Gerbils, mice perish as Russian spacecraft returns to Earth

Bion-M's mission patch. Credit: NASA

A menagarie of animals launched to space last month has arrived back on Earth — with a few casualties for the voyage.

Bion-M, a small satellite carrying gerbils, lizards, mice and other critters, launched in April from the Plesetsk Cosmodrome in Russia and arrived, as planned, safely on Earth on Sunday (May 19).

However, not all of the assorted crew survived the voyage.

“This is the first time that animals have been put in space on their own for so long,” said Vladimir Sychov of the Russian Academy of Sciences, as reported by several news agencies. Half of the 45 mice were lost in the journey, which was expected, but the eight gerbils unexpectedly died “because of equipment failure”, he added.

The Bion-M hardware is readied for flight. Credit: Russian Federal Space Agency (Roscosmos)
The Bion-M hardware is readied for flight. Credit: Russian Federal Space Agency (Roscosmos)

Still, the scientists expect to pull a lot of long-duration data out of the mission. It is expected to help scientists better understand the effects of microgravity on biological organisms, with applications for long human voyages such as a trip to Mars.

Microgravity does a number on human systems, as just-returned-from-space astronaut Chris Hadfield eloquently described recently.

Bones lose calcium, muscles shrink and there are changes to your blood pressure flow and even your eyes. Taking a trip to space is like experiencing aging on fast-forward (although luckily, the effects are mostly reversible.)

Michael Foale on the ISS's treadmill. Credit: NASA
Michael Foale on the ISS’s treadmill. Astronauts on station exercise two hours a day, typically, to fight against microgravity’s effects. Credit: NASA

“Knowledge gained in the use of animals reveals the fundamental mechanisms of adaptation to spaceflight,” NASA stated in a web page about the mission. “Such knowledge provides insight for potential long-duration human spaceflight risk mitigation strategies and potential new approaches for Earth bound biomedical problems.”

Before Bion-M journeyed to space, most mouse studies only took place during space shuttle missions that were in orbit for a maximum of two weeks. The new 30-day mission doubled the length of previous studies and also allow more advanced technologies to be brought to bear on the science, stated NASA, who participated in the mission.

“NASA researchers will study the cellular mechanisms responsible for spaceflight-induced changes on tissues and cell growth in mice, including muscle, bone and the cardiovascular and reproductive systems,” the agency wrote in an April press release. “They also will study behavioral effects in gerbils.”

Other questions long-term voyages have to consider: the effects of radiation on your body, and whether it is ethical to conceive children in microgravity.

Still, that’s not deterring thousands of people from signing up for a one-way trip to Mars with the private group Mars One.

Sonic-Powered Levitation Allows for Zero-G Drug Research

It’s not special effects: researchers at the U.S. Department of Energy’s Argonne National Laboratory in Illinois have developed a way to cancel out the effects of gravity, allowing liquids to be held without containers. The effect is created using sound waves emitted by an acoustic levitator — an instrument designed by NASA for simulating microgravity.

Watch the video. It’s the coolest thing you’ll see all week.

This accomplishes more than just a neat effect; by keeping liquids in place without the need for a physical container, pharmaceutical research can be performed while the drugs are still in their purest, “amorphous” state.

“Most drugs on the market are crystalline – they don’t get fully absorbed by the body and thus we aren’t getting the most efficient use out of them,” said Yash Vaishnav, Argonne Senior Manager for Intellectual Property Development and Commercialization.

When solutions come in contact with the interior surfaces of their containers, evaporation takes place, which can lead to crystallization. In order to find a way to hold liquids without anything coming in contact with them (a tricky task while under the effect of Earth’s pesky gravity) ANL X-ray physicist Chris Benmore looked to NASA’s acoustic levitator.

Using two sets of sound waves emitted at 22khz and precisely aimed at each other, a “standing wave” is established at their center. The resulting acoustic force is strong enough to counter the downward tug of gravity at certain points (at least as far as droplets of liquid are concerned.)

The liquid drugs can then be studied without the problem of crystallization, making this technological parlor trick a powerful analytical tool for pharmaceutical researchers. The ultimate goal is to learn how to reduce the amount of a particular drug but still retain the desired effects — with less of the undesired ones.

Read more here on the Argonne National Lab site.

The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’sOffice of Science.

Space Travel Is Bad For Your Eyes

From "Mars Attacks" © 1996 Warner Brothers. All rights reserved.

Microgravity — or “zero-g” as it’s sometimes called — is not a natural state for the human body to live in for prolonged periods of time. But that is what today’s astronauts are often expected to do, whether while on expedition aboard Space Station or during a future voyage to the Moon or Mars. A host of physical issues can result from the space environment, from bone loss and muscle atrophy to the risks associated from increased exposure to radiation.

Now, there’s another downside to long-term life in orbit: eye and brain damage.

A team of radiologists led by Dr. Larry A. Kramer from The University of Texas Medical School at Houston performed MRIs on 27 astronauts, measuring in each the shape and thickness of the rear of the eyes, optic nerve, optic nerve sheath and pituitary gland.

In 7 of the 27 astronauts flattening of the backs of the eyes was noted, and enlargement of the optic nerve was detected in nearly all of them — 26 out of 27.

In addition, four exhibited deformation of the pituitary gland.

The optic nerve. (NIH)

The changes to the eyes and optic nerves are similar to what are typically seen in those suffering from idiopathic intracranial hypertension (IIH), a disorder characterized by increased pressure within the skull. Symptoms typically include headache, dizziness and nausea, and if left untreated it can produce permanent vision loss through optic nerve damage.

“The MRI findings revealed various combinations of abnormalities following both short- and long-term cumulative exposure to microgravity also seen with idiopathic intracranial hypertension,” said Dr. Kramer. “Microgravity-induced intracranial hypertension represents a hypothetical risk factor and a potential limitation to long-duration space travel.”

Chief of flight medicine at NASA’s Johnson Space Center, Dr. William J. Tarver, noted that although no astronaut has been kept from flight duties as a result of such risks, NASA will continue to “closely monitor the situation” and has placed the potential danger “high on its list of human risks.”

The team’s paper was accepted into the journal Radiology on Feb. 1.

“Orbital and Intracranial Effects of Microgravity: Findings at 3-T MR Imaging.” Collaborating with Dr. Kramer were Ashot Sargsyan, M.D., Khader M. Hasan, Ph.D., James D. Polk, D.O., and Douglas R. Hamilton, M.D., Ph.D.

Update Oct. 24, 2013: Further investigation by researchers at Houston Methodist and Johnson Space Center have shown more evidence of long-term eye damage after just two weeks in orbit. Read more.