The Hercules Satellite – A Galactic Transitional Fossil

Smaller satellite galaxies caught by a spiral galaxy are distorted into elongated structures consisting of stars, which are known as tidal streams, as shown in this artist's impression. Credit: Jon Lomberg

[/caption]

On Friday, I wrote about the population of the thick disk and how surveys are revealing that this portion of our galaxy is largely made of stars stolen from cannibalized dwarf galaxies. This fits in well with many other pieces of evidence to build up the general picture of galactic formation that suggests galaxies form through the combination of many small additions as opposed to a single, gigantic collapse. While many streams of what is, presumably, tidally shredded galaxies span the outskirts of the Milky Way, and other objects exist that are still fully formed galaxies, few objects have yet been identified as a satellite that is undergoing the process of tidal disruption.

A new study, to be published in the October issue of the Astrophysical Journal suggests that the Hercules satellite galaxy may be one of the first of this intermediary forms discovered.

In the past decade, numerous minor stellar systems have been discovered in the halo of our Milky Way galaxy. The properties of these systems have suggested to astronomers that they are faint galaxies in their own right. Although many have elongated and elliptical shapes (averaging an ellipticity of 0.47; 0.15 higher than that of brighter dwarf galaxies that orbit further out), simulations have suggested that even these stretched dwarfs are still able to remain largely cohesive. In general, the galaxy will remain intact until it is stretched to an ellipticity of 0.7.  At this point, a minor galaxy will lose ~90% of its member stars and dissolve into a stellar stream.

In 2008, Munoz et al. reported the first Milky Way satellite that was clearly over this limit. The Ursa Major I satellite was shown to have an ellipticity of 0.8. Munoz suggested that this, as well as the Hercules and Ursa Major II dwarfs were undergoing tidal break up.

The new paper, by Nicolas Martin and Shoko Jin, further analyzes this proposition for the Hercules satellite by going further and examining the orbital characteristics to ensure that their passage would continue to distort the galaxy sufficiently. The system already contains an ellipticity of 0.68, which puts it just under the theoretical limit.

The team looked to see just how closely the satellite would pass to our own galactic center. The closer it passed, the more disruption it would feel. By projecting the orbit, they estimated the galaxy would come within ~6 kiloparsecs of the galactic center which is about 40% of the radius of the galaxy overall. While this may not seem especially close Martin and Jin report that they cannot conclude that it will be insufficient. They state that disruption would be dependent on “the properties of the stellar system at that time of its journey in the Milky Way potential and, as such, out of reach to the current observer.”

However, there were some telling signs that the dwarf may already be shedding stars. Along the major axis of the galaxy, deep imaging has revealed a smaller number of stars that does not appear to be bound to the galaxy itself. Photometry of these stars has shown that their distribution on a color-magnitude diagram is strikingly similar to that of the Hercules galaxy itself.

At this point, we cannot fully determine if the Hercules galaxy is doomed to become another stellar stream around the Milky Way, but if it is not truly in the process of breaking up, it seems to be on the very edge.

What Galaxy is the Earth In?

What galaxy is Earth in? We're in the Milky Way

[/caption]
Were you wondering what galaxy is the Earth in? You’ll probably recognize the answer: it’s the Milky Way Galaxy.

If you go to a dark spot, away from the bright city lights, and look up, you should be able to see the Milky Way as a cloudy band stretching across the sky. It really does look like spilt milk spread across the sky. But if you take a telescope and examine it more closely, you’ll see that the clouds are actually the collective light from thousands of stars.

Since we’re embedded inside the Milky Way, we’re seeing our home galaxy edge-on, from the inside. To get a better idea, grab a dinner plate and take a look at it edge on, so you can’t see the circular shape of the galaxy. You can only see the edge of the plate.

The Milky Way is an example of a barred spiral galaxy. It measures approximately 100,000 light years across and it’s only 1,000 light years thick; although, it’s more thick at the core where the galaxy bulges out. If you could fly out of the Milky Way in a rocket and then look back, you’d see a huge spiral shaped galaxy with a bar at the center. At the ends of this bar, there are two spiral arms which twist out forming the structure of the Milky Way.

The Earth is located in the Solar System, and the Solar System is located about 25,000 light-years away from the core of the galaxy. This also means that we’re about 25,000 light-years away from the outer edge of the Milky Way. We’re located in the Orion Spur, which is a minor arm located in between the two major galactic arms.

If you’d like more information on the Milky Way, check out NASA’s Starchild info on the Milky Way, and here’s more info from the WMAP mission.

We’ve written many articles about the Milky Way for Universe Today. Here’s an article with facts about the Milky Way, and here is a map of the Milky Way.

We’ve also recorded several episodes of Astronomy Cast about the Milky Way. Listen here, Episode 99: The Milky Way.