Object to help you get started:
Object Name: Messier 46 Alternative Designations: M46, NGC 2437 Object Type: Open Galactic Star Cluster Constellation: Puppis Right Ascension: 07 : 41.8 (h:m) Declination: -14 : 49 (deg:m) Distance: 5.4 (kly) Visual Brightness: 6.0 (mag) Apparent Dimension: 27.0 (arc min)
Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the universally-renowned cluster known for its seven major points of light – The Pleiades Cluster!
During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.
One of these is the famous Pleiades Cluster, also known as the Seven Sisters (and countless other names). An open star cluster located approximately 390 to 456 light years from Earth in the constellation of Taurus, this cluster is dominated by very bright, hot blue stars. Being both bright and of one of the nearest star clusters to Earth, this cluster is easily visible to the naked eye in the night sky.
Description:
The nine brightest stars of the Pleiades are named for the Seven Sisters of Greek mythology: Sterope, Merope, Electra, Maia, Taygete, Celaeno, and Alcyone, along with their parents Atlas and Pleione. To the X-ray telescopes on board the orbiting ROSAT observatory, the cluster also presents an impressive, but slightly altered, appearance.
This false color image was produced from ROSAT observations by translating different X-ray energy bands to visual colors – the lowest energies are shown in red, medium in green, and highest energies in blue. (The green boxes mark the position of the seven brightest visual stars.)
The Pleiades stars seen in X-rays have extremely hot, tenuous outer atmospheres called coronas and the range of colors corresponds to different coronal temperatures. This helps to determine mass and the presence of brown dwarf stars within Messier 45. As Greg Ushomirsky (et al) said in a 1998 study:
“We present an analytic calculation of the thermonuclear depletion of the light elements lithium, beryllium, and boron in fully convective, low-mass stars. Under the presumption that the pre-main-sequence star is always fully mixed during contraction, we find that the burning of these rare light elements can be computed analytically, even when the star is degenerate. Using the effective temperature as a free parameter, we constrain the properties of low-mass stars from observational data, independently of the uncertainties associated with modeling their atmospheres and convection. Our analytic solution explains the dependence of the age at a given level of elemental depletion on the stellar effective temperature, nuclear cross sections, and chemical composition. These results are also useful as benchmarks to those constructing full stellar models. Most importantly, our results allow observers to translate lithium nondetections in young cluster members into a model-independent minimum age for that cluster. Using this procedure, we have found lower limits to the ages of the Pleiades (100 Myr) and Alpha Persei (60 Myr) clusters. Dating an open cluster using low-mass stars is also independent of techniques that fit upper main-sequence evolution. Comparison of these methods provides crucial information on the amount of convective overshooting (or rotationally induced mixing) that occurs during core hydrogen burning in the 5-10 Mo stars typically at the main-sequence turnoff for these clusters.”
As one of the closest of star clusters to our solar system, M45 is dominated by hot blue stars that have only formed within the last 100 million years. Alongside Maia is a reflection nebula discovered by Tempel faint nebula which accompanies Merope was discovered by master observer E.E. Barnard. These were first believed to be left over from the formation of the cluster.
However, it didn’t take many years of observation of proper motion for astronomers to realize the Pleiades were actually moving through a cloud of interstellar dust. While this pleasing blue group is still only 440 light years away, it only has about another 250 million years left before tidal interactions will tear it apart. By then, its relative motion will have carried it from the constellation of Taurus to the southern portion of Orion!
Of course, many observers aren’t quite sure if they are seeing the nebulosity in M45 or not. Chances are, if you’re seeing what appears to be a “fog” around the bright stars – you’re on it. Only large aperture or photography reveals the full extent of the reflection nebula… and there’s a whole lot of scientific reasons for it. Said Steven Gibson (et al) in a 2003 study:
“The scattering geometry analysis is complicated by the blending of light from many stars and the likely presence of more than one scattering layer. Despite these complications, we conclude that most of the scattered light comes from dust in front of the stars in at least two scattering layers, one far in front and extensive, the other nearer the stars and confined to areas of heavy nebulosity. The first layer can be approximated as an optically thin, foreground slab whose line-of-sight separation from the stars averages ~0.7 pc. The second layer is also optically thin in most locations and may lie at less than half the separation of the first layer, perhaps with some material among or behind the stars. The association of nebulosity peripheral to the main condensation around the brightest stars is not clear. Models with standard grain properties cannot account for the faintness of the scattered UV light relative to the optical. Some combination of significant changes in grain model albedo and phase function asymmetry values is required. Our best-performing model has a UV albedo of 0.22+/-0.07 and a scattering asymmetry of 0.74+/-0.06. Hypothetical optically thick dust clumps missed by interstellar sight line measurements have little effect on the nebular colors but might shift the interpretation of our derived scattering properties from individual grains to the bulk medium.”
Since the Pleaides really is close to our solar system, have astronomers been able to detect anything within its boundaries that has surprised them? The answer is yes. according to a 1998 study by E.L. Martin:
“We present the discovery of an object in the Pleiades open cluster, named Teide 2, with optical and infrared photometry that places it on the cluster sequence slightly below the expected substellar mass limit. We have obtained low- and high-resolution spectra that allow us to determine its spectral type (M6), radial velocity, and rotational broadening and to detect H? in emission and Li I in absorption. All the observed properties strongly support the membership of Teide 2 in the Pleiades. This object has an important role in defining the reappearance of lithium below the substellar limit in the Pleiades.”
And what star is that? One cataloged as known as HD 23514, which has a mass and luminosity a bit greater than our Sun. But it’s a star surrounded by an extraordinary number of hot dust particles. “Unusually massive amounts of dust, as seen at the Pleiades and Aries stars, cannot be primordial but rather must be the second-generation debris generated by collisions of large objects,” said Song, “”Collisions between comets or asteroids wouldn’t produce anywhere near the amount of dust we are seeing.”
The astronomers analyzed emissions from countless microscopic dust particles and concluded that the most likely explanation is that the particles are debris from the violent collision of planets or planetary embryos. Song calls the dust particles the “building blocks of planets,” which can accumulate into comets and small asteroid-size bodies and then clump together to form planetary embryos, eventually becoming full-fledged planets.
“In the process of creating rocky, terrestrial planets, some objects collide and grow into planets, while others shatter into dust,” Song said. “We are seeing that dust.”
History of Observation:
The recognition of the Pleiades dates back to antiquity, and its stars are known by many names in many cultures. The Greeks and Romans referred to them as the “Starry Seven,” the “Net of Stars,” “The Seven Virgins,” “The Daughters of Pleione,” and even “The Children of Atlas.” The Egyptians referred to them as “The Stars of Athyr;” the Germans as “Siebengestiren” (the Seven Stars); the Russians as “Baba” after Baba Yaga – the witch who flew through the skies on her fiery broom.
The Japanese call them “Subaru;” Norsemen saw them as packs of dogs; and the Tongans as “Matarii” (the Little Eyes). American Indians viewed the Pleiades as seven maidens placed high upon a tower to protect them from the claws of giant bears, and even Tolkien immortalized the star group in The Hobbit as “Remmirath.” The Pleiades were even mentioned in the Bible! So, you see, no matter where we look in our “starry” history, this cluster of seven bright stars has been part of it.
Charles Messier would log it on March 4, 1769 where his only comment would be: “Cluster of stars known by the name Pleiades: the position reported is that of the star Alcyone.” Even though historic astronomers did little more than comment on M45’s presence, we’re still glad the Charles logged it – for it never received another “official” catalog designation!
Locating Messier 45:
Most normally the Pleiades are easily found with the unaided eye as a very visible cluster of stars about a hand span northwest of Orion. However, if sky conditions are bright, M45 might be a little more difficult to spot. If so, look for bright, red star Aldebaran and set your sights about 10 degrees (an average fist width) northwest.
It will show very easily in any size optics and under virtually any conditions – except for clouds and daylight! Messier 45’s large size makes it an ideal candidate for binoculars, where it will cover about half the average field of view. When using a telescope, chose the least amount of magnification possible to see the entire cluster and use higher magnification to study individual stars.
And as always, here are the quick facts on this Messier Object to help you get started:
Object Name: Messier 45 Alternative Designations: M45, the Pleiades, Seven Sisters, Subaru Object Type: Open Galactic Star Cluster, Reflection Nebula Constellation: Taurus Right Ascension: 03 : 47.0 (h:m) Declination: +24 : 07 (deg:m) Distance: 0.44 (kly) Visual Brightness: 1.6 (mag) Apparent Dimension: 110.0 (arc min)
Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the double star known as Messier 40. Enjoy!
During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.
One of these objects is Messier 40, this double star is now known to be an optical double star (i.e. two independent stars at different distances that appear aligned based on our perspective). It is also included in the Winnecke Catalogue of Double Stars as number 4, and is located in the constellation of Ursa Major (aka. the Big Dipper).
Description:
At roughly 500 light years away from us, no one is quite sure if this pair of stars is truly a binary system or an optical double star. According to Richard Nugent’s 2002 data, “The observed relative proper motion, as measured in separation and position angle, is consistent with a straight, independent motion of the two stars, one crossing between us and the other.”
The two stars are nearly the same brightness as each other, with the primary star being magnitude 9 and the secondary being magnitude 9.3 and they are separated by about 49 arc seconds – a wide gap. At one time, the angular separation of the pair was measured at 49.2″, but has gradually changed to about 52.8″ in more recent years.
History of Observation:
Messier 40 was discovered by Charles Messier in 1764 while he was searching for a nebula that had been reported in the area by Johann Hevelius. As he wrote at the time:
“The same night on October 24-25, [1764], I searched for the nebula above the tail of the Great Bear [Ursa Major], which is indicated in the book Figure of the Stars, second edition: it should have, in 1660, the right ascension 183d 32′ 41″, and the northern declination 60d 20′ 33″. I have found, by means of this position, two stars very near to each other and of equal brightness, about the 9th magnitude, placed at the beginning of the tail of Ursa Major: one has difficulty to distinguish them with an ordinary refractor of 6 feet. Here are their position: right ascension, 182 deg 45′ 30″, and 59 deg 23′ 50″ northern declination. There is reason to presume that Hevelius mistook these two stars for a nebula.”
History often credits Messier for being a little bit crazy for cataloging a double star, but upon having read Messier’s report, I feel like he was an astronomer doing his job. If Hevelius reported a nebula here – then he was bound to look and write down what he saw. He didn’t just stumble on a double star and catalog it for no reason!
Later astronomers would also search for M40 and report a double star, and it was cataloged by such as by Friedrich August Theodor Winnecke at Pulkovo Observatory in 1863 as WNC 4. However, to give the good Hevelius credit, John Mallas reports, “the Hevelius object is the 5th-magnitude star 74 Ursae Majoris, more than one degree away, as reference to his star catalogue will show.”
In 1991, the separation between the stars was measured at 52.8 arcseconds, which represented an increase since 1966, when it was measured at 51.7. In 2001 and 2002, studies conducted by Brian Skiff and Richard L. Nugent suggested that the stars comprising the double star (HD 238107 and HD 238108) were in fact an optical double star, rather than a double star system.
In 2016, by using parallax measurements from the Gaia satellite, this theory was proven for the first time. Distance estimates were also produced, indicating that the two components are 350±30 and 140±5 parsecs (~1141±98 and 456±16 light years).
Locating Messier 40:
Finding Messier 40 isn’t very difficult for fairly large binoculars and small telescopes – but you need to remember that it’s a double star. First locate the easily recognized constellation of Ursa Major and focus on the ‘Big Dipper’ and look for the two stars that form the edge that connect to the handle – Gamma and Delta.
Aim your telescope’s finderscope at Delta – the point where the ‘handle’ would connect. In the finder, you will see a fainter star to the northeast. Hop there. Now, using a low power eyepiece, scan slightly further northeast and you will locate M40. Once located, you may go to higher magnification to more closely examine this Messier catalog curiosity.
While this pair of stars will show easily in binoculars, you must remember that binoculars give such a wide field that it will be difficult to distinguish them from surrounding stars. However, this is a great object for light-polluted skies and moonlit nights!
Enjoy the controversy… and this pair! And here are the quick facts on M40 to help you get started:
Object Name: Messier 40 Alternative Designations: M40, WNC 4 Object Type: Double Star Constellation: Ursa Major Right Ascension: 12 : 22.4 (h:m) Declination: +58 : 05 (deg:m) Distance: 0.51 (kly) Visual Brightness: 8.4 (mag) Apparent Dimension: 0.8 (arc min)