Host: Fraser Cain (@fcain) Special Guest: This week we welcome Stephen Fowler, who is the Creative Director at InfoAge, the organization behind refurbishing the TIROS 1 dish and the Science History Learning Center and Museum at Camp Evans, Wall, NJ.
Everything eventually dies, even galaxies. So how does that happen? Time to come to grips with our galactic mortality. Not as puny flesh beings, or as a speck of rock, or even the relatively unassuming ball of plasma we orbit.
Today we’re going to ponder the lifespan of the galaxy we inhabit, the Milky Way. If we look at a galaxy as a collection of stars, some are like our Sun, and others aren’t.
The Sun consumes fuel, converting hydrogen into helium through fusion. It’s been around for 5 billion years, and will probably last for another 5 before it bloats up as a red giant, sheds its outer layers and compresses down into a white dwarf, cooling down until it’s the background temperature of the Universe.
So if a galaxy like the Milky Way is just a collection of stars, isn’t that it? Doesn’t a galaxy die when its last star dies?
But you already know a galaxy is more than just stars. There’s also vast clouds of gas and dust. Some of it is primordial hydrogen left from the formation of the Universe 13.8 billion years ago.
All stars in the Milky Way formed from this primordial hydrogen. It and other similar sized galaxies produce 7 bouncing baby stars every year. Sadly, ours has used up 90% of its hydrogen, and star formation will slow down until it both figuratively, and literally, runs out of gas.
The Milky Way will die after it’s used all its star-forming gas, when all of the stars we have, and all those stars yet to be born have died. Stars like our Sun can only last for 10 billion years or so, but the smallest, coolest red dwarfs can last for a few trillion years.
That should be the end, all the gas burned up and every star burned out. And that’s how it would be if our Milky Way existed all alone in the cosmos.
Fortunately, we’re surrounded by dozens of dwarf galaxies, which get merged into our Milky Way. Each merger brings in a fresh crop of stars and more hydrogen to stoke the furnaces of star formation.
There are bigger galaxies out there too. Andromeda is bearing down on the Milky Way right now, and will collide with us in the next few billion years.
When that happens, the two will merge. Then there’ll be a whole new era of star formation as the unspent gas in both galaxies mix together and are used up.
Eventually, all galaxies gravitationally bound to each other in this vicinity will merge together into a giant elliptical galaxy.
We see examples of these fossil galaxies when we look out into the Universe. Here’s M49, a supermassive elliptical galaxy. Who knows how many grand spiral galaxies stoked the fires of that gigantic cosmic engine?
Elliptical galaxies are dead galaxies walking. They’ve used up all their reserves of star forming gas, and all that’s left are the longer lasting stars. Eventually, over vast lengths of time, those stars will wink out one after the other, until the whole thing is the background temperature of the Universe.
As long as galaxies have gas for star formation, they’ll keep thriving. Once it’s gonzo, or a dramatic merger uses all the gas in one big party, they’re on their way out.
What could we do to prolong the life of our galaxy? Let’s hear some wild speculation in the comments below.
The merger of the Milky Way and Andromeda galaxy won’t happen for another 4 billion years, but the recent discovery of a massive halo of hot gas around Andromeda may mean our galaxies are already touching. University of Notre Dame astrophysicist Nicholas Lehner led a team of scientists using the Hubble Space Telescope to identify an enormous halo of hot, ionized gas at least 2 million light years in diameter surrounding the galaxy.
The Andromeda Galaxy is the largest member of a ragtag collection of some 54 galaxies, including the Milky Way, called the Local Group. With a trillion stars — twice as many as the Milky Way — it shines 25% brighter and can easily be seen with the naked eye from suburban and rural skies.
Think about this for a moment. If the halo extends at least a million light years in our direction, our two galaxies are MUCH closer to touching that previously thought. Granted, we’re only talking halo interactions at first, but the two may be mingling molecules even now if our galaxy is similarly cocooned.
Lehner describes halos as the “gaseous atmospheres of galaxies”. Despite its enormous size, Andromeda’s nimbus is virtually invisible. To find and study the halo, the team sought out quasars, distant star-like objects that radiate tremendous amounts of energy as matter funnels into the supermassive black holes in their cores. The brightest quasar, 3C273 in Virgo, can be seen in a 6-inch telescope! Their brilliant, pinpoint nature make them perfect probes.
“As the light from the quasars travels toward Hubble, the halo’s gas will absorb some of that light and make the quasar appear a little darker in just a very small wavelength range,” said J. Christopher Howk , associate professor of physics at Notre Dame and co-investigator. “By measuring the dip in brightness, we can tell how much halo gas from M31 there is between us and that quasar.”
Astronomers have observed halos around 44 other galaxies but never one as massive as Andromeda where so many quasars are available to clearly define its extent. The previous 44 were all extremely distant galaxies, with only a single quasar or data point to determine halo size and structure.
Andromeda’s close and huge with lots of quasars peppering its periphery. The team drew from about five years’ worth of observations of archived Hubble data to find many of the 18 objects needed for a good sample.
The halo is estimated to contain half the mass of the stars in the Andromeda galaxy itself, in the form of a hot, diffuse gas. Simulations suggest that it formed at the same time as the rest of the galaxy. Although mostly composed of ionized hydrogen — naked protons and electrons — Andromeda’s aura is also rich in heavier elements, probably supplied by supernovae. They erupt within the visible galaxy and violently blow good stuff like iron, silicon, oxygen and other familiar elements far into space. Over Andromeda’s lifetime, nearly half of all the heavy elements made by its stars have been expelled far beyond the galaxy’s 200,000-light-year-diameter stellar disk.
You might wonder if galactic halos might account for some or much of the still-mysterious dark matter. Probably not. While dark matter still makes up the bulk of the solid material in the universe, astronomers have been trying to account for the lack of visible matter in galaxies as well. Halos now seem a likely contributor.
The next clear night you look up to spy Andromeda, know this: It’s closer than you think!
Have you ever wondered if the Solar System and the Milky Way line up perfectly, like plates spinning within plates? This is something you can test out for yourself.
We love to answer your questions, this one is clearly a fan favorite in the category of the “Wouldn’t it be crazy if…”. Our Solar System is disk shaped, with all the planets orbiting around the Sun in roughly the same plane. AND the Milky Way is also disk shaped, with all the stars orbiting around and around the center of the galaxy. Wouldn’t it be crazy if the Milky Way and the Solar System lined up? Why would that happen?
Do all Solar Systems line up with the Milky Way, like plates spinning on plates spinning on plates? And those plates are on smaller plates. It’s spinning plates all the way down.
The answer is unfortunately “no”, because yes, it is cool when things line up. At this point, I know you’re immediately thinking I’m in the pocket of “Big Plate shape”, but I can assure you that’s not the truth. The Nibiruans, CIA and Big Dental pay much better than those cheap disc jerks have ever ponied up.
The good news is, you don’t have to take science’s word for this. In fact, you can check this out for yourself. If you’ve spent any time watching the sky, you’ll know that the Sun takes roughly the same path across the sky every day. It rises in the East, travels across the sky, and then sets in the West. For me here in Canada, the Sun rises over there in the Winter, it trundles sadly across the horizon to the South, and then sets in the West.
If you live on the equator, you might see the Sun pass right overhead during the day. And if you live in the Southern Hemisphere, you might see the Sun go across the North in the sky. As we spin, the Sun always goes along a predictable line. We can always point at it and say “There’s the center of our solar system”. The Moon takes the same path, and so do the rest of the planets. It’s the plane of the ecliptic, and we’re embedded right in the middle of it. If you get to dark enough skies, you can see the Milky Way. It’s that faint cloudy band that goes across the sky. If the Solar System and the Milky Way had their Frisbees lined up, we could see the Sun, Moon and planets always be in front of the Milky Way.
But they’re not, the Milky Way is actually inclined from the celestial equator at 63-degrees. They cross each other through the constellations of Monoceros and Aquila-Serpens-Ophiuchus. For me, the Milky Way starts over there and ends up over there. The plane of the ecliptic and the Milky Way make a big cross in the sky. The orientation between the Solar System and the Milky Way is coincidence. They just happen to be perpendicular-ish. But they could also just happen to line up, and that would be nothing more than a coincidence too.
The Milky Way and the Solar System aren’t lined up. They couldn’t be any more un-lined up if they tried. Here’s the Milky Way, here’s the Solar System. I’m a Power Ranger. So, I’m sorry, but just won’t be able to use that to justify your cosmic theories about the return of the Flying Spaghetti Monster. Or alternately… like any good conspiracy style thinking…
Good news! The Milky Way and Solar System are almost perpendicular and clearly that near-opposite alignment generates some kind of woogly ethereal gyroscopic metastatic force that clearly is causing your gluten sensitivity and heralds the coming of FSM. What magical effect is this perpendicular alignment causing for you? Tell us in the comments below.
When we look out into space, we’re also looking back into time. Just how far back can we see?
The Universe is a magic time window, allowing us to peer into the past. The further out we look, the further back in time we see. Despite our brains telling us things we see happen at the instant we view them, light moves at a mere 300,000 kilometers per second, which makes for a really weird time delay at great distances.
Let’s say that you’re talking with a friend who’s about a meter away. The light from your friend’s face took about 3.336 nanoseconds to reach you. You’re always seeing your loved ones 3.336 nanoseconds into the past. When you look around you, you’re not seeing the world as it is, you’re seeing the world as it was, a fraction of a second ago. And the further things are, the further back in time you’re looking.
The distance to the Moon is, on average, about 384,000 km. Light takes about 1.28 seconds to get from the Moon to the Earth. If there was a large explosion on the Moon of a secret Nazi base, you wouldn’t see it for just over a second. Even trying to communicate with someone on the Moon would be frustrating as you’d experience a delay each time you talked.
Let’s go with some larger examples. Our Sun is 8 minutes and 20 seconds away at the speed of light. You’re not seeing the Sun as it is, but how it looked more than 8 minutes ago.
On average, Mars is about 14 light minutes away from Earth. When we were watching live coverage of NASA’s Curiosity Rover landing on Mars, it wasn’t live. Curiosity landed minutes earlier, and we had to wait for the radio signals to reach us, since they travel at the speed of light.
When NASA’s New Horizons spacecraft reaches Pluto next year, it’ll be 4.6 light hours away. If we had a telescope strong enough to watch the close encounter, we’d be looking at events that happened 4.6 hours ago.
The closest star, Proxima Centauri, is more than 4.2 light-years away. This means that the Proxima Centurans don’t know who won the last US Election, or that there are going to be new Star Wars movies. They will, however, as of when this video was produced, be watching Toronto make some questionable life choices regarding its mayoral election.
The Eagle Nebula with the famous Pillars of Creation, is 7,000 light-years away. Astronomers believe that a supernova has already gone off in this region, blasting them away. Take a picture with a telescope and you’ll see them, but mostly likely they’ve been gone for thousands of years.
The core of our own Milky Way galaxy is about 25,000 light-years away. When you look at these beautiful pictures of the core of the Milky Way, you’re seeing light that may well have left before humans first settled in North America.
And don’t get me started on Andromeda. That galaxy is more than 2.5 million light-years away. That light left Andromeda before we had Homo Erectus on Earth. There are galaxies out there, where aliens with powerful enough telescopes could be watching dinosaurs roaming the Earth, right now.
Here’s where it gets even more interesting. Some of the brightest objects in the sky are quasars, actively feeding supermassive black holes at the cores of galaxies. The closest is 2.5 billion light years away, but there are many much further out. Earth formed only 4.5 billion years ago, so we can see quasars shining where the light had left before the Earth even formed.
The Cosmic Microwave Background Radiation, the very edge of the observable Universe is about 13.8 billion light-years away. This light left the Universe when it was only a few hundred thousand years old, and only now has finally reached us. What’s even stranger, the place that emitted that radiation is now 46 billion light-years away from us.
So crack out your sonic screwdrivers and enjoy your time machine, Whovians. Your ability to look out into space and peer into the past. Without a finite speed of light, we wouldn’t know as much about the Universe we live in and where we came from. What moment in history do you wish you could watch? Express your answer in the form of a distance in light-years.
There’s a supermassive black hole in the center of our Milky Way galaxy. Could this black hole become a Quasar?
Previously, we answered the question, “What is a Quasar”. If you haven’t watched that one yet, you might want to pause this video and click here. … or you could bravely plow on ahead because you already know or because clicking is hard.
Should you fall in the latter category. I’m here to reward your laziness. A quasar is what you get when a supermassive black hole is actively feeding on material at the core of a galaxy. The region around the black hole gets really hot and blasts out radiation that we can see billions of light-years away.
Our Milky Way is a galaxy, it has a supermassive black hole at the core. Could this black hole feed on material and become a quasar? Quasars are actually very rare events in the life of a galaxy, and they seem to happen early on in a galaxy’s evolution, when it’s young and filled with gas.
Normally material in the galactic disk orbits well away from the the supermassive black hole, and it’s starved for material. The occasional gas cloud or stray star gets too close, is torn apart, and we see a brief flash as it’s consumed. But you don’t get a quasar when a black hole is snacking on stars. You need a tremendous amount of material to pile up, so it’s chokes on all the gas, dust, planets and stars. An accretion disk grows; a swirling maelstrom of material bigger than our Solar System that’s as hot as a star. This disk creates the bright quasar, not the black hole itself.
Quasars might only happen once in the lifetime of a galaxy. And if it does occur, it only lasts for a few million years, while the black hole works through all the backed up material, like water swirling around a drain. Once the black hole has finished its “stuff buffet”, the accretion disk disappears, and the light from the quasar shuts off.
Sounds scary. According to New York University research scientist Gabe Perez-Giz, even though a quasar might be emitting more than 100 trillion times as much energy as the Sun, we’re far enough away from the core of the Milky Way that we would receive very little of it – like, one hundredth of a percent of the intensity we get from the Sun.
Since the Milky Way is already a middle aged galaxy, its quasaring days are probably long over. However, there’s an upcoming event that might cause it to flare up again. In about 4 billion years, Andromeda is going to cuddle with the Milky Way, disrupting the cores of both galaxies. During this colossal event, the supermassive black holes in our two galaxies will interact, messing with the orbits of stars, planets, gas and dust.
Some will be thrown out into space, while others will be torn apart and fed to the black holes. And if enough material piles up, maybe our Milky Way will become a quasar after all. Which as I just mentioned, will be totally harmless to us. The galactic collision? Well that’s another story.
It’s likely our Milky Way already was a quasar, billions of years ago. And it might become one again billions of years from now. And that’s interesting enough that I think we should stick around and watch it happen. How do you feel about the prospects for our Milky Way becoming a quasar? Are you a little nervous by an event that won’t happen for another 4 billion years?
Thanks for watching! Never miss an episode by clicking subscribe. Our Patreon community is the reason these shows happen. We’d like to thank Damon Reith and Jay Allbright, and the rest of the members who support us in making great space and astronomy content. Members get advance access to episodes, extras, contests, and other shenanigans with Jay, myself and the rest of the team. Want to get in on the action? Click here.
When we look up at the night sky outside of the bright city, we can see a dazzling array of stars and galaxies. It is more difficult to see the clouds of gas within galaxies, however, but gas is required to form new stars and allow galaxies to grow. Although gas makes up less than 1% of the matter in the universe, “it’s the gas that drives the evolution of the galaxy, not the other way around,” says Felix “Jay” Lockman of the National Radio Astronomy Observatory (NRAO).
With radio telescopes and surveys such as the Green Bank Telescope (GBT) in West Virginia, the Atacama Large Millimeter/submillimeter Array (ALMA), and the Arecibo Legacy Fast ALFA (ALFALFA) survey, Lockman and other astronomers are learning more about the role of gas in galaxy formation. They presented their results at the annual American Association for the Advancement of Science (AAAS) meeting in San Jose.
Although we have an excellent view of our part of the Milky Way, and we can tell that it has a disk-shaped structure — that is the origin of its name, after all — it is not so simple to study how the galaxy formed. Lockman described the situation with an analogy: if you were trying to understand how your own house was built without leaving it, you would look and listen throughout the house and you would look out the window to learn what you can from your neighbors’ homes. Andromeda is the Milky Way’s largest neighbor, and they both have “satellite” galaxies traveling around them, some of which appear to have gas.
In addition, Lockman and his colleagues found clouds of gas between Andromeda and one of its satellites, Triangulum, which could be a “source of fuel for future star formation” for the galaxies. As a dramatic example of high-velocity clouds, Lockman presented new GBT images of the Smith Cloud, which was first discovered in 1963 by a student in the Netherlands. The Smith Cloud is a newcomer to the Milky Way and could provide enough gas to form a million stars and solar systems. Based on its speed and trajectory, “we think in a few million years, splash!” as it collides with our galaxy.
Kartik Sheth, another scientist at NRAO, continued with a description of astronomers’ current state of knowledge of the assembly of disk and spiral galaxies, of which the Milky Way and Andromeda are only two examples. Spiral galaxies typically have many gas clouds forming new stars, often referred to as stellar nurseries, and now with ALMA, “a fantastic telescope at 16,500-ft elevation,” Sheth and his colleagues are studying them in more detail.
In particular, Sheth presented newly published results by Adam Leroy in the Astrophysical Journal, in which they examine star-forming clouds in the heart of the nearby starbursting galaxy, Sculptor, to study “the physics of how gas got converted into stars.” Sculptor and other starbursts form stars at a rate about 1,000 times faster than typical spiral galaxies like the Milky Way. “Only with ALMA can we actually accomplish observations like this” of objects outside our galaxy. By comparing the concentration and distribution of ten gas clouds in Sculptor, they find that the clouds are more massive, ten times denser, and more turbulent than similar clouds in more typical galaxies. Because of the density of these stellar nurseries, they can form stars much more efficiently.
Other astronomers at the AAAS meeting, such as Claudia Scarlata (University of Minnesota) and Eric Wilcots (University of Wisconsin), presented a larger-scale picture of how spiral galaxies collide with each other to form more massive elliptical-shaped galaxies. These galaxies typically appear older and have stopped forming stars, but they can grow by “merging” with a neighboring galaxy in its group. “I will contend that most galaxy transformations take place in groups,” says Wilcots. In a paper based on ALFALFA data published in the Astronomical Journal, Kelley Hess and Wilcots find gas-rich galaxies distributed primarily in the outskirts of groups, and therefore these systems tend to grow from the inside out.
In a related issue, both Priyamvada Natarajan (Yale University) and Scarlata discussed how the evolution of massive black holes at the centers of galaxies appear to be related to that of the galaxy as a whole, when astronomers follow them from “cradle to adulthood.” In particular, Natarajan explained how mature galaxies’ black holes can heat the gas in a galaxy and drive gas outflows, thus preventing continued star formation in the galaxy.
Finally, astronomers look forward to much more upcoming cutting-edge research on gas in galaxies. Ximena Fernández (Columbia University) described the COSMOS HI Large Extragalactic Survey (CHILES) of hydrogen gas in galaxies with the Very Large Array. They have completed a pilot survey so far, in which they have obtained the most distant detection so far of a galaxy containing gas. They plan to peer even further into the distant past than previous surveys, expecting to detect gas in 300 galaxies up to 5 billion light-years away—250 times further than the galaxy observed by Leroy.
Fernández also described MeerKAT, a radio telescope under construction in South Africa, and the Deep Investigation of Neutral Gas Origins (DINGO) in Australia, both of which will serve as precursors for the Square Kilometer Array in the 2020s. These new telescopes will add to astronomers’ increasingly complex view of the formation and evolution of galaxies.
It’s an old story: a couple leave their jobs, sell everything, and live in motorhome to capture footage and imagery of the night sky.
Wait… what?
This unique story is exactly what Brad and Marci Goldpaint did. They left their jobs and traveled throughout the western US in an RV to begin educating the public about the damaging effects of light pollution. They wanted to help reconnect people with the simple beauty of the night sky and have been teaching photography workshops and gathering footage for a new timelapse called “Illusion of Lights: A Journey into the Unseen.”
With breathtaking scenes and soaring music, this video “introduces you to the concept of movement and time that visually explores our night skies,” says Brad on Vimeo.
We’ve featured images and timelapses from Brad before, and he shared how the sudden loss of his mother caused him to reassess his goals and priorities. Since 2009 he’s been working on outdoor photography and has now dedicated his work to sharing images of the night sky with others.
For this timelapse, Brad said he “spent countless nights traversing in the dark, carrying heavy camera equipment, and braving the dark unseen.” He dealt with lightning storms, dangerous winds, and up-close encounters with bears and other wildlife. Sometimes, after spending days hiking to a remote location and with optimistic weather reports, Mother Nature showed up and ruined his opportunity to get the shot.
A few highlights: at about 2:00 there is an exploding meteor with a persistent train that is stunning. You’ll also see strange lights on Mount Rainier. Brad explained these lights are from people climbing the mountian at night in hopes of reaching the summit by sunrise the following day. The white lights you see are from their headlamps. “Can you imagine climbing up a mountain in the middle of the night?” he asks?