Chris Kraft, Legendary NASA Flight Director, Dies at 95

Christopher Kraft, flight director during Project Mercury, works at his console inside the Flight Control area at Mercury Mission Control. Credit: NASA

The man known as the ‘father of flight control’ – Christopher C. Kraft, Jr.  – has died at the age of 95. Kraft joined the NASA Space Task Group in November 1958 and became the first flight director. He created the concepts of mission planning, and real-time monitoring and control for the first U.S. crewed spaceflight missions and became a driving force in the U.S. space program.

Continue reading “Chris Kraft, Legendary NASA Flight Director, Dies at 95”

Weekly Space Hangout: March 14, 2018: Ethan Good, Visiting Vehicles Officer at JSC

Hosts:
Fraser Cain (universetoday.com / @fcain)
Dr. Paul M. Sutter (pmsutter.com / @PaulMattSutter)
Dr. Kimberly Cartier (KimberlyCartier.org / @AstroKimCartier )
Dr. Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg & ChartYourWorld.org)

Special Guests:
In his current position as Visiting Vehicles Officer in Mission Control at JSC, Ethan Good supports cargo and (eventually) commercial crew flights to/from the International Space Station. Previously, Ethan completed three summer-winter contracts as a Research Scientist at Amundsen-Scott South Pole Station, as well as served as commander of a four-person crew during a two-week HERA study in 2015.

Announcements:
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

We record the Weekly Space Hangout every Wednesday at 5:00 pm Pacific / 8:00 pm Eastern. You can watch us live on Universe Today, or the Weekly Space Hangout YouTube page – Please subscribe!

Weekly Space Hangout – Jan 31, 2018: Andrzej Stewart of the Hi-SEAS IV Mars Simulation Mission

Hosts:
Fraser Cain (universetoday.com / @fcain)
Dr. Paul M. Sutter (pmsutter.com / @PaulMattSutter)
Dr. Kimberly Cartier (KimberlyCartier.org / @AstroKimCartier )
Dr. Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg & ChartYourWorld.org)

Special Guest:
Andrzej Stewart currently works in Mission Control at the Johnson Space Center in Houston, Texas. However, from 2015-2016, Andrzej acted as the Chief Engineering Officer during the year-long Hawaii Space Exploration Analog and Simulation (Hi-SEAS) IV Mars simulation mission on Mauna Loa. Prior to that he participated in NASA’s Human Exploration Research Analog (HERA) simulation where he acted as the flight engineer.

Aside from his mission-simulation participation, Andrzej has extensive design and engineering experience within the space program having worked on projects such as Spitzer, NASA’s Deep Space Network, and the Orion spacecraft.

You can read about Andrzej’s time “”on Mars”” and learn more about him by visiting his blog, Surfing with the Aliens.

Announcements:
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

We record the Weekly Space Hangout every Wednesday at 5:00 pm Pacific / 8:00 pm Eastern. You can watch us live on Universe Today, or the Weekly Space Hangout YouTube page – Please subscribe!

New NASA-themed TV Pilot by ‘The Martian’ Author Andy Weir

'Mission Control' is the name of a pilot for new TV series for CBS.

Author Andy Weir, who wrote the bestselling novel “The Martian” on which the successful 2015 movie of the same name was based, announced CBS is picking up his idea for a new pilot for a television show called “Mission Control.”

“For the past several months, I’ve been working on a TV show pilot, and I’m happy to announce that CBS is going to make it!” Weir posted on Facebook. “Of course, I’m all about scientific accuracy and this show will be no exception.”

Weir added (in what I assume was his best Tom Hanks), “Should be a hell of a show.”

Author Andy Weir in NASA’s Mission Control Center in Houston during a tour. Credit: NASA/James Blair and Lauren Hartnett.

The show will be a drama, with the main characters working as flight controllers at the Mission Control Center in Houston, and how they “juggle their personal and professional lives during a critical mission with no margin for error,” reported Deadline Hollywood.

Weir said casting for the actors is about to begin, but there is already “an impressive group of behind-the-camera people already involved,” he said. “Notably: [producer] Aditya Sood, whom I worked with before on “The Martian”.

Additionally, Simon Kinberg, another producer for the “The Martian,” will be the executive producer of the new series.

Andy Weir on Universe Today’s “Weekly Space Hangout” in January 2015:

Weir was first hired as a programmer for a national laboratory at age fifteen then worked as a software engineer. But as a lifelong space nerd and a devoted hobbyist of subjects like relativistic physics, orbital mechanics, and the history of manned spaceflight, he wrote “The Martian” in his spare time. Weir originally self-published the novel in 2011, but it was so successful, the rights to it were purchased by Crown Publishing and it was re-released it in 2014. A film adaptation directed by Ridley Scott and starring Matt Damon, was released in October 2015.

“The Martian” is the story of astronaut Mark Watney, who becomes stranded alone on Mars in the year 2035, and does everything he can to survive.

Weir didn’t provide a timeline of when the show would air, but Keith Cowing at NASAWatch reported that NASA Public Affairs “has been approached by the show’s producers and they are waiting on a script for final consideration. At this point NASA has not committed to assist the producers, allow use of its logo, facilities, staff etc.”

13 MORE Things That Saved Apollo 13, part 8: The Indestructible S-Band/Hi-Gain Antenna

This view of the severely damaged Apollo 13 Service Module (SM) was photographed from the Lunar Module/Command Module (LM/CM) following SM jettisoning. As seen here, an entire panel on the SM was blown away by the apparent explosion of oxygen tank number two located in Sector 4 of the SM. Credit: NASA.

The explosion of a liquid oxygen tank in Apollo 13’s Service Module violently propelled debris and a 13-foot (4 meter) outer panel of the SM out into space.

Later, the crew saw the damage when they jettisoned the SM prior to reentering Earth’s atmosphere. Commander Jim Lovell described the scene:

“There’s one whole side of the spacecraft missing!” Lovell radioed to Mission Control. “Right by the high-gain antenna, the whole panel is blown out, almost from the base to the engine.”

The panel was likely blasted outward and rearward, toward the deep space S-Band radio antenna. The antenna was attached to the outer edge of the module’s rear base via a meter-long strut, and was used for both telemetry and voice communications.

NASA engineer Jerry Woodfill feels this hi-gain antenna was surely struck by the panel and/or schrapnel ejected by the oxygen tank explosion.

“That deep space radio communication was maintained during and after the explosion was almost miraculous,” Woodfill said. “Such a blow should have destroyed that hi-gain antenna. Those of us who watched the telemetry display monitors saw only a momentary flickering of the telemetry, but after a few flickers we continued to receive data.”

Woodfill said it was as though a boxer had taken a devastating punch and continued to stand unfazed.

This video of the severely damaged Apollo 13 service module was taken by the crew after it was jettisoned.

If instead, the antenna had been destroyed, the loss of data would have resulted in an impaired ability to analyze the situation and communicate with the crew.

The moments following the explosion are seared into Woodfill’s memory. On the night of April 13, 1970, 27-year-old Woodfill sat at his console in the Mission Evaluation Room (MER) in Building 45 at Johnson Space Center — next door to Mission Control in Building 30 — monitoring the caution and warning system.

Jerry Woodfill working in the Apollo Mission Evaluation Room.  Credit:  Jerry Woodfill.
Jerry Woodfill working in the Apollo Mission Evaluation Room. Credit: Jerry Woodfill.
“Because I was watching the command ship’s telemetry on a monitor at the moment of the explosion, both the words heard in my headset, “Houston, we’ve had a problem” and the scene I saw of the video monitor have not been forgotten” Woodfill said. “Seconds before I heard the audio of Jack Swigert’s call, I watched the video screen flicker several times.

To this day, Woodfill said he cannot understand how it continued to function following the explosion.

“As an engineer, I have studied the basics of simple machines,” he said. “The concept of the lever arm dictates that when an explosive blow strikes a structure atop an arm, the arm must bend back about its attachment to the supporting structure. In this case, that structure was the command ship’s supply module, the Service Module. Later photos by the crew (below) showed the antenna intact and the conical reflector dishes present with their center probes intact. In my mind, the entire assembly simply should have been severed altogether.”

An Apollo high gain antenna, on display at the Stafford Air & Space Center, Weatherford, Oklahoma.
An Apollo high gain antenna, on display at the Stafford Air & Space Center, Weatherford, Oklahoma.

The Unified S-band (USB) system was a tracking and communication system that combined television, telemetry, command, tracking and ranging into a single system. The high-gain antenna consisted of an 11-inch-diagonal wide-beam horn flanked by an array of four 31-inch-diameter parabolic reflectors. Its multifunctional system simplified operations, and its construction saved on weight.

And obviously, it was very durable.

Woodfill reiterated how important it was that the antenna survived the explosion.

“Later on it wasn’t needed, as the crew used the Lunar Module communication system,” said Woodfill, “but having that initial continuous communication was one of the things that was very important.”

This color view of the severely damaged Apollo 13 Service Module (SM) was photographed with a motion-picture camera from the Lunar Module/Command Module following SM jettison. Credit: NASA.
This color view of the severely damaged Apollo 13 Service Module (SM) was photographed with a motion-picture camera from the Lunar Module/Command Module following SM jettison. Credit: NASA.

And later those in Mission Control and the MER were be able to go back and look at the data that had been transmitted to Earth during that very crucial period of the mission, to help understand what had actually occurred.

“It was critical to have that data in those first moments of the explosion to analyze what had happened,” Woodfill said. “Uninterrupted communication was essential to investigating the status of the vehicle. While it may be true that the backup omni-antenna might have provided temporary communication, based on my analysis, the omni-antenna would not have served as ably during the time of greatest initial peril. In fact, to configure its use with the NASA world-wide tracking network would have caused an unfortunate delay.”

Here are some zoomed-in photos taken by the crew of Apollo 13 after the explosion of the S-Band/hi-gain antenna, and Woodfill has noted the parts of the antenna. They show the explosion failed to sever the hi-gain antenna mast and the conical dish receivers as well as the rectangular antenna, and the center probes of the conical dishes appear intact. Considering the force of the explosion, this is remarkable.

At left, a view of the Service Module and the S-Band antenna during a previous Apollo mission. At right is a zoomed in look at the damaged SM and the unfazed S-Band antenna on Apollo 13, taken during SM jettison. Credit: NASA/Jerry Woodfill.
At left, a view of the Service Module and the S-Band antenna during a previous Apollo mission. At right is a zoomed in look at the damaged SM and the unfazed S-Band antenna on Apollo 13, taken during SM jettison. Credit: NASA/Jerry Woodfill.

An annotated closeup of the S-Band/Hi Gain antenna on Apollo 13 after the explosion. Credit: NASA/Jerry Woodfill.
An annotated closeup of the S-Band/Hi Gain antenna on Apollo 13 after the explosion. Credit: NASA/Jerry Woodfill.

Apollo 13 images via NASA. Montage by Judy Schmidt.
Apollo 13 images via NASA. Montage by Judy Schmidt.

Previous articles in this series:

Introduction

Part 1: The Failed Oxygen Quantity Sensor

Part 2: Simultaneous Presence of Kranz and Lunney at the Onset of the Rescue

Part 3: Detuning the Saturn V’s 3rd Stage Radio

Part 4: Early Entry into the Lander

Part 5: The CO2 Partial Pressure Sensor

Part 6: The Mysterious Longer-Than-Expected Communications Blackout

Part 7: Isolating the Surge Tank

Find all the original “13 Things That Saved Apollo 13″ (published in 2010) at this link.

13 MORE Things That Saved Apollo 13, part 7: Isolating the Surge Tank

Schematics of the Apollo command module interior. The surge tank was located in the left hand intermediate equipment bay. Credit: NASA.

Join Universe Today in celebrating the 45th anniversary of Apollo 13 with insights from NASA engineer Jerry Woodfill as we discuss various turning points in the mission.

Within minutes of the accident during the Apollo 13 mission, it became clear that Oxygen Tank 2 in the Service Module had failed. Then Mission Control radioed up procedures and several attempts were made to try to save the remaining oxygen in Tank 1. But the pressure readings continued to fall, and it soon became obvious that Tank 1 was going to fail as well. At that point, both the crew and those in Houston realized the extreme seriousness of the situation.

No oxygen meant the fuel cells would be inoperative, and the fuel cells produced electrical power, water and oxygen – three things vital to the lives of the crew and the life of the spacecraft.

For power in the Command Module, all that was left were the batteries, but they were to be the sole source of power available for reentry. Besides the ambient air in the CM, the only oxygen remaining was contained in a so called ‘surge tank’ and three reserve one pound O2 tanks. These, too, were also mainly reserved for reentry, but they were automatically tapped in emergencies if there any oxygen fluctuations in the system.

In Chris Kraft’s autobiography Flight: My Life in Mission Control, the former flight director and former director of Johnson Space Center cited Gene Kranz’ decision to immediately isolate or seal off the surge tank as being one of the things that made rescuing the crew possible.

Why was it so essential to assure that the spare oxygen surge tank in the CM was protected?

“With the luxury of nearly a half century to review each decision made during those April days in 1970,” said NASA engineer Jerry Woodfill, “we can look back and see that those in Mission Control indeed made the right decisions, but at the time, many of those decisions had to be made without knowing the full extent of the problem. But more importantly, they had the presence of mind to look beyond their immediate problem and see the big picture of how to save Apollo 13.”

Shortly after the accident, electrical output readings for fuel cells 1 and 3 were at zero. Fuel cell 2 was still working, but without oxygen from the main tanks, it began to pull oxygen from the reserve surge tank. The 3.7 lb capacity tank was called a ‘surge tank’ because one of its functions was to absorb pressure fluctuations in the oxygen system. Due to the depletion of the two main oxygen tanks, the remaining fuel cell 2 began to automatically pull from the surge tank’s small supply of oxygen.

However, the surge tank also served as the reserve tank of oxygen that the crew would use to breathe during reentry to Earth after the Service Module (with -– during a normal mission — its two large full and functioning oxygen tanks) had been jettisoned. But with those tanks damaged and empty, the remaining fuel cell was starting to draw on the surge tank’s small supply in order to keep power flowing.

Kranz’ decision to isolate the tank was important, but of course, he didn’t make that decision alone. In an article in IEEE Spectrum, the EECOM (Electrical Environmental and Consumables) officer for Apollo 13 Sy Liebergot, recalled the moment he realized the Service Module was running out of power and oxygen — permanently. He, too, didn’t make that realization alone.

Sy Liebergot, EECOM in Mission Control on Apollo 13. Image courtesy Sy Liebergot.
Sy Liebergot, EECOM in Mission Control on Apollo 13. Image courtesy Sy Liebergot.

As writer Stephen Cass explained in IEEE Spectrum, “Each flight controller in mission control was connected via so-called voice loops–pre-established audio-conferencing channels–to a number of supporting specialists in back rooms who watched over one subsystem or another and who sat at similar consoles to those in mission control.” (This includes the Mission Evaluation Room where Jerry Woodfill monitored the Caution and Warning System.)

Liebergot was in communications with a team down the hall from Mission Control in Building 30, consisting of Dick Brown, a power-systems specialist, and George Bliss and Larry Sheaks, both life support specialists. When they confirmed the surge tank was being tapped, they realized they had to revise their priorities, from stabilizing Odyssey to preserving the command module’s re-entry reserves so that the crew could eventually return to Earth.

Liebergot said his call to isolate the surge tank initially took Kranz off guard, as it was exactly opposite of what was needed to keep the last fuel cell operating.

But Liebergot and his team were looking ahead. “We want to save the surge tank which we will need for entry,” writer Cass quoted Liebergot, and Kranz almost immediately understood. “Okay, I’m with you. I’m with you,” said Kranz resignedly, and he ordered the crew to isolate the surge tank.

Chris Kraft with his new flight directors before the Gemini 4 mission.  (Clockwise from lower right: Kraft, Gene Kranz, Glynn Lunney and John Hodge.) Credit: NASA.
Chris Kraft with his new flight directors before the Gemini 4 mission.
(Clockwise from lower right: Kraft, Gene Kranz, Glynn Lunney and John Hodge.) Credit: NASA.

“Because Gene was Flight Director at the time of the determination,” explained Woodfill, “his decisions result from inputs from a team of experts. He, like all the lead flight directors, is, ultimately, responsible for determining and weighing inputs from the chief system controllers who likewise receive instructions and information from a support team. To this end, ‘Flight’ is responsible for the final decision which is passed to the CapCom who, in turn, instructs the astronaut crew to act. Based on the process, often, an unknown expert might have been the original source of the instruction.”

This demonstrates how it was a team effort to save Apollo 13, and decisions that may have initially seemed incomprehensible ended up being the right ones.

“Loss of either Command Module capability — entry battery power or oxygen — threatened to be a fatal situation during the capsule’s entry return to Earth,” said Woodfill. Fortunately, as stated in one of our articles the first series of “13 Things,” a ‘jumper-charge technique dealt with the recharging the reentry batteries in the CM.

But while the LM had ample oxygen – in the form of oxygen tanks for repressurization after moon walks, tanks in the lander’s descent and ascent stages, and in the Portable Life Support System (PLSS) in the spacesuits that would have been used during moonwalks — apparently, there was no such similar way to replace oxygen in the CM from the lander’s oxygen stores.

Woodfill noted that had the surge tank been expended by the failed service module O2 tanks, there likely could have been a backup reentry plan of the crew wearing their launch suits and some type of jury-rigged system of using the oxygen from the PLSS system’s oxygen.

“A ‘shirt-sleeve’ entry would not have been the case,” said Woodfill. “This could have entailed a process similar to three scuba divers breathing from a pair of aqua lungs following the failure of one of the three.”

Woodfill noted one interesting fact. “Both Mission Control and the crew of Apollo 13 were so certain of the availability of surge tank oxygen that everyone agreed reentry would be space-suit-less.”

You can read more from Sy Liebergot in his book, Apollo EECOM, Journey of a Lifetime, and Chris Kraft in his book Flight: My Life in Mission Control.

Tomorrow: The Indestructible S-Band/Hi-Gain Antenna

Previous articles in this series:

Introduction

Part 1: The Failed Oxygen Quantity Sensor

Part 2: Simultaneous Presence of Kranz and Lunney at the Onset of the Rescue

Part 3: Detuning the Saturn V’s 3rd Stage Radio

Part 4: Early Entry into the Lander

Part 5: The CO2 Partial Pressure Sensor

Part 6: The Mysterious Longer-Than-Expected Communications Blackout

Find all the original “13 Things That Saved Apollo 13″ (published in 2010) at this link.

13 MORE Things That Saved Apollo 13, part 5: The CO2 Partial Pressure Sensor

Headlines from the Topeka (Kansas) Daily Capital newspaper from April 1970 told of the perils facing the crew of Apollo 13.

The Apollo 13 accident crippled the spacecraft, taking out the two main oxygen tanks in the Service Module. While the lack of oxygen caused a lack of power from the fuel cells in the Command Module, having enough oxygen to breathe in the lander rescue craft really wasn’t an issue for the crew. But having too much carbon dioxide (CO2) quickly did become a problem.

The Lunar Module, which was being used as a lifeboat for the crew, had lithium hydroxide canisters to remove the CO2 for two men for two days, but on board were three men trying to survive in the LM lifeboat for four days. After a day and a half in the LM, CO2 levels began to threaten the astronauts’ lives, ringing alarms. The CO2 came from the astronauts’ own exhalations.

Jerry Woodfill working in the Apollo Mission Evaluation Room.  Credit:  Jerry Woodfill.
Jerry Woodfill working in the Apollo Mission Evaluation Room. Credit: Jerry Woodfill.

NASA engineer Jerry Woodfill helped design and monitor the Apollo caution and warning systems. One of the systems which the lander’s warning system monitored was environmental control.

Like carbon monoxide, carbon dioxide can be a ‘silent killer’ – it can’t be detected by the human senses, and it can overcome a person quickly. Early on in their work in assessing the warning system for the environmental control system, Woodfill and his co-workers realized the importance of a CO2 sensor.

“The presence of that potentially lethal gas can only be detected by one thing – an instrumentation transducer,” Woodfill told Universe Today. “I had an unsettling thought, ‘If it doesn’t work, no one would be aware that the crew is suffocating on their own breath.’”

The sensor’s job was simply to convert the content of carbon dioxide into an electrical voltage, a signal transmitted to all, both the ground controllers, and the cabin gauge.

Location of Caution And Warning System lights in the Command Module. Credit: Project Apollo - NASSP.
Location of Caution And Warning System lights in the Command Module. Credit: Project Apollo – NASSP.

“My system had two categories of alarms, one, a yellow light for caution when the astronaut could invoke a backup plan to avoid a catastrophic event, and the other, an amber warning indication of imminent life-threatening failure,” Woodfill explained. “Because onboard CO2 content rises slowly, the alarm system simply served to advise and caution the crew to change filters. We’d set the threshold or “trip-level” of the alarm system electronics to do so.”

And soon after the explosion of Apollo 13’s oxygen tank, the assessment of life-support systems determined the system for removing carbon dioxide (CO2) in the lunar module was not doing so. Systems in both the Command and Lunar Modules used canisters filled with lithium hydroxide to absorb CO2. Unfortunately the plentiful canisters in the crippled Command Module could not be used in the LM, which had been designed for two men for two days, but on board were three men trying to survive in the LM lifeboat for four days: the CM had square canisters while the LM had round ones.

The fix for the lithium hydroxide canister is discussed at NASA Mission Control prior to having the astronauts implement the procedure in space. Credit: NASA
The fix for the lithium hydroxide canister is discussed at NASA Mission Control prior to having the astronauts implement the procedure in space. Credit: NASA

As was detailed so well by Jim Lovell in his book “Lost Moon,” and subsequently portrayed in detail in the movie “Apollo 13,” a group of engineers led by Ed Smylie, who developed and tested life support systems for NASA, constructed a duct-taped-jury-rigged CO2 filter, using only what was aboard the spacecraft to convert the plentiful square filters to work in the round LM system. (You can read the details of the system and its development in our previous “13 Things” series.)

Needless to say, the story had a happy ending. The Apollo 13 accident review board reported that Mission Control gave the crew further instructions for attaching additional cartridges when needed, and the carbon dioxide partial pressure remained below 2mm Hg for the remainder of the Earth-return trip.

But the story of Jerry Woodfill and the CO2 sensor can also serve as an inspiration to anyone who feels disappointed in their career, especially in STEM (science, technology, engineering and math) fields, feeling that perhaps what you are doing doesn’t really matter.

“I think almost everyone who came to NASA wanted to be an astronaut or a flight director, and I always felt my career was diminished by the fact that I wasn’t a flight controller or astronaut or even a guidance and navigation engineer,” Woodfill said. “I was what was called an instrumentation engineer. Others had said this is the kind of job that was superfluous.”

Woodfill worked on the spacecraft metal panels which housed the switches and gauges. “Likely, a mechanical engineer might not find such a job exciting,” he said, “and to think, I had once studied field theory, quantum electronics and other heady disciplines as a Rice electrical engineering candidate.”

NASA engineer Jerry Woodfill with Chris Kraft, former NASA flight director and manager, in early 2015. Image courtesy Jerry Woodfill.
NASA engineer Jerry Woodfill with Chris Kraft, former NASA flight director and manager, in early 2015. Image courtesy Jerry Woodfill.

Later, to add to the discouragement was a conversation with another engineer. “His comment was, ‘No one wants to be an instrumentation engineer,” Woodfill recalled, “thinking it is a dead-end assignment, best avoided if one wants to be promoted. It seemed that instrumentation was looked upon as a sort of ‘menial servant’ whose lowly job was servicing end users such as radar, communications, electrical power even guidance computers. In fact, the users could just as readily incorporate instrumentation in their devices. Then, there would be no need for an autonomous group of instrumentation guys.”

But after some changes in management and workforce, Woodfill became the lead Command Module Caution and Warning Project Engineer, as well as the Lunar Lander Caution and Warning lead – a job he thought no one else really wanted.

But he took on the job with gusto.

“I visited with a dozen or more managers of items which the warning system monitored for failure,” Woodfill said. He convened a NASA-Grumman team to consider how best to warn of CO2 and other threats. “We needed to determine at what threshold level should the warning system ring an alarm. All the components must work, starting with the CO2 sensor. The signal must pass from there through the transmitting electronics, wiring, ultimately reaching my warning system “brain” known as the Caution and Warning Electronics Assembly (CWEA).”

And so, just hours after the explosion on Apollo 13, the Mission Engineering Manager summoned Woodfill to his office.

“He wanted to discuss my warning system ringing carbon dioxide alarms,” Woodfill said. “I explained the story, placing before him the calibration curves of the CO2 Partial Pressure Transducer, showing him what this instrumentation device is telling us about the threat to the crew.”

Now, what Woodfill had once had deemed trivial was altogether essential for saving the lives of an Apollo 13 astronaut crew. Yes, instrumentation was just as important as any advanced system aboard the command ship or the lunar lander.

“And, I thought, without it, likely, no one would have known the crew was in grave danger,” said Woodfill, “let alone how to save them. Instrumentation engineering wasn’t a bad career choice after all!”

The Apollo 13 fix -- complete with duct tape -- of making a square canister fit into a round hole.  Credit: NASA
The Apollo 13 fix — complete with duct tape — of making a square canister fit into a round hole. Credit: NASA
This is an example of the team effort that saved Apollo 13: that the person who was working on the transducer years prior was just as significant as the person who came up with the ingenious duct tape solution.

And it was one of the additional things that saved Apollo 13.

Apollo 13 images via NASA. Montage by Judy Schmidt.
Apollo 13 images via NASA. Montage by Judy Schmidt.

Additional articles in this series:

Introduction

Part 1: The Failed Oxygen Quantity Sensor

Part 2: Simultaneous Presence of Kranz and Lunney at the Onset of the Rescue

Part 3: Detuning the Saturn V’s 3rd Stage Radio

Part 4: Early Entry into the Lander

Part 5: The CO2 Partial Pressure Sensor

Part 6: The Mysterious Longer-Than-Expected Communications Blackout

Part 7: Isolating the Surge Tank

Part 8: The Indestructible S-Band/Hi-Gain Antenna

Part 9: Avoiding Gimbal Lock

Part 10: ‘MacGyvering’ with Everyday Items

Part 11: The Caution and Warning System

Part 12: The Trench Band of Brothers

Find all the original “13 Things That Saved Apollo 13″ (published in 2010) at this link.

13 MORE Things That Saved Apollo 13, part 2: Simultaneous Presence of Kranz and Lunney at the Onset of the Rescue

Apollo 13 images via NASA. Montage by Judy Schmidt.

To celebrate the 45th anniversary of the Apollo 13 mission, Universe Today is featuring “13 MORE Things That Saved Apollo 13,” discussing different turning points of the mission with NASA engineer Jerry Woodfill.

Understandably, it was chaotic in both Mission Control and in the spacecraft immediately after the oxygen tank exploded in Apollo 13’s Service Module on April 13, 1970.

No one knew what had happened.

“The Apollo 13 failure had occurred so suddenly, so completely with little warning, and affected so many spacecraft systems, that I was overwhelmed,” wrote Sy Liebergot in his book, Apollo EECOM: Journey of a Lifetime. “As I looked at my data and listened to the voice report, nothing seemed to make sense.”

But somehow, within 53 minutes of the explosion, the ship was stabilized and an emergency plan began to evolve.

“Of all of the things that rank at the top of how we got the crew home,” said astronaut Ken Mattingly, who was sidelined from the mission because he might have the measles, “was sound management and leadership.”

Gerry Griffin, Gene Kranz, and Glynn Lunney celebrate the Apollo 13 recovery. Credit: NASA.
Gerry Griffin, Gene Kranz, and Glynn Lunney celebrate the Apollo 13 recovery. Credit: NASA.

By chance, at the time of the explosion, two Flight Directors — Gene Kranz and Glynn Lunney — were present in Mission Control. NASA engineer Jerry Woodfill feels having these two experienced veterans together at the helm at that critical moment was one of the things that helped save the Apollo 13 crew.

“The scenario resulted from the timing,” Woodfill told Universe Today, “with the explosion occurring at 9:08 PM, and Kranz as Flight Director, but with Lunney present to assume the “hand-off” around 10:00 PM. That assured that the expertise of years of flight control leadership was conferring and assessing the situation. The presence of these colleagues, simultaneously, had to be one of the additional thirteen things that saved Apollo 13. With Lunney looking on, the transition was as seamless as a co-pilot taking the helm from a pilot of a 747 passenger jet.”

Woodfill made an additional comparison: “Having the two Flight Directors on hand at that critical moment is like having Michael Jordan and Magic Johnson on a six-man basketball squad and the referee ignoring any fouls their team might make.”

Lunney described the time of the explosion in an oral history project at Johnson Space Center:

“Gene was on the team before me and he had had a long day in terms of hours. …And shortly before his shift was scheduled to end is when the “Houston, we’ve got a problem” report came in. And at first, it was not terribly clear how bad this problem was. And one of the lessons that we had learned was, “Don’t go solving something that you don’t know exists.” You’ve got to be sure … So, it was generally a go slow, let’s not jump to a conclusion, and get going down the wrong path…. We had a number of situations to deal with.”
The “not jumping to conclusions” was equally expressed by Kranz when he told his team, “Let’s solve the problem, but let’s not make it any worse by guessing.”

The presence of Kranz and Lunney, simultaneously, is especially obvious reading Gene Kranz’s book, Failure Is Not an Option.

“Kranz captures the wealth of “brain power” present at the moment of the explosion,” said Woodfill. “Besides both Kranz and Lunney, their entire teams overlapped. Yes, there were two squads on the floor competing with the dire opponents who threatened the crew’s survival.”

The crew’s survival was foremost in the minds of the Flight Directors. “We will never surrender, we will never give up a crew,” Kranz said later.

Apollo astronauts at Mission Control during Apollo 13. Credit: NASA.
Apollo astronauts at Mission Control during Apollo 13. Credit: NASA.

Perhaps, the most obvious evidence of how fortuitous the presence of both Kranz and Lunney was, Kranz recorded on page 316-317 of his book. The pair refuses to accept the more popular but potentially fatal decision (a direct abort) to speed the crew’s return to Earth using the damaged command ship’s engine. The direct abort would have been to jettison the lander and fire the compromised command ship’s engine to potentially quicken the return to Earth by 50 hours.

Mattingly recalled those early minutes in Mission Control after the explosion.

Ken Mattingly in Mission Control. Credit: NASA.
Ken Mattingly in Mission Control. Credit: NASA.

“The philosophy was ‘never get in the way of success,’” said Mattingly, speaking at a 2010 event at the Smithsonian Air and Space Museum. “We had choices, we debated about turning immediately around and coming home or going around the moon. In listening to all of those discussions, we never closed the door about any option of getting home. We didn’t know yet how we were going to get there, but you always make sure you don’t take a step that would jeopardize it.”

And so, with the help of their teams, the two Flight Directors quickly ran through all the options, the pros and cons, and – again – within 53 minutes after the accident they made the decision to have the crew continue their trajectory around the Moon.

Damage to the Apollo 13 spacecraft from the oxygen tank explosion. Credit: NASA
Damage to the Apollo 13 spacecraft from the oxygen tank explosion. Credit: NASA

Later, when Jim Lovell commented on viewing the damaged Service Module when it was jettisoned before the crew re-entered Earth’s atmosphere — “There’s one whole side of that spacecraft missing. Right by the high gain antenna, the whole panel is blown out, almost from the base to the engine,” — it was indeed an ominous look at what might have ensued using it for a quick return to Earth.

Read more about the decision to use the LM for propulsion in an article from the original “13 Things” series here.

By the end of the Lunney team’s shift about ten hours after the explosion, Mission Control had put the vehicle back on an Earth return trajectory, the inertial guidance platform had been transferred to the Lunar Module, and the Lunar Module was stable and powered up for the burn planned the would occur after the crew went around the Moon. “We had a plan for what that maneuver would be, and we had a consumable profile that really left us with reasonable margins at the end,” Lunney said.

Apollo 13's view  from Aquarius as it rounds the Moon, with the Command Module at right. Credit: NASA/Johnson Space Center.
Apollo 13’s view from Aquarius as it rounds the Moon, with the Command Module at right. Credit: NASA/Johnson Space Center.

Kranz described the scene in an interview with historians at the Honeysuckle Creek Tracking Station in Australia:

“We had many problems here – we had a variety of survival problems, we had electrical management, water management, and we had to figure out how to navigate because the stars were occluded by the debris cloud surrounding the spacecraft. Basically we had to turn a two day spacecraft into a four and a half day spacecraft with an extra crewmember to get the crew back home. We were literally working outside the design and test boundaries of the spacecraft so we had to invent everything as we went along.”

A look at the transcripts of the conversations between Flight Controllers, Flight Directors and support engineers in the Mission Evaluation Room reveals the methodical working of the problems by the various teams. Additionally, you can see how seamlessly the teams worked together, and when one shift handed off to another, everything was communicated.

Lunney explains:

“The other thing I would say about it is, and we talked about Flight Directors and teams, equally important was the fact that, during those flights, we had this Operations team that you have seen in the Control Center in the back rooms around it and we sort of had our own way of doing things in our own team, and we were fully prepared to decide whatever had to be decided. But in addition to that, we had the engineering design teams that would follow the flight along and look at various problems that occurred and put their own disposition on them. …That was part of this network of support. People had their certain jobs to do. They knew what it was. They knew how they fit in. And they were anticipating and off doing it.”

Without the leadership of the Flight Directors, keeping the teams focused and on-task, the outcome of the Apollo 13 mission may have been much different.

“It is the experience of these two, Kranz and Lunney, working together which likely saved the crew from what might have been certain death,” said Woodfill.

Additional articles in this series:

Introduction

Part 1: The Failed Oxygen Quantity Sensor

Part 2: Simultaneous Presence of Kranz and Lunney at the Onset of the Rescue

Part 3: Detuning the Saturn V’s 3rd Stage Radio

Part 4: Early Entry into the Lander

Part 5: The CO2 Partial Pressure Sensor

Part 6: The Mysterious Longer-Than-Expected Communications Blackout

Part 7: Isolating the Surge Tank

Part 8: The Indestructible S-Band/Hi-Gain Antenna

Part 9: Avoiding Gimbal Lock

Part 10: ‘MacGyvering’ with Everyday Items

Part 11: The Caution and Warning System

Part 12: The Trench Band of Brothers

Find all the original “13 Things That Saved Apollo 13″ (published in 2010) at this link.

13 MORE Things That Saved Apollo 13

Apollo 13 images via NASA. Montage by Judy Schmidt.

“Things had gone real well up to at that point of 55 hours, 54 minutes and 53 seconds (mission elapsed time),” said Apollo 13 astronaut Fred Haise as he recounted the evening of April 13, 1970, the night the Apollo 13’s command module’s oxygen tank exploded, crippling the spacecraft and endangering the three astronauts on board.

“Mission Control had asked for a cryo-stir in the oxygen tank …and Jack threw the switches,” Haise continued. “There was a very loud bang that echoed through the metal hull, and I could hear and see metal popping in the tunnel [between the command module and the lunar lander]… There was a lot of confusion initially because the array of warning lights that were on didn’t resemble anything we have ever thought would represent a credible failure. It wasn’t like anything we were exposed to in the simulations.”

What followed was a four-day ordeal as Haise, Jim Lovell and Jack Swigert struggled to get back to Earth, as thousands of people back on Earth worked around the clock to ensure the astronauts’ safe return.

Jerry Woodfill and Fred Haise at the 40th anniversary celebration of Apollo 13 at JSC.  Image courtesy Jerry Woodfill.
Jerry Woodfill and Fred Haise at the 40th anniversary celebration of Apollo 13 at JSC. Image courtesy Jerry Woodfill.

Haise described the moment of the explosion during an event in 2010 at the Smithsonian Air and Space Museum commemorating the 40th anniversary of the mission that’s been called a successful failure.

In 2010, Universe Today also commemorated the Apollo 13 anniversary with a series of articles titled “13 Things That Saved Apollo 13.” We looked at 13 different items and events that helped turn the failure into success, overcoming the odds to get the crew back home. We interviewed NASA engineer Jerry Woodfill, who helped design the alarm and warning light system for the Apollo program, which Haise described above.

Now, five years later on the 45th anniversary of Apollo 13, Woodfill returns with “13 MORE Things That Saved Apollo 13.” Over the next few weeks, we’ll look at 13 additional things that helped bring the crew home safely.

Jerry Woodfill working in the Apollo Mission Evaluation Room.  Credit:  Jerry Woodfill.
Jerry Woodfill working in the Apollo Mission Evaluation Room. Credit: Jerry Woodfill.

Woodfill has worked for NASA for almost 50 years as an engineer, and is one of 27 people still remaining at Johnson Space Center who were also there for the Apollo program. In the early days of Apollo, Woodfill was the project engineer for the spacecraft switches, gauges, and display and control panels, including the command ship’s warning system.

On that night in April 1970 when the oxygen tank in Apollo 13’s command module exploded, 27-year-old Woodfill sat at his console in the Mission Evaluation Room (MER) at Johnson Space Center, monitoring the caution and warning system.

“It was 9:08 pm, and I looked at the console because it flickered a few times and then I saw a master alarm come on,” Woodfill said. “Initially I thought something was wrong with the alarm system or the instrumentation, but then I heard Jack Swigert in my headset: “Houston, we’ve had a problem,” and then a few moments later, Jim Lovell said the same thing.”

Listen to the audio of communications between the crew and Mission Control at the time of the explosion:

Located in an auxiliary building, the MER housed the engineers who were experts in the spacecrafts’ systems. Should an inexplicable glitch occur, the MER team could be consulted. And when alarms starting ringing, the MER team WAS consulted.

Woodfill has written a webpage detailing the difference between the MER and Misson Control (Mission Operations Control Room, or MOCR).

The Mission Evaluation Room.  Credit: Jerry Woodfill.
The Mission Evaluation Room. Credit: Jerry Woodfill.

The ebullient and endearing Woodfill brings a wealth of knowledge — as well as his love for public outreach for NASA — to everything he does. But also, for the past 45 years he has studied the Apollo 13 mission in intricate detail, examining all the various facets of the rescue by going through flight transcripts, debriefs, and other documents, plus he’s talked to many other people who worked during the mission. Fascinated by the turn of events and individuals involved who turned failure into success, Woodfill has come up with 13 MORE things that saved Apollo 13, in addition to the original 13 he shared with us in 2010.

Woodfill tends to downplay both his role in Apollo 13 and the significance of the MER.

“In the MER, I was never involved or central to the main events which rescued Apollo 13,” Woodfill told Universe Today. “Our group was available for mission support. We weren’t flight controllers, but we were experts. For other missions that were routine we didn’t play that big of a role, but for the Apollo 13 mission, we did play a role.”

But Apollo Flight Director Gene Kranz, also speaking at the 2010 event at the Smithsonian Air and Space Museum, has never forgotten the important role the MER team played.

“The thing that was almost miraculous here [for the rescue], was I think to a great extent, the young controllers, particularly the systems guys who basically invented the discipline of what we now call systems engineering,” Kranz said. “The way these guys all learned their business, … got to know the designs, the people and the spacecraft … and they had to translate all that into useful materials that they could use on console in real time.”

Apollo 13 astronauts Fred Haise, Jim Lovell and Jack Swigert after they splashed down safely. Credit: NASA.
Apollo 13 astronauts Fred Haise, Jim Lovell and Jack Swigert after they splashed down safely. Credit: NASA.

Join Universe Today in celebrating the 45th anniversary of Apollo 13 with Woodfill’s insights as we discuss each of the 13 additional turning points in the mission. And here’s a look back at the original “13 Things That Saved Apollo 13:

Part 1: Timing

Part 2: The Hatch That Wouldn’t Close

Part 3: Charlie Duke’s Measles

Part 4: Using the LM for Propulsion

Part 5: Unexplained Shutdown of the Saturn V Center Engine

Part 6: Navigating by Earth’s Terminator

Part 7: The Apollo 1 Fire

Part 8: The Command Module Wasn’t Severed

Part 9: Position of the Tanks

Part 10: Duct Tape

Part 11: A Hollywood Movie

Part 12: Lunar Orbit Rendezvous

Part 13: The Mission Operations Team

Also:

Your Questions about Apollo 13 Answered by Jerry Woodfill (Part 1)

More Reader Questions about Apollo 13 Answered by Jerry Woodfill (part 2)

Final Round of Apollo 13 Questions Answered by Jerry Woodfill (part 3)

Never Before Published Images of Apollo 13’s Recovery

Why Flower Bouquets Regularly Show Up In NASA Mission Control

Flowers on a console in NASA Mission Control in 2011 for American Thanksgiving. The bouquets are regular gifts from the Shelton/Murphy families in Texas, who have been sending flowers regularly since shuttle mission STS-26 in 1988. Credit: NASA

Three red roses and a white one. The flower bouquet sitting in NASA Mission Control right now in Houston is one of a series that has appeared with every single mission since 1988 — a small gift from a Texas family whose members are long-standing fans of space exploration.

The first bouquet showed up on landing day for the first flight (STS-26) after the shuttle Challenger explosion. And bouquets have continued for every flight since, a gift that NASA is glad to see when it arrives.

“It means a lot to the team here in Houston,” NASA spokesperson Josh Byerly said in the YouTube video above, an excerpt from a broadcast on NASA TV. “We’re big on tradition here at NASA, and we are very happy that this tradition continues.”

Each red rose symbolizes a member of an expedition crew — in this case, Expedition 39/40‘s Steve Swanson (NASA), Alexander Skvortsov (Roscosmos) and Oleg Artemyev (Roscosmos). The white one is a symbol of all of the astronauts who have lost their lives, such as those in the Apollo 1, Challenger and Columbia disasters.

Four years ago, when the 100th bouquet came to Mission Control, a flight director from STS-26 described what happened when he saw the flowers in 1988.

“When I first walked into the control room I noticed them right away, because it was so different, and I walked over and read the card,” stated Milt Heflin, who was a shuttle flight director at the time. “It was very simple, saying congratulations and wishing everyone the best on the mission. It was signed but it didn’t have any contact information for the senders.”

Helfin did manage to track down the family — Mark, Terry and daughter MacKenzie — and over the years, the Sheltons received cards of thanks and invitations to see launches and Mission Control.

The Shelton family during a visit to NASA Mission Control in Houston in 1990. From left, NASA's Steve Stitch, Terry Shelton, Mark Shelton and daughter MacKenzie.  They have been sending flowers to NASA regularly since shuttle mission STS-26 in 1988. Credit: NASA
The Shelton family during a visit to NASA Mission Control in Houston in 1990. From left, NASA’s Steve Stitch, Terry Shelton, Mark Shelton and daughter MacKenzie. They have been sending flowers to NASA regularly since shuttle mission STS-26 in 1988. Credit: NASA

“I didn’t actually decide to do it until the day the STS-26 mission was to land, and I didn’t know that I even could get it done in time,” Mark Shelton stated, who added he first became interested in space after a childhood visit to the NASA Johnson Space Center in Houston in the 1960s.

“I called information to find a florist near the space center, and then I asked the florist if they could deliver roses to Mission Control. At first they said they couldn’t do it … but then they said they would try.”

The attempt succeeded, obviously, and with each mission new flowers arrive. The bouquets are now including participation from a “second” generation, Byerly said in the video, saying that they now come from the Sheltons and the Murphys.