Cold-War Era Derived ICBM Blasts Military ORS-5 Surveillance and Space Junk Tracking Satellite to Orbit: Gallery

Orbital ATK Minotaur IV rocket streaks to orbit after blastoff darting in and out of clouds to deliver the ORS-5 space situational awareness and debris tracking satellite to equatorial orbit for the U.S. Air Force at 2:04 a.m. EDT on August 26, 2017 from Cape Canaveral Air Force Station, FL – as seen from 5th Space Launch Squadron building roof on CCAFS. Credit: Ken Kremer/kenkremer.com
ICBM derived Minotaur IV overnight launch of the ORS-5 space situational awareness and debris tracking satellite for the U.S. Air Force at 2:04 a.m. EDT on August 26, 2017 from Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL — A Cold War-era derived Peacekeeper ICBM missile formerly armed with multiple nuclear warheads and now modified as a payload orbiter successfully launched an urgently needed space situational awareness and space junk tracking satellite to equatorial orbit overnight this morning, Aug. 26, for the U.S. military from the Florida Space Coast.

Following a nearly 3 hour delay due to day long dismal weather causing locally heavy rain storms and lighting in central Florida, an Orbital ATK Minotaur IV rocket carrying the ORS-5 tracking satellite for the USAF finally lifted off in the wee hours Saturday morning, Aug. 26 at 2:04 a.m. EDT from Cape Canaveral Air Force Station in Florida.

The five stage solid fueled Minotaur IV roared rapidly off Space Launch Complex 46 (SLC-46) on a half million pounds of thrust and quickly disappeared into the clouds from the perspective of our nearby media launch viewing site on this inaugural launch of the rocket from the Cape.

Check back here to see the expanding gallery of launch photos and videos recorded by myself and space journalist colleagues!

Orbital ATK Minotaur IV rocket streaks to orbit after blastoff carrying the ORS-5 space situational awareness and debris tracking satellite to orbit for the military at 2:04 a.m. EDT on August 26, 2017 from pad 46 on Cape Canaveral Air Force Station in Florida. Credit: Julian Leek

The gap filling ORS-5 space surveillance satellite is a low cost mission technology demonstration mission that will track orbiting threats for the U.S. Air Force – and offered a thrilling nighttime launch experience to those who stayed awake and braved the post midnight time slot.

The converted ICBM motor ignition produced a flash of extremely bright light that briefly turned night into day. The maiden Minotaur from the Cape gushed intensely at liftoff and left a huge exhaust trailing in its wake as it accelerated to orbit.

Orbital ATK Minotaur IV rocket streaks to orbit after blastoff darting in and out of clouds to deliver the ORS-5 space situational awareness and debris tracking satellite to equatorial orbit for the U.S. Air Force at 2:04 a.m. EDT on August 26, 2017 from Cape Canaveral Air Force Station, FL – as seen from 5th Space Launch Squadron building roof on CCAFS. Credit: Ken Kremer/kenkremer.com

The ORS-5 is a single satellite constellation with a primary mission to provide space situational awareness of the geosynchronous orbit belt for Combatant Commanders’ urgent needs, according to Brig. Gen. Wayne Monteith, 45th Space Wing commander and mission Launch Decision Authority at Cape Canaveral Air Force Station

The ORS-5 mission, which stands for Operationally Responsive Space-5, marks the first launch of a Minotaur IV rocket from Cape Canaveral Air Force Station and the first use of SLC-46 since 1999.

SLC-46 is operated under license by Space Florida, which invested more than $6 million dollars of state funds into pad upgrades and renovations.

Orbital ATK Minotaur IV rocket streaks to orbit after blastoff carrying the ORS-5 space situational awareness and debris tracking satellite to orbit for the military at 2:04 a.m. EDT on August 26, 2017 from pad 46 on Cape Canaveral Air Force Station in Florida. Credit: Michael Seeley/WeReportSpace

The ORS-5 satellite built for the USAF Operationally Responsive Space Office will provide the US military with space-based surveillance and tracking of other satellites both friend and foe as well as space debris in geosynchronous orbit, 22,236 miles above the equator.

ORS-5 is like a telescope wrapped in a satellite that will aim up to seek threats from LEO to GEO using cameras and spectrometer sensors.

Also known as SensorSat, ORS-5 is designed to scan for other satellites and debris to aid the U.S. military’s tracking of objects in geosynchronous orbit for a minimum of three years and possibly longer if its on board sensor and spacecraft systems continue functioning in a useful and productive manner.

The Minotaur IV is a five stage rocket comprised of three stages of a decommissioned Cold War-era Peacekeeper Intercontinental Ballistic Missile (ICBM) that has been modified to add two additional Orbital ATK Orion 38 solid rocket motors for the upper stages.

Approximately 28 minutes after liftoff at 2:04 a.m. EDT, the Minotaur IV deployed the ORS-5 satellite into its targeted low inclination orbit 372 miles (599 kilometers) above the earth, Orbital ATK confirmed.

“From this orbit, ORS-5 will deliver timely, reliable and accurate space situational awareness information to the United States Strategic Command through the Joint Space Operations Center.”

Orbital ATK Minotaur IV rocket soars to orbit after blastoff darting artfully in and out of clouds to deliver the ORS-5 space situational awareness and debris tracking satellite to orbit for the U.S. Air Force at 2:04 a.m. EDT on August 26, 2017 from Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

“This was our first Minotaur launch from Cape Canaveral Air Force Station, demonstrating the rocket’s capability to launch from all four major U.S. spaceports,” said Rich Straka, Vice President and General Manager of Orbital ATK’s Launch Vehicles Division.

ICBM derived Minotaur IV overnight launch of the ORS-5 space situational awareness and debris tracking satellite for the U.S. Air Force at 2:04 a.m. EDT on August 26, 2017 from Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

This Minotaur IV rocket is a retired Cold War-era ICBM missile once armed with nuclear warheads aimed at the former Soviet Union that can now launch satellites for purposes other than offensive nuclear war retaliation.

So on the event of a nuclear first or retaliatory strike, this is how the world could potentially end in utter destruction and nuclear catastrophy.

To get an up-close feeling of the sounds and fury watch this Minotaur IV/ORS-5 launch video compilation from colleague Jeff Seibert from our media launch viewing site from the roof of the 5th Space Launch Squadron building on Cape Canaveral Air Force Station, FL.

Video Caption: Orbital ATK launch of Minotaur ORS 5 at 2:04 a.m. EDT on Aug. 26, 2017. None of the videos are sped up, it really takes off that fast. The solid fuel Peacekeeper missile segments were repurposed to launch the ORS-5 satellite from Launch Complex 46 on CCAFS., Fl. Credit: Jeff Seibert

Overall the ORS-5 launch was the 26th blastoff in Orbital ATK’s Minotaur family of launch vehicles which enjoy a 100% success rate to date.

Today’s launch was the 6th for the Minotaur IV version.

“With a perfect track record of 26 successful launches, the Minotaur family has proven to be a valuable and reliable asset for the Department of Defense,” said Straka.

“Orbital ATK has launched nearly 100 space launch and strategic rockets for the U.S. Air Force,” said Scott Lehr, President of Orbital ATK’s Flight Systems Group. “We’re proud to be a partner they can count on.”

Orbital ATK Minotaur IV rocket streaks to orbit through low hanging clouds that instantly become brightly illuminated as the booster engines flames pass through, while leaving towering exhaust plume in its wake. The mission carried the ORS-5 satellite tracker to equatorial orbit for the U.S. Air Force at 2:04 a.m. EDT on August 26, 2017 from Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

The past two weeks have been a super busy time at the Kennedy Space Center and Cape Canaveral. This morning’s post midnight launch was the third in just 11 days – and the second in a week!

A ULA Atlas V launched the NASA TDRS-M science relay satellite last Friday, Aug 18. And a SpaceX Falcon 9 launched the Dragon CRS-12 cargo resupply mission to the International Space Station (ISS) on Monday, Aug. 14.

“The ORS-5 Minotaur IV launch was the true epitome of partnership,” Gen. Monteith said.

“A collaborative effort between multiple mission partners, each group came together flawlessly to revolutionize how we work together on the Eastern Range. Teamwork is pivotal to making us the ‘World’s Premier Gateway to Space’ and I couldn’t be prouder to lead a Wing that not only has launched over a quarter of the world’s launches this year, but also three successful, launches from three different providers, in less than two weeks.”

ORS-5 was designed and built by Massachusetts Institute of Technology’s Lincoln Laboratory facility in Lexington, Massachusetts at a cost of $49 million.


The ORS-5 or SensorSat satellite will provide the US military with space-based surveillance and tracking of other satellites both friend and foe and space debris in geosynchronous orbit 22,236 miles above the equator. Credit: MIT Lincoln Laboratory

In July 2015 the U.S. Air Force’s Operationally Responsive Space (ORS) Office awarded Orbital ATK a $23.6 million contract to launch the ORS-5 SensorSat on the Minotaur IV launch vehicle.

ORS-5/SensorSat was processed for launch and encapsulation inside the 2.3 meter diameter payload fairing at Astrotech Space Operations processing facility in Titusville, Florida.

Orbital ATK Minotaur IV rocket streaks to orbit after blastoff darting in and out of clouds to deliver the ORS-5 space situational awareness and debris tracking satellite to equatorial orbit for the U.S. Air Force at 2:04 a.m. EDT on August 26, 2017 from Cape Canaveral Air Force Station, FL – as seen from 5th Space Launch Squadron building roof on CCAFS. Credit: Ken Kremer/kenkremer.com
Orbital ATK Minotaur IV rocket streaks to orbit after blastoff darting in and out of clouds to deliver the ORS-5 space situational awareness and debris tracking satellite to equatorial orbit for the U.S. Air Force at 2:04 a.m. EDT on August 26, 2017 from Cape Canaveral Air Force Station, FL – as seen from 5th Space Launch Squadron building roof on CCAFS. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing onsite Minotaur IV ORS-5, TDRS-M, CRS-12, and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Orbital ATK Minotaur IV rocket streaks to orbit through low hanging clouds that instantly illuminate as the booster engines flames pass through. This first Minotaur launch from the Cape carried the ORS-5 satellite tracker to equatorial orbit for the U.S. Air Force at 2:04 a.m. EDT on August 26, 2017 from Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com
Orbital ATK Minotaur IV rocket description. Credit: Orbital ATK/USAF
Minotaur IV ORS-5 mission patch

Threat Tracking USAF Satellite Launching Nighttime Aug 25 on Cape Debut of Retired ICBM Minotaur Rocket: Watch Live

An Orbital ATK Minotaur IV rocket carrying the ORS-5 USAF surveillance satellite is slated for its maiden liftoff from Cape Canaveral Air Station, Florida at 11:15 p.m. EDT on August 25, 2017 on a retired ICBM. Credit: U.S. Air Force/Patrick AFB
An Orbital ATK Minotaur IV rocket carrying the ORS-5 USAF surveillance satellite is slated for its maiden liftoff from Cape Canaveral Air Station, Florida at 11:15 p.m. EDT on August 25, 2017 on a retired ICBM. Credit: U.S. Air Force/Patrick AFB

CAPE CANAVERAL AIR FORCE STATION, FL — A gap filling space surveillance satellite that will track orbiting threats for the U.S. Air Force is set for an thrilling nighttime blastoff Friday, Aug. 25 on the maiden mission of the Minotaur IV rocket from Cape Canaveral that’s powered by a retired Cold War-era ICBM missile – once armed with nuclear warheads.

The ORS-5 satellite will provide the US military with space-based surveillance and tracking of other satellites both friend and foe as well as space debris in geosynchronous orbit, 22,236 miles above the equator.

The Orbital ATK Minotaur IV rocket carrying the ORS-5 tracking satellite for the USAF Operationally Responsive Space Office is targeting liftoff just before midnight Friday at 11:15 p.m. EDT from Space Launch Complex-46 (SLC-46) at Cape Canaveral Air Force Station.

“We are go for launch of Orbital ATK’s Minotaur IV rocket Friday night,” Orbital ATK confirmed.

The ORS-5 mission, which stands for Operationally Responsive Space-5, marks the first launch of a Minotaur IV rocket from Cape Canaveral and the first use of SLC-46 since 1999.

The Minotaur IV is a five stage rocket comprised of three stages of a decommissioned Cold War-era Peacekeeper Intercontinental Ballistic Missile (ICBM) that has been modified to add two additional Orbital ATK Orion 38 solid rocket motors for the upper stages.

Being a night launch and the first of its kind will surely make for a spectacular sky show.

Plus if you want to see how the world could potentially end in nuclear catastrophy, come watch the near midnight launch of the Orbital ATK Minotaur IV rocket that’s a retired Peacekeeper ICBM once armed with nuclear warheads aimed at the Russians but now carrying the USAF ORS-5 surveillance satellite instead.

Its well worth your time if you can watch the Minotaur launch with your own eyeballs. It can be easily viewed from numerous local area beaches, parks, restaurants and more.

Minotaur IV rocket stands at pad 46 with the USAF ORS-5 surveillance satellite for its first launch from Cape Canaveral Air Station, Florida on August 25, 2017. Credit: Orbital ATK

Furthermore, its been in a super busy time at the Kennedy Space Center and Cape Canaveral. Because, if all goes well Friday’s midnight launch will be the third in just 11 days – and the second in a week!

A ULA Atlas V launched the NASA TDRS-M science relay satellite last Friday, Aug 18. And a SpaceX Falcon 9 launched the Dragon CRS-12 cargo resupply mission to the International Space Station (ISS) on Monday, Aug. 14.

You can watch the launch live via the Orbital ATK website here: www.orbitalatk.com

The live Orbital ATK broadcast will begin approximately 20 minutes before the launch window opens.

The webcast will be hosted by former CNN space reporter John Zarrella.

The launch window opens at 11:15 p.m. EDT August 25. It extends for four hours until 3:15 a.m. EDT August 26.

In the event of delay for any reason, the next launch opportunity is Saturday, Aug. 26. The launch window remains the same from 11:15 p.m. EDT August 26 to 3:15 a.m. EDT August 27.

The weather looks somewhat iffy at this time with only a 60% chance of favorable conditions at launch time according to U.S. Air Force meteorologists with the 45th Space Wing Weather Squadron at Patrick Air Force Base. The primary concerns on Aug. 25 are for thick clouds and cumulus clouds.

The weather odds deteriorate to only 40% favorable for the 24 hour scrub turnaround day on Aug. 26. The primary concerns on Aug. 26 are for thick clouds, cumulus clouds and lightning.


The ORS-5 or SensorSat satellite will provide the US military with space-based surveillance and tracking of other satellites both friend and foe and space debris in geosynchronous orbit 22,236 miles above the equator. Credit: MIT Lincoln Laboratory

ORS-5 is like a telescope wrapped in a satellite that will aim up to seek threats from LEO to GEO.

ORS-5, also known as SensorSat, is designed to scan for other satellites and debris to aid the U.S. military’s tracking of objects in geosynchronous orbit for a minimum of three years and possibly longer if its on boards sensor and satellite systems continue functioning in a useful and productive manner.

“The delivery and upcoming launch of ORS-5 marks a significant milestone in fulfilling our commitment to the space situational awareness mission and U.S. Strategic Command,” said Lt. Gen. John F. Thompson, commander of the Space and Missile Systems Center and Air Force program executive officer for Space. “It’s an important asset for the warfighter and will be employed for at least three years.”

The ORS-5 satellite has a payload mass of 140 kg. It will be launched into a low inclination equatorial orbit of 600 km x 600 km (373 mi x 373 mi) at zero degrees.

“This will be the largest low-Earth orbit inclination plane change in history – 28.5 degrees latitude to equatorial orbit,” says Orbital ATK.

“The Minotaur IV 4th stage will put ORS-5 into initial orbit & the payload insertion stage will make a hard left to get to equatorial orbit.”

The Cape Canaveral AFB launch site for this Minotaur IV was chosen, rather than NASA’s Wallops Flight Facility in Virginia based on the final orbit required for ORS-5, Orbital ATK told Universe Today at a prelaunch media briefing.

The Minotaur IV is not powerful enough to deliver ORS-5 to the desired orbit from Wallops.

ORS-5 was designed and built by Massachusetts Institute of Technology’s Lincoln Laboratory facility in Lexington, Massachusetts at a cost of $49 million.

In July 2015 the U.S. Air Force’s Operationally Responsive Space (ORS) Office awarded Orbital ATK a $23.6 million contract to launch the ORS-5 SensorSat on the Minotaur IV launch vehicle.

ORS-5/SensorSat was processed for launch and encapsulation inside the 2.3 meter diameter payload fairing at Astrotech Space Operations processing facility in Titusville, Florida.

The Minotaur IV is quite similar to Orbital ATK’s Minotaur V launch vehicle which successfully propelled NASA’s LADEE lunar orbiter to the Moon for NASA during a night launch from the agency’s Wallops Flight Facility in Virginia in Sept. 2013.

Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, 2013 at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia. Credit: Ken Kremer/kenkremer.com

The Minotaur V also utilizes the first three stages of the decommissioned Peacekeeper ICBM missile.

Overall the ORS-5 launch will be the 26th blastoff in Orbital ATK’s Minotaur family of launch vehicles which enjoy a 100% success rate to date.

Gantry doors open to expose Minotaur V rocket launching LADEE lunar orbiter to the Moon on Sept 6, 2013 from Launch Pad 0B at NASA Wallops Island. Credit: Ken Kremer/kenkremer.com

The U.S. Air Force has a stockpile of about 180 surplus Peacekeeper motors, but not all are launch capable, the USAF told Universe Today at a prelaunch media briefing.

The USAF furnishes the Peacekeeper motors to Orbital ATK after first refurbishing the booster stages at Vandenberg AFB, Ca.

Orbital ATK then upgrades the stages by adding their own “flight-proven avionics, structures, software and other components that are common among Orbital ATK’s space launch vehicles” and integrating the firms Orion 38 solid rocket motors for the two upper stages.

“A combined government and contractor team of mission partners executed final ground activities including a Launch Base Compatibility Test to verify satellite integrity after shipment, an intersegment test to verify communication compatibility from the satellite to the on-orbit operations center and the final battery reconditioning for launch, prior to its integration with the Minotaur IV launch vehicle,” says the USAF.

Watch for Ken’s continuing onsite Minotaur IV ORS-5, TDRS-M, CRS-12, and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Minotaur IV ORS-5 Mission Trajectory. Credit: Orbital ATK

………….

Learn more about the 2017 Total Solar Eclipse, upcoming Minotaur IV ORS-5 military launch on Aug. 25, recent ULA Atlas TDRS-M NASA comsat on Aug. 18, 2017 , SpaceX Dragon CRS-12 resupply launch to ISS on Aug. 14, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Aug 25-26: “2017 Total Solar Eclipse, Minotaur IV ORS-5, TDRS-M NASA comsat, SpaceX CRS-12 resupply launches to the ISS, Intelsat35e, BulgariaSat 1 and NRO Spysat, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Stacking the 4th stage of the Orbital ATK Minotaur IV rocket in preparation for the August 25, 2017 ORS-5 launch from Space Launch Complex 46, Cape Canaveral Air Station, Florida. Credit: Orbital ATK
Orbital ATK Minotaur IV rocket description. Credit: Orbital ATK/USAF
Minotaur IV ORS-5 mission patch

Science Laden SpaceX Dragon Set for Aug. 14 ISS Launch, Testfire Inaugurates Triad of August Florida Liftoffs: Watch Live

SpaceX Falcon 9 rocket rests horizontally at Launch Complex 39A at the Kennedy Space Center on 13 Aug. 2017 while being processed for liftoff of the Dragon CRS-12 resupply mission to the International Space Station (ISS) slated for 14 Aug. 2017. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket rests horizontally at Launch Complex 39A at the Kennedy Space Center on 13 Aug. 2017 while being processed for liftoff of the Dragon CRS-12 resupply mission to the International Space Station (ISS) slated for 14 Aug. 2017. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – A triad of August liftoffs from the Florida Space Coast inaugurates Monday, Aug. 14 with a science laden commercial SpaceX Dragon bound for the International Space Station (ISS) – loaded with over 3 tons of NASA science, hardware and supplies including a cosmic ray detector, medical research experiments dealing with Parkinson’s disease and lung tissue, vegetable seeds, mice and much more, following a successful engine test firing of the Falcon 9 booster on Thursday.

“Static fire test of Falcon 9 complete,” SpaceX confirmed via Twitter soon after completion of the test at 9:10 a.m. EDT, Aug 10. (1310 GMT) “—targeting August 14 launch from Pad 39A for Dragon’s next resupply mission to the @Space_Station.”

Check out our photos & videos herein of the Aug. 10 static first test of the Falcon 9 first stage that paves the path to blastoff – as witnessed live by Ken Kremer and Jeff Seibert.

The triple headed sunshine state space spectacular kicks off with Monday’s lunchtime launch of the next unmanned SpaceX Dragon cargo freighter to the ISS from seaside pad 39A at NASA’s Kennedy Space Center in Florida, now targeted for Aug. 14 at 12:31 p.m. EDT (1631 GMT).

The closely spaced trio of space launches marches forward barely 4 days later with liftoff of NASA’s amazingly insectoid-looking TDRS-M science relay comsat slated for Friday morning Aug. 18 atop a United Launch Alliance (ULA) Atlas V rocket.

Lastly, a week after TDRS-M and just 11 days after the SpaceX Dragon an Orbital ATK Minotaur 4 rocket is due to blastoff just before midnight Aug. 25 and carry the ORS 5 mission to orbit for the U.S. military’s Operationally Responsive Space program. The Minotaur IV utilizes three stages from decommissioned Peacekeeper ICBMs formerly aimed at the Russians.

Of course getting 3 rockets off the ground from 3 different companies is all highly dependent on Florida’s hugely fickle hurricane season weather and the ever present reality of potential technical glitches, errant boaters and more – possibly resulting in a domino effect of cascading launch scrubs.

And sandwiched in between the Florida Space Coast blastoffs is the Total Solar ‘Eclipse Across America’ on Monday, Aug. 21 – for the first time in 99 years!

Although KSC and central Florida are not within the path of totality, the sun will still be about 85% obscured by the Moon.

So if you’re looking for bang for the space buck, the next two weeks have a lot to offer space and astronomy enthusiasts.

1st Reused SpaceX Dragon cargo craft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. June 3, 2017 on CRS-11 mission carrying 3 tons of research equipment, cargo and supplies to the International Space Station. Credit: Ken Kremer/kenkremer.com

The Dragon resupply ship dubbed Dragon CRS-12 counts as SpaceX’s twelfth contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.

SpaceX conducts successful static fire test of the Falcon 9 rocket on Aug. 10, 2017 at Launch Complex 39A on NASA’s Kennedy Space Center, Fl as seen from Playalinda causeway. Liftoff of the uncrewed Dragon CRS-12 resupply mission for NASA to the International Space Station (ISS) is scheduled for Aug. 14, 2017. Credit: Ken Kremer/kenkremer.com

Watch this video of the Aug. 10 static hotfire test:

Video Caption: Hot fire test of the SpaceX Falcon 9 rocket in preparation for it launching the NASA CRS-12 Dragon resupply mission to the International Space Station from Pad 39A at Kennedy Space Center in Florida. Credit: Jeff Seibert/AmericaSpace

The 20-foot high, 12-foot-diameter Dragon CRS-12 vessel is carrying more than 6,400 pounds ( 2,900 kg) of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex. 20 mice are also onboard. This will support dozens of the 250 research investigations and experiments being conducted by Expedition 52 and 53 crew members.

SpaceX conducts successful static fire test of the Falcon 9 rocket on Aug. 10, 2017 at Launch Complex 39A on NASA’s Kennedy Space Center, Fl as seen from Playalinda causeway. Liftoff of the uncrewed Dragon CRS-12 resupply mission for NASA to the International Space Station (ISS) is scheduled for Aug. 14, 2017. Credit: Ken Kremer/kenkremer.com

If you can’t personally be here to witness the launch in Florida, you can always watch NASA’s live coverage on NASA Television and the agency’s website.

The SpaceX/Dragon CRS-12 launch coverage will be broadcast on NASA TV beginning noon on Aug. 14 with additional commentary on the NASA launch blog.

SpaceX will also offer their own live webcast beginning approximately 15 minutes before launch at about 12:16 p.m. EDT.

You can watch the launch live at NASA TV at – http://www.nasa.gov/nasatv

You can also watch the launch live at SpaceX hosted Webcast at – spacex.com/webcast

In the event of delay for any reason, the next launch opportunity is Tuesday, Aug. 15 with NASA TV coverage starting about 11:30 a.m. EDT.

The weather looks decent at this time with a 70% chance of favorable conditions at launch time according to U.S. Air Force meteorologists with the 45th Space Wing Weather Squadron at Patrick Air Force Base. The primary concerns on Aug. 14 are cumulus clouds and the potential for precipitation in the flight path.

The odds remain at 70% favorable for the 24 hour scrub turnaround day on Aug. 15.

Everything is currently on track for Monday’s noontime launch of the 230 foot tall SpaceX Falcon 9 on the NASA contracted SpaceX CRS-12 resupply mission to the million pound orbiting lab complex.

However since the launch window is instantaneous there is no margin for error. In case any delays arise during the countdown due to technical or weather issues a 24 hour scrub to Tuesday will result.

The lunchtime launch coincidently offers a convenient and spectacular opportunity for fun for the whole family as space enthusiasts flock in from around the globe.

Plus SpaceX will attempt a land landing of the 156 foot tall first stage back at the Cape at Landing Zone 1 some 8 minutes after liftoff – thus a double whammy of space action !!– punctuated by multiple loud sonic booms at booster landing time that will figuratively knock your socks off.

SpaceX Falcon 9 booster deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 3 June 2017 from the Kennedy Space Center in Florida on the Dragon CRS-11 resupply mission to the International Space Station for NASA. Credit: Ken Kremer/Kenkremer.com

To date SpaceX has successfully recovered 13 boosters; 5 by land and 8 by sea, over the past 18 months. It’s a feat straight out of science fiction but aimed at drastically slashing the high cost of access to space.

The recent BulgariaSat-1 and Iridium-2 missions counted as the eighth and ninth SpaceX launches of 2017.

CRS-12 marks the eleventh SpaceX launch of 2017 and will establish a new single year record.

In contrast to the prior CRS-11 mission which flew a recycled Dragon, the CRS-12 Dragon is newly built.

The CRS-12 Dragon will be the last newly built one, says NASA. The remaining SpaceX CRS mission will utilize reused spaceships.

The Falcon 9 is also new and will attempt a land landing back at the Cape at Landing Zone-1 (LZ-1).

If the Aug. 14 launch occurs as scheduled, the Dragon will reach its preliminary orbit about 10 minutes later and deploy its life giving solar arrays. Dragon then begins a 2 day orbital chase of the station via a carefully choreographed series of thruster firings that bring the commercial spacecraft to rendezvous with the space station on Aug. 16.

Dragon will be grappled with the station’s Canadian built robotic arm at approximately 7 a.m. EDT on Aug. 16 by astronauts Jack Fischer of NASA and Paolo Nespoli of ESA (European Space Agency). It then will be installed on the Harmony module.

The Dragon spacecraft will spend approximately one month attached to the space station, returning to Earth in mid-September with results of earlier experiments.

Dragon CRS-12 is SpaceX’s third contracted resupply mission to launch this year for NASA.

The prior SpaceX cargo ships launched on Feb 19 and June 3, 2017 on the CRS-10 and CRS-11 missions to the space station. CRS-10 is further noteworthy as being the first SpaceX launch of a Falcon 9 from NASA’s historic pad 39A.

SpaceX leased pad 39A from NASA in 2014 and after refurbishments placed the pad back in service this year for the first time since the retirement of the space shuttles in 2011.

Previous launches include 11 Apollo flights, the launch of the unmanned Skylab in 1973, 82 shuttle flights and five SpaceX launches.

Cargo Manifest for CRS-12:

TOTAL CARGO: 6415.4 lbs. / 2910 kg

TOTAL PRESSURIZED CARGO WITH PACKAGING: 3642 lbs. / 1652 kg
• Science Investigations 2019.4 lbs. / 916 kg
• Crew Supplies 485 lbs. / 220 kg
• Vehicle Hardware 747.4 lbs. / 339 kg
• Spacewalk Equipment 66.1 lbs. / 30 kg
• Computer Resources 116.8 lbs. / 53 kg

UNPRESSURIZED 2773.4 lbs. / 1258 kg
• Cosmic-Ray Energetics and Mass (CREAM) 2773.4 lbs. / 1258 kg

The CREAM instrument from the University of Maryland will be stowed for launch inside the Dragon’s unpressurized trunk. Astronauts will use the stations robotic arm to pluck it from the trunk and attach it to the exposed porch of the Japanese Experiment Module (JEM).

The Cosmic-Ray Energetics and Mass investigation (CREAM) instrument from the University of Maryland, College Park involves placing a balloon-borne instrument aboard the International Space Station to measure the charges of cosmic rays over a period of three years. CREAM will be attached to the Japanese Experiment Module Exposed Facility. Existing CREAM hardware used for balloon flights. Credit: NASA

Here is a NASA description of CREAM:

The Cosmic Ray Energetics and Mass (CREAM) instrument, attached to the Japanese Experiment Module Exposed Facility, measures the charges of cosmic rays ranging from hydrogen to iron nuclei. The data collected from the CREAM instrument will be used to address fundamental science questions on the origins and history of cosmic rays. CREAM’s three-year mission will help the scientific community build a stronger understanding of the fundamental structure of the universe.

The LRRK2 experiment seeks to grow larger crystals of the protein to investigate Parkinson’s disease and help develop new therapies:

Here is a NASA description of LRRK2:

Crystallization of Leucine-rich repeat kinase 2 (LRRK2) under Microgravity Conditions (CASIS PCG 7) will use the orbiting laboratory’s microgravity environment to grow larger versions of this important protein, implicated in Parkinson’s disease. Developed by the Michael J. Fox Foundation, Anatrace and Com-Pac International, researchers will look to take advantage of the station’s microgravity environment which allows protein crystals to grow larger and in more perfect shapes than earth-grown crystals, allowing them to be better analyzed on Earth. Defining the exact shape and morphology of LRRK2 would help scientists to better understand the pathology of Parkinson’s and aid in the development of therapies against this target.

Watch this Michael J. Fox video describing the LRRK2 crystallization experiment:

Video Caption: ISS National Lab SpaceX CRS-12 Payload Overview: Michael J. Fox Foundation. The Michael J. Fox Foundation is sending an experiment to the ISS National Lab to investigate the LRRK2 protein, a key target in identifying the makeup of Parkinson’s disease.

Watch for Ken’s continuing onsite CRS-12, TRDS-M, and ORS 5 and NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about the upcoming SpaceX Dragon CRS-12 resupply launch to ISS on Aug. 14, ULA Atlas TDRS-M NASA comsat on Aug. 18, 2017 Solar Eclipse, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Aug 12-14: “SpaceX CRS-12 resupply launches to the ISS, Intelsat35e, BulgariaSat 1 and NRO Spysat, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Up close view of SpaceX Dragon CRS-11 resupply vessel atop Falcon 9 rocket and delivering 3 tons of science and supplies to the International Space Station (ISS) for NASA. Liftoff occurred 3 June 2017. Credit: Ken Kremer/Kenkremer.com
Inside the Astrotech payload processing facility in Titusville, FL,NASA’s massive, insect like Tracking and Data Relay Satellite, or TDRS-M, spacecraft is undergoing preflight processing during media visit on 13 July 2017. TDRS-M will transmit critical science data gathered by the ISS, Hubble and numerous NASA Earth science missions. It is being prepared for encapsulation inside its payload fairing prior to being transported to Launch Complex 41 at Cape Canaveral Air Force Station for launch on a United Launch Alliance (ULA) Atlas V rocket on 3 August 2017. Credit: Ken Kremer/kenkremer.com