1st SLS 2nd Stage Arrives at Cape for NASA’s Orion Megarocket Moon Launch in 2018

Composite view of the interim cryogenic propulsion stage (ICPS) for first flight of NASA's Space Launch System (SLS) rocket at United Launch Alliance manufacturing facility in Decatur, Alabama in December 2016 (left) and arrival of ICPS in a canister aboard the firm’s Delta Mariner barge on March 7, 2017 (right). Credits: ULA (left) and Ken Kremer/kenkremer.com (right)
Composite view of the interim cryogenic propulsion stage (ICPS) for first flight of NASA’s Space Launch System (SLS) rocket at United Launch Alliance manufacturing facility in Decatur, Alabama in December 2016 (left) and arrival of ICPS in a canister aboard the firm’s Delta Mariner barge on March 7, 2017 (right). Credits: ULA (left) and Ken Kremer/kenkremer.com (right)

PORT CANAVERAL – Bit by bit, piece by piece, the first of NASA’s SLS megarockets designed to propel American astronauts on deep space missions back to the Moon and beyond to Mars is at last coming together on the Florida Space Coast. And the first big integrated piece of actual flight hardware – the powerful second stage named the Interim Cryogenic Propulsion Stage (ICPS) – has just arrived by way of barge today (Mar. 7) at Port Canaveral, Fl.

The ICPS will propel NASA’s new Orion crew capsule on its maiden uncrewed mission around the Moon – currently slated for blastoff on the inaugural SLS monster rocket on the Exploration Mission-1 (EM-1) mission late next year.

SLS-1/Orion EM-1 will launch from pad 39B at NASA’s Kennedy Space Center in late 2018. The SLS will be the most powerful rocket in world history.

NASA is currently evaluating whether to add a crew of 2 astronauts to the SLS-1 launch which would result in postponing the inaugural liftoff into 2019 – as I reported here.

The interim cryogenic propulsion stage (ICPS) for first flight of NASA’s Space Launch System (SLS) rocket arrived at Port Canaveral, Florida on March 7, 2017 loaded inside a shipping canister (right) aboard the ULA Delta Mariner barge that set sail from Decatur, Alabama a week ago. The ICPS shared the shipping voyage along with a ULA Delta IV first stage rocket core seen at left. Credit: Ken Kremer/kenkremer.com

The SLS upper stage – designed and built by United Launch Alliance (ULA) and Boeing – arrived safely by way of the specially-designed ship called the Delta Mariner early Tuesday morning, Mar. 7, into the channel of Port Canaveral, Florida – as witnessed by this author.

“We are proud to be working with The Boeing Company and NASA to further deep space exploration!” ULA said in a statement.

Major assembly of the ICPS was completed at ULA’s Decatur, Alabama, manufacturing facility in December 2016.

The interim cryogenic propulsion stage (ICPS) for the first flight of NASA’s Space Launch System (SLS) rocket has arrived by way of barge at Cape Canaveral Air Force Station in Florida on March 7, 2017. The ICPS will be moved to United Launch Alliance’s Delta IV Operation Center at the Cape for processing for the SLS-1/Orion EM-1 launch currently slated for late 2018 launch from pad 39B at NASA’s Kennedy Space Center. Credit: ULA

The ICPS is the designated upper stage for the first maiden launch of the initial Block 1 version of the SLS.

It is based on ULA’s Delta Cryogenic Second Stage which has successfully flown numerous times on the firm’s Delta IV family of rockets.

In the event that NASA decides to add a two person crew to the EM-1 mission, Bill Hill, NASA’s deputy associate administrator for Exploration Systems Development in Washington, D.C., stated that the agency would maintain the Interim Cryogenic Propulsion stage for the first flight, and not switch to the more advanced and powerful Exploration Upper Stage (EUS) planned for first use on the EM-2 mission.

The ULA Delta Mariner barge arriving in Port Canaveral, Florida on March 7, 2017 after transporting the interim cryogenic propulsion stage (ICPS) hardware for the first flight of NASA’s Space Launch System (SLS) rocket from Decatur, Alabama. SLS-1 launch from the Kennedy Space Center is slated for late 2018. Credit: Ken Kremer/kenkremer.com

The ICPS was loaded onto the Delta Mariner and departed Decatur last week to began its sea going voyage of more than 2,100 miles (3300 km). The barge trip normally takes 8 to 10 days.

“ULA has completed production on the interim cryogenic propulsion stage (ICPS) flight hardware for NASA’s Space Launch System and it’s on the way to Cape Canaveral aboard the Mariner,” ULA noted in a statement last week.

The 312-foot-long (95-meter-long) ULA ship docked Tuesday morning at the wharf at Port Canaveral to prepare for off loading from the roll-on, roll-off vessel.

The Delta Mariner can travel on both rivers and open seas and navigate in waters as shallow as nine feet.

“ICPS, the first integrated SLS hardware to arrive at the Cape, will provide in-space propulsion for the SLS rocket on its Exploration Mission-1 (EM-1) mission,” according to ULA.

The next step for the upper stage is ground transport to United Launch Alliance’s Delta IV Operation Center on Cape Canaveral Air Force Station in Florida for further testing and processing before being moved to the Kennedy Space Center.

ULA will deliver the ICPS to NASA in mid-2017.

“It will be the first integrated piece of SLS hardware to arrive at the Cape and undergo final processing and testing before being moved to Ground Systems Development Operations at NASA’s Kennedy Space Center,” said NASA officials.

“The ICPS is a liquid oxygen/liquid hydrogen-based system that will provide the thrust needed to send the Orion spacecraft and 13 secondary payloads beyond the moon before Orion returns to Earth.”

The upper stage is powered by a single RL-10B-2 engine fueled by liquid hydrogen and oxygen and generates 24,750 pounds of thrust. It measures 44 ft 11 in (13.7 m ) in length and 16 ft 5 in (5 m) in width.

The interim cryogenic propulsion stage (ICPS) for the first flight of NASA’s Space Launch System (SLS) rocket as it completed major assembly at United Launch Alliance in Decatur, Alabama in December 2016. The ICPS just arrived by way of barge at Cape Canaveral Air Force Station in Florida on March 7, 2017. It will propel the Orion EM-1 crew module around the Moon. The SLS-1/Orion EM-1 launch is currently slated for late 2018 launch from NASA’s Kennedy Space Center. Credit: ULA

All major elements of the SLS will be assembled for flight inside the high bay of NASA’s iconic Vehicle Assembly Building which is undergoing a major overhaul to accommodate the SLS. The VAB high bay was extensively refurbished to convert it from Space Shuttle to SLS assembly and launch operations.

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

For SLS-1 the mammoth booster will launch in its initial 70-metric-ton (77-ton) Block 1 configuration with a liftoff thrust of 8.4 million pounds – more powerful than NASA’s Saturn V moon landing rocket.

Components of the SLS-1 rocket are being manufactured at NASA’s Michoud Assembly Facility and elsewhere around the country by numerous suppliers.

Michoud is building the huge liquid oxygen/liquid hydrogen SLS core stage fuel tank, derived from the Space Shuttle External Tank (ET) – as I detailed here.

The liquid hydrogen tank qualification test article for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally after final welding was completed at NASA’s Michoud Assembly Facility in New Orleans in July 2016. Credit: Ken Kremer/kenkremer.com

The ICPS sits on top of the SLS core stage.

The next Delta IV rocket launching with a Delta Cryogenic Second Stage is tentatively slated for March 14 from pad 37 at the Cape.

The Orion EM-1 capsule is currently being manufactured at the Neil Armstrong Operations and Checkout Building at the Kennedy Space Center by prime contractor Lockheed Martin.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

File photo of the ULA Delta Mariner barge arriving in Port Canaveral, Florida after transporting rocket hardware from Decatur, Alabama

Elon Musk Announces Daring SpaceX Dragon Flight Beyond Moon with 2 Private Astronauts in 2018

SpaceX CEO Elon Musk announced plans on Feb. 27, 2017 to launch a commercial crew SpaceX Dragon to beyond the Moon and back with two private astronauts in 2018 using a SpaceX Falcon Heavy launching from the Kennedy Space Center. Credit: SpaceX
SpaceX CEO Elon Musk announced plans on Feb. 27, 2017 to launch a commercial crew SpaceX Dragon to beyond the Moon and back with two private astronauts in 2018 using a SpaceX Falcon Heavy launching from the Kennedy Space Center. Credit: SpaceX

KENNEDY SPACE CENTER, FL – Elon Musk, billionaire founder and CEO of SpaceX, announced today (27 Feb) a daring plan to launch a commercial manned journey “to beyond the Moon and back” in 2018 flying aboard an advanced crewed Dragon spacecraft paid for by two private astronauts – at a media telecon.

Note: Check back again for updated details on this breaking news story.

“This is an exciting thing! We have been approached to do a crewed mission to beyond the Moon by some private individuals,” Musk announced at the hastily arranged media telecon just concluded this afternoon which Universe Today was invited to participate in.

The private two person crew would fly aboard a human rated Dragon on a long looping trajectory around the moon and far beyond on an ambitious mission lasting roughly eight days and that could blastoff by late 2018 – if all goes well with rocket and spacecraft currently under development, but not yet flown.

“This would do a long leap around the moon,” Musk said. “We’re working out the exact parameters, but this would be approximately a week long mission – and it would skim the surface of the moon, go quite a bit farther out into deep space, and then loop back to Earth. I’m guessing probably distance wise, maybe 300,000 or 400,000 miles.”

The private duo would fly on a ‘free return’ trajectory around the Moon – but not land on the Moon like NASA did in the 1960s and 1970s.

But they would venture further out into deep space than any humans have ever been before.

No human has traveled beyond low Earth orbit in more than four decades since Apollo 17 – NASA’s final lunar landing mission in December 1972, and commanded by recently deceased astronaut Gene Cernan.

“Like the Apollo astronauts before them, these individuals will travel into space carrying the hopes and dreams of all humankind, driven by the universal human spirit of exploration,” says SpaceX.

Musk said the private crew of two would launch on a Dragon 2 crew spacecraft atop a SpaceX Falcon Heavy booster from historic pad 39A at the Kennedy Space Center in Florida – the same pad that just reopened for business last week with the successful launch of a cargo Dragon to the International Space Station (ISS) for NASA on the CRS-10 mission.

“They are two paying customers,” Musk elaborated. “They’re very serious about it.”

“But nobody from Hollywood.”

“They will fly using a Dragon 2 and Falcon Heavy next year in 2018.”

“The lunar orbit mission would launch about 6 months after the [first] NASA crew to the space station on Falcon 9/Dragon 2,” Musk told Universe Today.

Musk noted they had put down “a significant deposit” and will undergo extensive flight training.

He declined to state the cost – but just mentioned it would be more than the cost of a Dragon seat for a flight to the space station, which is about $58 million.

The Falcon Heavy, once operational, will be the most powerful rocket in the world. Credit: SpaceX

SpaceX is currently developing the commercial crew Dragon spacecraft for missions to transport astronauts to low Earth orbit (LEO) and the International Space Station (ISS) under a NASA funded a $2.6 billion public/private contract. Boeing was also awarded a $4.2 Billion commercial crew contract by NASA to build the crewed CST-100 Starliner for ISS missions.

The company is developing the triple barreled Falcon Heavy with its own funds – which is derived from the single barreled Falcon 9 rocket funded by NASA.

But neither the Dragon 2 nor the Falcon Heavy have yet launched to space and their respective maiden missions haven been postponed multiple time for several years – due to a combination of funding and technical issues.

So alot has to go right for this private Moonshot mission to actually lift off by the end of next year.

NASA is developing the new SLS heavy lift booster and Orion capsule for deep space missions to the Moon, Asteroids and Mars.

The inaugural uncrewed SLS/Orion launch is slated for late 2018. But NASA just announced the agency has started a feasibility study to examine launching a crew on the first Orion dubbed Exploration Mission-1 (EM-1) on a revamped mission in 2019 rather than 2021 on EM-2.

Thus the potential exists that SpaceX could beat NASA back to the Moon with humans.

I asked Musk to describe the sequence of launches leading up to the private Moonshot and whether a crewed Dragon 2 would launch initially to the ISS.

Musk replied that SpaceX hopes to launch the first uncrewed Dragon 2 test flight to the ISS by the end of this year on the firm’s Falcon 9 rocket – almost identical to the rocket that just launched on Feb. 19 from pad 39A.

That would be followed by crewed launch to the ISS around mid-2018 and the private Moonshot by the end of 2018.

“The timeline is we expect to launch a human rated Dragon 2 on Falcon 9 by the end of this year, but without people on board just for the test flight to the space station,” Musk told Universe Today.

“Then about 6 months later we would fly with a NASA crew to the space station on Falcon 9/Dragon 2.”

“And then about 6 months after that, assuming the schedule holds by end of next year, is when we would do the lunar orbit mission.”

I asked Musk about whether any heat shield modifications to Dragon 2 were required?

“The heat shield is quite massively over designed,” Musk told me during the telecom.

“It’s actually designed for multiple Earth orbit reentry missions – so that we can actually do up to 10 reentry missions with the same heat shield.”

“That means it can actually do at least 1 lunar orbit reentry velocity missions, and conceivably maybe 2.”

“So we do not expect any redesign of the heat shield.”

The reentry velocity and heat generated from a lunar mission is far higher than from a low Earth orbit mission to the space station.

Nevertheless the flight is not without risk.

The Dragon 2 craft will need some upgrades. For example “a deep space communications system” with have to be installed for longer trips, said Musk.

Dragon currently is only equipped for shorter Earth orbiting missions.

The flight must also be approved by the FAA before its allowed to blastoff – as is the case with all commercial launches like the Feb. 19 Falcon 9/Cargo Dragon mission for NASA.

SpaceX founder and CEO Elon Musk. Credit: Ken Kremer/kenkremer.com

Musk declined to identify the two individuals or their genders but did say they know one another.

They must pass health and training tests.

“We expect to conduct health and fitness tests, as well as begin initial training later this year,’ noted SpaceX.

The flight itself would be very autonomous. The private passengers will train for emergencies but would not be responsible for piloting Dragon.

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Musk said he would give top priority to NASA astronauts for the Moonshot mission if the agency wanted to procure the seats ahead of the private passengers.

He noted that SpaceX would have the capability to launch one or 2 private moonshots per year.

“I think this should be a really exciting mission that gets the world really excited about sending people into deep space again. I think it should be super inspirational,” Musk said.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket launches from pad 39A at the Kennedy Space Center on Feb 19, 2017 for NASA on the Dragon CRS-10 delivery mission to the International Space Station (ISS). Credit: Julian Leek
SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39A at the Kennedy Space Center on 19 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com
An artist's illustration of the Falcon Heavy rocket. Image: SpaceX
An artist’s illustration of the Falcon Heavy rocket. Image: SpaceX

NASA Studies Whether to Add Crew to 1st SLS Megarocket Moon Launch in 2019

NASA’s Space Launch System rocket will be the most powerful rocket in the world and, with the agency’s Orion spacecraft, will launch America into a new era of exploration to destinations beyond Earth’s orbit. Their first integrated mission is planned as uncrewed, but NASA now is assessing the feasibility of adding crew. Credits: NASA/MSFC
NASA’s Space Launch System rocket will be the most powerful rocket in the world and, with the agency’s Orion spacecraft, will launch America into a new era of exploration to destinations beyond Earth’s orbit. Their first integrated mission is planned as uncrewed, but NASA now is assessing the feasibility of adding crew. Credits: NASA/MSFC

KENNEDY SPACE CENTER, FL – At the request of the new Trump Administration, NASA has initiated a month long study to determine the feasibility of converting the first integrated unmanned launch of the agency’s new Space Launch System (SLS) megarocket and Orion capsule into a crewed mission that would propel two astronauts to the Moon and back by 2019 – 50 years after the first human lunar landing.

Top NASA officials outlined the details of the study at a hastily arranged media teleconference briefing on Friday, Feb 24. It will examine the feasibility of what it would take to add a crew of 2 astronauts to significantly modified maiden SLS/Orion mission hardware and whether a launch could be accomplished technically and safely by the end of 2019.

On Feb. 15, Acting Administrator Robert Lightfoot announced that he had asked Bill Gerstenmaier, associate administrator for NASA’s Human Exploration and Operations Mission Directorate in Washington, to start detailed studies of what it would take to host astronauts inside the Orion capsule on what the agency calls Exploration Mission-1, or EM-1.

Gerstenmaier, joined by Bill Hill, deputy associate administrator for Exploration Systems Development in Washington, at the briefing said a team was quickly assembled and the study is already underway.

They expect the study to be completed in early spring, possibly by late March and it will focus on assessing the possibilities – but not making a conclusion on whether to actually implement changes to the current uncrewed EM-1 flight profile targeted for blastoff later in 2018.

“I want to stress to you this is a feasibility study. So when we get done with this we won’t come out with a hard recommendation, one way or the other,” Gerstenmaier stated.

“We’re going to talk about essentially the advantages and disadvantages of adding crew to EM-1.”

“We were given this task a week ago, appointed a team and have held one telecon.”

“Our priority is to ensure the safe and effective execution of all our planned exploration missions with the Orion spacecraft and Space Launch System rocket,” said Gerstenmaier.

“This is an assessment and not a decision as the primary mission for EM-1 remains an uncrewed flight test.”

Artist concept of the SLS Block 1 configuration on the Mobile Launcher at KSC. Credit: NASA/MSFC

Gerstenmaier further stipulated that the study should focus on determining if a crewed EM-1 could liftoff by the end of 2019. The study team includes one astronaut.

If a change resulted in a maiden SLS/Orion launch date stretching beyond 2019 it has little value – and NASA is best to stick to the current EM-1 flight plan.

The first SLS/Orion crewed flight is slated for Exploration Mission-2 (EM-2) launching in 2021.

“I felt that if we went much beyond 2019, then we might as well fly EM-2 and actually do the plan we’re on,” Gerstenmaier said.

NASA’s current plans call for the unmanned blastoff of Orion EM-1 on the SLS-1 rocket later next year on its first test flight on a 3 week long mission to a distant lunar retrograde orbit. It is slated to occur roughly in the September to November timeframe from Launch Complex 39B at the Kennedy Space Center.

Lightfoot initially revealed the study in a speech to the Space Launch System/Orion Suppliers Conference in Washington, D.C. and an agency wide memo circulated to NASA employees on Feb. 15 – as I reported here.

The Orion EM-1 capsule is currently being manufactured at the Neil Armstrong Operations and Checkout Building at the Kennedy Space Center by prime contractor Lockheed Martin.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

To launch astronauts, Orion EM-1 would require very significant upgrades since it will not have the life support systems, display panels, abort systems and more needed to safely support humans on board.

“We know there are certain systems that needed to be added to EM-1 to add crew,” Gerstenmaier elaborated. “So we have a good, crisp list of all the things we would physically have to change from a hardware standpoint.

In fact since EM-1 assembly is already well underway, some hardware already installed would have to be pulled out in order to allow access behind to add the life support hardware and other systems, Hill explained.

The EM-1 pressure shell arrived last February as I witnessed and reported here.

Thus adding crew at this latter date in the manufacturing cycle is no easy task and would absolutely require additional time and additional funding to the NASA budget – which as everyone knows is difficult in these tough fiscal times.

“Then we asked the team to take a look at what additional tests would be needed to add crew, what the additional risk would be, and then we also wanted the teams to talk about the benefits of having crew on the first flight,” Gerstenmaier explained.

“It’s going to take a significant amount of money, and money that will be required fairly quickly to implement what we need to do,” Hill stated. “So it’s a question of how we refine the funding levels and the phasing of the funding for the next three years and see where it comes out.”

Hill also stated that NASA would maintain the Interim Cryogenic Propulsion stage for the first flight, and not switch to the more advanced and powerful Exploration Upper Stage (EUS) planned for first use on EM-2.

Furthermore NASA would move up the AA-2 ascent abort test for Orion to take place before crewed EM-1 mission.

Components of the SLS-1 rocket are being manufactured at NASA’s Michoud Assembly Facility and elsewhere around the country by numerous suppliers.

Michoud is building the huge fuel liquid oxygen/liquid hydrogen SLS core stage fuel tank, derived from the Space Shuttle External Tank (ET) – as I detailed here.

The liquid hydrogen tank qualification test article for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally after final welding was completed at NASA’s Michoud Assembly Facility in New Orleans in July 2016. Credit: Ken Kremer/kenkremer.com

Gerstenmaier noted that Michoud did suffer some damage during the recent tornado strike which will necessitate several months worth of repairs.

The newly assembled first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine (blue) on July 22, 2016. It was lifted out of the welder (top) after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

The 2018 launch of NASA’s Orion on the unpiloted EM-1 mission counts as the first joint flight of SLS and Orion, and the first flight of a human rated spacecraft to deep space since the Apollo Moon landing era ended more than 4 decades ago.

SLS is the most powerful booster the world has even seen – even more powerful than NASA’s Saturn V moon landing rocket of the 1960s and 1970s.

For SLS-1 the mammoth booster will launch in its initial 70-metric-ton (77-ton) Block 1 configuration with a liftoff thrust of 8.4 million pounds.

If NASA can pull off a 2019 EM-1 human launch it will coincide with the 50th anniversary of Apollo 11 – NASA’s first lunar landing mission manned by Neil Armstrong and Buzz Aldrin, along with Michael Collins.

If crew are added to EM-1 it would essentially adopt the mission profile currently planned for Orion EM-2.

“If the agency decides to put crew on the first flight, the mission profile for Exploration Mission-2 would likely replace it, which is an approximately eight-day mission with a multi-translunar injection with a free return trajectory,” said NASA. It would be similar to Apollo 8 and Apollo 13.

This artist concept depicts the Space Launch System rocket rolling out of the Vehicle Assembly Building at NASA’s Kennedy Space Center. SLS will be the most powerful rocket ever built and will launch the agency’s Orion spacecraft into a new era of exploration to destinations beyond low-Earth orbit. Credits: NASA/Marshall Space Flight Center

Orion is designed to send astronauts deeper into space than ever before, including missions to the Moon, asteroids and the Red Planet.

NASA is developing SLS and Orion for sending humans on a ‘Journey to Mars’ in the 2030s.

They are but the first hardware elements required to carry out such an ambitious initiative.

Looking up from beneath the enlarged exhaust hole of the Mobile Launcher to the 380 foot-tall tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars. The ML will support NASA’s Space Launch System (SLS) and Orion spacecraft during Exploration Mission-1 at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

An artist’s interpretation of NASA’s Space Launch System Block 1 configuration with an Orion vehicle. Image: NASA

See a Flirtatious Lunar Eclipse This Friday Night

Penumbral lunar eclipse Oct. 18-19, 2013. Credit: AstroTripper2000
This sequence of photos taken on October 18, 2013 nicely show the different phases of a penumbral lunar eclipse. The coming penumbral eclipse will likely appear even darker because Earth’s shadow will shade to the top (northern) half of the Moon rich in dark lunar “seas” at maximum. Credit: AstroTripper 2000

Not many people get excited about a penumbral eclipse, but when it’s a deep one and the only lunar eclipse visible in North America this year, it’s worth a closer look. What’s more, this Friday’s eclipse happens during convenient, early-evening viewing hours. No getting up in the raw hours before dawn.

Lunar eclipses — penumbral, partial and total — always occur at Full Moon, when the Moon, Earth and Sun line up squarely in a row in that order. Only then does the Moon pass through the shadow cast by our planet. Credit: Starry Night with additions by the author

During a partial or total lunar eclipse, the full moon passes first through the Earth’s outer shadow, called the penumbra, before entering the dark, interior shadow or umbra. The penumbra is nowhere near as dark as the inner shadow because varying amounts of direct sunlight filter into it, diluting its duskiness.

To better understand this, picture yourself watching the eclipse from the center of the Moon’s disk (latitude 0°, longitude 0°). As you look past the Earth toward the Sun, you would see the Sun gradually covered or eclipsed by the Earth. Less sunlight would be available to illuminate the Moon, so your friends back on Earth would notice a gradual dimming of the Moon, very subtle at first but becoming more noticeable as the eclipse progressed.

This diagram shows an approximation of the Sun’s position and size as viewed by an observer at the center of the lunar disk during Friday’s penumbral eclipse. More sunlight shines across the Moon early in the eclipse, making the penumbral shadow very pale, but by maximum (right), half the sun is covered and the Moon appears darker and duskier as seen from Earth. During a total lunar eclipse, the sun is hidden completely. Credit: Bob King with Earth image by NASA

As the Moon’s leading edge approached the penumbra-umbra border, the Sun would narrow to a glaring sliver along Earth’s limb for our lucky lunar observer. Back on Earth, we’d notice that the part of the Moon closest to the umbra looked strangely gray and dusky, but the entire lunar disk would still be plainly visible. That’s what we’ll see during Friday’s eclipse. The Moon will slide right up to the umbra and then roll by, never dipping its toes in its dark waters.

During a partial eclipse, the Moon keeps going into the umbra, where the Sun is completely blocked from view save for dash of red light refracted by the Earth’s atmosphere into what would otherwise be an inky black shadow. This eclipse, the Moon only flirts with the umbra.

The moon’s orbit is tilted 5.1 degrees in relation to Earth’s orbit, so most Full Moons, it passes above or below the shadow and no eclipse occurs. Credit: Bob King

Because the moon’s orbit is tilted about 5° from the plane of Earth’s orbit, it rarely lines up for a perfect bullseye total eclipse: Sun – Earth – Moon in a straight line in that order. Instead, the moon typically passes a little above or below (north or south) of the small, circle-shaped shadow cast by our planet, and no eclipse occurs. Or it clips the outer edge of the shadow and we see — you guessed it — a penumbral eclipse.

Earth’s shadow varies in size depending where you are in it. Standing on the ground during twilight, it can grow to cover the entire sky, but at the moon’s distance of 239,000 miles, the combined penumbra and umbra span just 2.5° of sky or about the width of your thumb held at arm’s length.

The moon passes through Earth’s outer shadow, the penumbra, on Feb. 10-11. In the umbra, the sun is blocked from view, but the outer shadow isn’t as dark because varying amounts of sunlight filter in to dilute the darkness. Times are Central Standard. Credit: F. Espenak, NASA’s GFSC with additions by the author

Because the Moon travels right up to the umbra during Friday’s eclipse, it will be well worth watching.The lower left  or eastern half of the moon will appear obviously gray and blunted especially around maximum eclipse as it rises in the eastern sky that Friday evening over North and South America. I should mention here that the event is also visible from Europe, Africa, S. America and much of Asia.

This map shows where the eclipse will be visible. Most of the U.S. will see at least part of the event. Credit: F. Espenak, NASA’s GFSC

For the U.S., the eastern half of the country gets the best views. Here are CST and UT times for the different stages. To convert from CST, add an hour for Eastern, subtract one hour for Mountain and two hours for Pacific times. UT stands for Universal Time, which is essentially the same as Greenwich or “London” Time except when Daylight Saving Time is in effect:

This is a simulated view of the Full Snow Moon at maximum eclipse Friday evening low in the eastern sky alongside the familiar asterism known as the Sickle of Leo. Created with Stellarium

Eclipse begins: 4:34 p.m. (22:34 p.m. UT)
Maximum eclipse (moon deepest in shadow): 6:44 p.m. (00:43 UT Feb. 11)
Eclipse ends: 8:53 p.m. (2:53 UT Feb. 11)

You can see that the eclipse plays out over more than 4 hours, though I don’t expect most of us will either be able or would want to devote that much time. Instead, give it an hour or so when the Moon is maximally in shadow from 6 to 7:30 p.m. CST; 7-8:30 EST; 5-6:30 p.m. MST and around moonrise Pacific time.

This should be a fine and obvious eclipse because around the time of maximum, the darkest part of the penumbra shades the dark, mare-rich northern hemisphere of the Moon. Dark plus dark equals extra dark! Good luck and clear skies!

Weekly Space Hangout – February 3, 2017: Meredith Rawls & the LSST

Host: Fraser Cain (@fcain)

Special Guest: Meredith Rawls

Meredith is a Postdoctoral Researcher in the Department of Astronomy at the University of Washington. She writes software to prepare for the coming onslaught of data from the Large Synoptic Survey Telescope and studies weird binary stars. She is also the lead organizer of the ComSciCon-Pacific Northwest workshop for STEM graduate students in Seattle this March. Meredith holds degrees in physics and astronomy from Harvey Mudd College, San Diego State University, and New Mexico State University. When she’s not science-ing or telling people all about it, she plays viola, volunteers at summer camp, and advocates for more equity and less light pollution.

Guests:

Paul M. Sutter (pmsutter.com / @PaulMattSutter)
Kimberly Cartier ( KimberlyCartier.org / @AstroKimCartier )

Their stories this week:
Oxygen on the moon

Nearby “super-void” shapes galaxy motion

First science from Keck’s vortex coronograph

We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site linked above and sign up!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page

NASA Tribute Exhibit Honors Fallen Apollo 1 Crew 50 Years After Tragedy

The new tribute to Apollo 1 at NASA’s Kennedy Space Center was opened during a dedication ceremony on Jan. 27, 2017, 50 years after the crew was lost - with a keynote speech by Kennedy Space Center Director and former astronaut Bob Cabana. The entrance to the Apollo 1 tribute shows the three astronauts who perished in a fire at the launch pad on Jan. 27, 1967 during training for the mission. The astronauts are, from left, Gus Grissom, Ed White II and Roger Chaffee. Credit: Ken Kremer/kenkremer.com
The new tribute to Apollo 1 at NASA’s Kennedy Space Center was opened during a dedication ceremony on Jan. 27, 2017, 50 years after the crew was lost – with a keynote speech by Kennedy Space Center Director and former astronaut Bob Cabana. The entrance to the Apollo 1 tribute shows the three astronauts who perished in a fire at the launch pad on Jan. 27, 1967 during training for the mission. The astronauts are, from left, Gus Grissom, Ed White II and Roger Chaffee. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER VISITOR COMPLEX, FL – NASA unveiled a new tribute exhibit honoring three fallen astronaut heroes 50 years to the day of the Apollo 1 tragedy on January 27, 1967 when the three man crew perished in a flash fire on the launch pad during a capsule test that was not considered to be dangerous.

The Apollo 1 prime crew comprising NASA astronauts Gus Grissom, Ed White II and Roger Chaffee were killed during routine practice countdown testing when a fire suddenly erupted inside the cockpit as they were strapped to their seats in their Apollo command module capsule, on a Friday evening at 6:31 p.m. on January 27, 1967.

“It’s been 50 years since the crew of Apollo 1 perished in a fire at the launch pad, but the lives, accomplishments and heroism of the three astronauts are celebrated in a dynamic, new tribute that is part museum, part memorial and part family scrapbook,” says a NASA narrative that aptly describes the exhibit and the memorial ceremony I attended at the Apollo/Saturn V Center at NASA’s Kennedy Space Center in Florida on Friday, Jan. 27, 2017 on behalf of Universe Today.

It was the first disaster with a human crew and the worst day in NASA’s storied history to that point.

The tribute is named called “Ad Astra Per Aspera – A Rough Road Leads to the Stars.”

A new tribute to the crew of Apollo 1, who perished in a fire at the launch pad on Jan. 27, 1967, opened at NASA’s Kennedy Space Center on the 50th anniversary of that fatal day that cost the lives of all three crewmembers. The tribute exhibit at the Apollo/Saturn Center highlights the lives and careers of NASA astronauts Gus Grissom, Ed White II and Roger Chaffee with artifacts and photos. Credit: Ken Kremer/kenkremer.com

At the tribute dedication ceremony Kennedy Space Center Director and former astronaut Bob Cabana said the families of the fallen crew gave their approvals and blessing to the efforts that would at last tell the story of Apollo 1 to all generations – those who recall it and many more to young or not yet born to remember the tragedy of the early days of America’s space program.

“It’s long overdue,” said KSC center director and former astronaut Bob Cabana at the KSC dedication ceremony to family, friends and invited guests colleagues. “I’m proud of the team that created this exhibit.”

“Ultimately, this is a story of hope, because these astronauts were dreaming of the future that is unfolding today,” said Cabana. Generations of people around the world will learn who these brave astronauts were and how their legacies live on through the Apollo successes and beyond.”

The exhibit “showcases clothing, tools and models that define the men as their parents, wives and children saw them as much as how the nation viewed them.”

The main focus was to introduce the astronauts to generations who never met them and may not know much about them or the early space program, says NASA.

“This lets you now meet Gus Grissom, Ed White and Roger Chaffee as members of special families and also as members of our own family,” said NASA’s Luis Berrios, who co-led the tribute design that would eventually involve more than 100 designers, planners and builders to realize.

“You get to know some of the things that they liked to do and were inspired by. You look at the things they did and if anyone does just one of those things, it’s a lifetime accomplishment and they did all of it and more.”

Apollo 1 astronauts Gus Grissom, Ed White II and Roger Chaffee stand near Cape Kennedy’s Launch Complex 34 during mission training in January 1967. On Jan. 27, 1967, the three astronauts were preparing for what was to be the first manned Apollo flight. The astronauts were sitting atop the launch pad for a pre-launch test when a fire broke out in their Apollo capsule and they perished. Credit: NASA

The crew and the Apollo 1 command module were stacked atop the Saturn 1B rocket at Launch Complex 34 on what is now Cape Canaveral Air Force Station in Florida.

During the “plugs out” test the Saturn 1B rocket was not fueled. But the fatal flaw was the atmosphere of pure oxygen for the astronauts to breath inside the sealed Apollo 1 command module which was pressurized to 16.7 psi.

The three-part hatch that was in place on the Apollo 1 spacecraft is shown in a tribute to the crew of Apollo 1 who perished in a fire at the launch pad on Jan. 27, 1967 during training for the mission. This is the first time any part of the Apollo 1 spacecraft has been displayed publicly and is part of the tribute exhibit at NASA’s Kennedy Space Center, Florida. A version of the hatch after it was redesigned is also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon. Credit: Ken Kremer/kenkremer.com

Another significantly contributing fatal flaw was the inward opening three layered hatch that took some 90 seconds to open under the best of conditions.

After working all afternoon through the practice countdown and encountering numerous problems, something went terribly awry. Without warning a flash fire erupted in the cockpit filled with 100 percent oxygen and swiftly spread uncontrollably creating huge flames licking up the side of the capsule, acrid smoke and a poisonous atmosphere that asphyxiated, burned and killed the crew.

With the scorching temperatures spiking and pressures rapidly rising in a closed system, the capsule exploded some 20 seconds after the fire started. And because of the pressure buildup inside with flames licking up the sides and the toxic atmosphere generated from burning materials, the crew succumbed and could not turn the latch to pull open the hatch against the pressure.

The pad crew tried bravely in vain to save them, fighting heavy smoke and fire and fearing that the attached launch abort system on top of the capsule would ignite and kill them all too.

An investigation would determine that the fire was likely caused by a spark from frayed wiring, perhaps originating under Grissom’s seat.

“An electrical short circuit inside the Apollo Command Module ignited the pure oxygen environment and within a matter of seconds all three Apollo 1 crewmembers perished,” NASA concluded.

NASA and contractor North American Aviation completely redesigned the capsule with major engineering changes including an atmosphere of 60 percent oxygen and 40 percent nitrogen at 5 psi blower pressure, new hatch that could open outwards in 5 seconds, removing flammable materials among many others that would make the Apollo spacecraft much safer for the upcoming journeys to the moon.

The multi-layed hatch serves as the centerpiece of the tribute exhibit. No piece of Apollo 1 has ever before been put on public display. Alongside the old hatch, the new hatch is displayed that was used on all the remaining Apollo missions.

The three-part hatch that was in place on the Apollo 1 spacecraft is shown in a tribute to the crew of Apollo 1 who perished in a fire at the launch pad on Jan. 27, 1967 during training for the mission. This is the first time any part of the Apollo 1 spacecraft has been displayed publicly and is part of the tribute exhibit at NASA’s Kennedy Space Center, Florida. A version of the hatch after it was redesigned is also showcased (right) as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon. Credit: Ken Kremer/kenkremer.com

Display cases highlights the lives and careers of the three astronauts in these NASA descriptions.

Gus Grissom was “one of NASA’s Original Seven astronauts who flew the second Mercury mission, a hunting jacket and a pair of ski boots are on display, along with a small model of the Mercury spacecraft and a model of an F-86 Sabre jet like the one he flew in the Korean War. A slide rule and engineering drafts typify his dedication to detail.”

“The small handheld maneuvering thruster that Ed White II used to steer himself outside his Gemini capsule during the first American spacewalk features prominently in the display case for the West Point graduate whose athletic prowess nearly equaled his flying acumen. An electric drill stands alongside the “zip gun,” as he called the thruster.”

“It was great to juxtaposition it with a drill which was also a tool that Ed loved to use,” Berrios said. “He had a tremendous passion for making things for his family.”

“Roger Chaffee, for whom Apollo 1 would have been his first mission into space, was an esteemed Naval aviator who became a test pilot in his drive to qualify as an astronaut later. Displayed are board games he played with his wife and kids on rare evenings free of training.”

Grissom, White and Chaffee composed NASA’s first three person crew following the one man Mercury program and two man Gemini program, that had just concluded in November 1966 with Gemini 12.

The trio had been scheduled to blastoff on February 21, 1967 on a 14 day long mission in Earth orbit to thoroughly check out the Apollo command and service modules.

Apollo 1 was to be the first launch in NASA’s Apollo moon landing program initiated by President John F. Kennedy in 1961.

Apollo 1 was planned to pave the way to the Moon so that succeeding missions would eventually “land a man on the Moon and return him safely to Earth before this decade is out” as Kennedy eloquently challenged the nation to do.

Legendary Gemini and Apollo astronaut General Thomas Stafford speaks at dedication of new tribute exhibit at NASA’s Kennedy Space Center about the heroic Apollo 1 crew and their contributions to getting us to the Moon on the 50th anniversary of their deaths in the flash fire on Jan. 27, 1967. Stafford was the backup commander of Apollo 1. Credit: Ken Kremer/kenkremer.com

I remember seeing the first news flashes about the Apollo 1 fire on the TV as a child, as it unfolded on the then big three networks. It is indelibly marked in my mind. This new exhibit truly tells the story of these astronaut heroes vividly to those with distant memories and those with little or no knowledge of Apollo 1.

Exit walkway passing through misty projection of Apollo 1 mission patch and crossing over to mock capsule and crew of Grissom, White and Chaffee seated in Apollo 1 Command Module. Family member quotes at left. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

How to See the Space Station Fly in Front of the Moon

A beautiful ISS transit on June 19 2015 recorded at Biscarrosse, France. Credit: David Duarte
What strange creature is this flitting across the Moon? Several members of the European Space Agency’s Astronomy Center captured these views of the International Space Station near Madrid, Spain on January 14 as it flew or transited in front of the full moon. Credit: Michel Breitfellner, Manuel Castillo, Abel de Burgos and Miguel Perez Ayucar / ESA

One-one thou… That’s how long it takes for the International Space Station, traveling at over 17,000 mph (27,300 kph), to cross the face of the Full Moon. Only about a half second! To see it with your own eyes, you need to know exactly when and where to look. Full Moon is best, since it’s the biggest the moon can appear, but anything from a half-moon up and up will do.

The photo above was made by superimposing 13 separate images of the ISS passing in front of the Moon into one. Once the team knew when the pass would happen, they used a digital camera to fire a burst of exposures, capturing multiple moments of the silhouetted spacecraft.


The ISS transits the Full Moon in May 2016

The ISS is the largest structure in orbit, spanning the size of a football field, but at 250 miles (400 km) altitude, it only appears as big as a modest lunar crater. While taking a photo sequence demands careful planning, seeing a pass is bit easier. As you’d suspect, the chances of the space station lining up exactly with a small target like the Moon from any particular location is small. But the ISS Transit Finder makes the job simple.

This is a screen grab from the homepage of Bartosz Wojczy?ski’s most useful ISS Transit Finder. Credit: Bartosz Wojczy?ski

Click on the link and fill in your local latitude, longitude and altitude or select from the Google maps link shown. You can always find your precise latitude and longitude at NASA’s Latitude/Longitude Finder  and altitude at Google Maps Find Altitude. Next, set the time span of your Moon transit search (up to one month from the current date) and then how far you’re willing to drive to see the ISS fly in front of the Moon.

When you click Calculate, you’ll get a list of events with little diagrams showing where the ISS will pass in relation to the Moon and sun (yes, the calculator also does solar disk crossings!) from your location. Notice that most of the passes will be near misses. However, if you click on the Show on Map link, you’ll get a ground track of exactly where you will need to travel to see it squarely cross Moon or Sun. Times shown are your local time, not Universal or UT.

A beautiful ISS transit on June 19 2015 recorded at Biscarrosse, France. The photographer used CalSky, another excellent satellite site, to prepare a week in advance of the event. This composite image was made with a Canon EOS 60D. Notice how bright the space station appears against the moon due to the lower-angled lighting across the lunar landscape at crescent phase compared to full, when the ISS appears in silhouette. Credit: David Duarte

The map also includes Recalculate for this location link. Clicking that will show you a sketch of the ISS’ predicted path across the Moon from the centerline location along with other details. I checked my city, and while there are no lunar transits for the next month, there’s a very nice solar one visible just a few miles from my home on Feb. 8. Remember to use a safe solar filter if you plan on viewing one of these!

The ISS transits the Sun on May 3, 2016. Click for details on how the photo was taken. Credit: Szabolcs Nagy

While you might attempt to see a transit of the ISS in binoculars, your best bet is with a telescope. Nothing fancy required, just about any size will do so long as it magnifies at least 30x to 40x. Timing is crucial. Like an occultation, when the moon hides a background star in an instant, you want to be on time and 100% present.

Make sure you’re set up and focused on the moon or sun (with filter) at least 5 minutes beforehand. Keep your cellphone handy. I’ve found the time displayed at least on my phone to be accurate. One minute before the anticipated transit, glue your eye to the eyepiece, relax and wait for the flyby. Expect something like a bird in silhouette to make a swift dash across the moon’s face. The video above will help you anticipate what to expect.

The next lunar transit nearest my home is an hour and a half away in the small town of Biwabik, Minn. according to the ISS Transit Finder. On Jan. 30 at 8:00:08 p.m local time, the ISS will cross the crescent moon from there. Once you know the time of the prediction and the exact latitude and longitude of the location (all information shown in the info box on the map using the ISS Transit Finder), you can turn on the satellites feature in the free Stellarium program (stellarium.org), select the ISS and create a simulated, detailed path. Created with Stellarium

Even if you never go to the trouble of identifying a “direct hit”, you can still use the transit finder to compile a list of cool lunar close approaches that would make for great photos with just a camera and tripod.

The Transit Finder isn’t the only way to predict ISS flybys. Some observers also use the excellent satellite site, CalSky. Once you tell it your location, select the Lunar/Solar Disk Crossings and Occultations link for lots of information including times, diagrams of crossings, ground tracks and more.

I use Stellarium (above) to make nifty simulated paths and show me where the Moon will be in the sky at the time of the transit. When you’ve downloaded the free program, get the latest satellite orbital elements this way:

* Move you cursor to the lower left of the window and select the Configuration box
* Click the Plugins tab and scroll down to Satellites and click Configure and then Update
Hover the cursor at the bottom of the screen for a visual menu. Slide over to the satellite icon and click it once for Satellite hints. The ISS will now be active.
* Set the clock and location (lower left again) for the precise time and location, then do a search for the Moon, and you’ll see the ISS path.

There you have it — lots of options. Or you can simply use the Transit Finder and call it a day! I hope you’ll soon be in the right place at the right time to see the space station pass in front of the Moon. Checking my usual haunts, I see that the space station will be returning next weekend (Jan. 27) to begin an approximately 3-week run of easily viewable evening passes.

Gene Cernan, Last Man on the Moon, Honored at Kennedy Space Center Visitor Complex

Remembrance Ceremony honoring the life of astronaut Eugene Cernan, last Man to walk on the Moon during NASA’s Apollo 17 moon landing mission in Dec. 1972, was held at the Kennedy Space Center Visitor Complex, Florida, on Jan. 18, 2017. Cernan passed away on Jan. 16, 2017. Credit: Ken Kremer/kenkremer.com
Remembrance Ceremony honoring the life of astronaut Eugene Cernan, last Man to walk on the Moon during NASA’s Apollo 17 moon landing mission in Dec. 1972, was held at the Kennedy Space Center Visitor Complex, Florida, on Jan. 18, 2017. Cernan passed away on Jan. 16, 2017. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER VISITOR COMPLEX, FL – Gene Cernan, the last man to walk on the Moon, and one of America’s most famous and renowned astronauts, was honored in a ceremony held at Kennedy Space Center Visitor Complex, Florida, on Jan. 18. [Story/photos expanded]

Cernan passed away earlier this week on Monday, January 16, 2017 at age 82, after a long illness, surrounded by his family.

Cernan, a naval aviator, flew on three groundbreaking missions for NASA during the Gemini and Apollo programs that paved the way for America’s and humanity’s first moon landing missions.

His trio of historic space flights ultimately culminated with Cernan stepping foot on the moon in Dec. 1972 during the Apollo 17 mission- NASA final moon landing of the Apollo era.

No human has set foot on the Moon since Apollo 17 – an enduring disappointment to Cernan and all space fans worldwide.

Cernan also flew on the Gemini 9 and Apollo 10 missions, prior to Apollo 17.

The Gemini 9 capsule is on display at the KSC Visitor Complex. Cernan was the second NASA astronaut to perform an EVA – during Gemini 9.

The Cernan remembrance ceremony was held at the U.S. Astronaut Hall of Fame inside the newly opened ‘Heroes & Legends’ exhibit at the KSC Visitor Complex – two days after Cernan died. It included remarks from two of his fellow NASA astronauts from the Space Shuttle era, Kennedy Space Center Director Bob Cabana, and space shuttle astronaut Jon McBride, as well as Therrin Protze, chief operating officer, Kennedy Space Center Visitor Complex.

Robert Cabana, director of NASA’s Kennedy Space Center and space shuttle astronaut Jon McBride, following remarks at the Jan 18, 2017 Remembrance Ceremony at the Kennedy Space Center Visitor Complex, Florida, honoring the life of astronaut Eugene Cernan. Credit: Julian Leek

A NASA portrait and floral wreath were on display for visitors during the ceremony inside and outside of the ‘Heroes and Legends’ exhibit.

“He was an advocate for the space program and hero that will be greatly missed,” said Kennedy Space Center Director Bob Cabana during the ceremony inside.

“I don’t believe that Gene is going to be the last man on the moon. And one of the things that he was extremely passionate about was our exploring beyond our own planet, and developing that capability that would allow us to go back to the moon and go beyond.

“I feel badly that he wasn’t able to stay alive long enough to actually see this come to fruition,” Cabana said.

Portrait of NASA astronaut Gene Cernan and floral wreath displayed during the Jan. 18, 2017 Remembrance Ceremony at the Kennedy Space Center Visitor Complex, Florida, honoring his life as the last Man to walk on the Moon. Credit: Ken Kremer/kenkremer.com

NASA is now developing the SLS heavy lift rocket and Orion deep space capsule to send our astronauts to the Moon, Mars and Beyond. The maiden launch of SLS-1 on the uncrewed EM-1 mission to the Moon is slated for Fall 2018.

“We are saddened of the loss of our American hero, Astronaut Gene Cernan. As the last man to place footsteps on the surface of the moon, he was a truly inspiring icon who challenged the impossible,” said Therrin Protze, chief operating officer of Kennedy Space Center Visitor Complex.

“People throughout generations have been and will forever be inspired by his actions, and the underlying message that what we can achieve is limited only by our imaginations. He will forever be known as ‘The Last Man on the Moon,” and for the extraordinary impact he had on our country and the world.”

Cernan was one of only 12 astronauts to walk on the moon. Neil Armstong and Buzz Aldrin were the first during the Apollo 11 moon landing mission in 1969 that fulfilled President Kohn F. Kennedy’s promise to land on the Moon during the 1960’s.

Launch of Apollo 17 – NASA’s last lunar landing mission – on 7 December 1972 from Launch Complex-39A on the Kennedy Space Center, Florida. Credit: Julian Leek

Cernan retired from NASA and the U.S. Navy in 1976. He continued to advise NASA as a consultant and appeared frequently on TV news programs during NASA’s manned space missions as an popular guest explaining the details of space exploration and why we should explore.

He advocated for NASA, space exploration and science his entire adult life.

The prime crew for the Apollo 17 lunar landing mission are: Commander, Eugene A. Cernan (seated), Command Module pilot Ronald E. Evans (standing on right), and Lunar Module pilot, Harrison H. Schmitt (left). They are photographed with a Lunar Roving Vehicle (LRV) trainer. Cernan and Schmitt used an LRV during their exploration of the Taurus-Littrow landing site. The Apollo 17 Saturn V Moon rocket is in the background. This picture was taken during October 1972 at Launch Complex 39A, Kennedy Space Center (KSC), Florida. Credit: Julian Leek

“As an astronaut, Cernan left an indelible impression on the moon when he scratched his daughter’s initials in the lunar surface alongside the footprints he left as the last human to walk on the moon. Guests of Kennedy Space Center Visitor Complex can learn more about Cernan’s legacy at the new Heroes & Legends exhibit, where his spacewalk outside the actual Gemini IX space capsule is brought to life through holographic imagery.”

Actual Gemini 9 capsule piloted by Gene Cernan with Commander Thomas P. Stafford on a three-day flight in June 1966 on permanent display in the Heroes and Legends exhibit at the Kennedy Space Center Visitor Complex, Florida. Cernan logged more than two hours outside the orbiting capsule, as depicted in description. Credit: Ken Kremer/kenkremer.com

From NASA’s profile page:

“Cernan was born in Chicago on March 14, 1934. He graduated from Proviso Township High School in Maywood, Ill., and received a bachelor of science degree in electrical engineering from Purdue University in 1956. He earned a master of science degree in aeronautical engineering from the U.S. Naval Postgraduate School in Monterey, Calif.

Cernan is survived by his wife, Jan Nanna Cernan, his daughter and son-in-law, Tracy Cernan Woolie and Marion Woolie, step-daughters Kelly Nanna Taff and husband, Michael, and Danielle Nanna Ellis and nine grandchildren.”

The following is a statement released by NASA on the behalf of Gene Cernan’s family:

A funeral service for Capt. Eugene A. Cernan, who passed away Monday at the age of 82, will be conducted at 2:30 p.m. CST on Tuesday, Jan. 24, at St. Martin’s Episcopal Church, 717 Sage Road in Houston.

NASA Television will provide pool video coverage of the service.

The family will gather for a private interment at the Texas State Cemetery in Austin at a later date, where full military honors will be rendered.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Grand opening ceremony for the ‘Heroes and Legends’ attraction on Nov. 11, 2016 at the Kennedy Space Center Visitor Complex in Florida and attended by more than 25 veteran and current NASA astronauts. Credit: Ken Kremer/kenkremer.com

What My Dog Taught Me About Time and Space

Credit: Bob King
Sammy and her namesake, Sirius the Dog Star, on a winter night. Photos by the author

Like many of you, I’m the owner of a furry Canis Major. Her name is Sammy. We always thought she was mostly border collie, but my daughter gifted me with a doggie DNA kit a few years back, and now we know with scientific certainty that she’s a mix of German shepherd, Siberian husky and golden retriever. Yeah, she’s a mutt.

Sammy’s going on 17 years old now — that’s human years — and has neither the spunk nor bladder control of a young pup. She wanders, paces, gets confused. In her aging, I see what’s in store for all of us as we pass from one stage of life to the next.

Intentionally or not, we humans often leave a legacy before we depart. Maybe a big building, a work of art or an exemplary life. As I stare down at my panting dog, it occurs that she’s leaving a legacy too, one she’s completely unaware of but which I’ll always appreciate.

Thanks to my dog I’ve seen more auroras and lunar halos that I can count. That goes for meteors, contrails, space station passes, light pillars and moonrises, too. All this because she needs to be walked in the early morning and again at night. This simple act ensures that while Sammy sniffs and marks, I get to spend at least 20 minutes under the sky. Nearly every night of the year.

Warm under her thick coat, she’s not bothered by the snow.

I’m an amateur astronomer and keep tabs on what’s up, but my dog makes sure I don’t ignore the sky. Let’s say she keeps me honest. There’s no avoiding going out or I’ll pay for it in whimpering and cleanup.

There were times I wouldn’t be aware an aurora was underway until it was time to walk the dog. When we were done, I’d dash away to a dark sky with camera and tripod. Other nights, walking the dog would alert me to a sudden clearing and the opportunity to catch a variable star on the rise or see a newly discovered comet for the first time. Thanks Sammy.

Amateur astronomers are familiar with eternity. We routinely observe stars and galaxies by eye and telescope that remind us of both the vastness of space and the aching expanse of time. I have only so many years left before I spend the next 10 billion years disassembled and strewn about like that scarecrow attacked by flying monkeys. But when I see the Sombrero Galaxy through my telescope, with its 29-million-year-old photons setting off tiny explosions in my retinas, I get a taste of eternity in the here and now.

That’s where Sammy offers yet another pearl. Dogs are far better living in the moment than people are. They can eat the same food twice a day for a decade and relish it anew every single time. Same goes for their excitement at seeing their owner or taking a walk or a million other ways they reveal that this moment is what counts.

The famous Sombrero galaxy (M104) is a bright nearby spiral galaxy. The prominent dust lane and halo of stars and globular clusters give this galaxy its name. Credit: NASA/ESA and The Hubble Heritage Team (STScI/AURA)

People tend to think of eternity as encompassing all of time, but Sammy has a different take. A moment fully experienced feels like it might never end. Lose yourself in the moment, and the clock stops ticking. I love that feeling. That’s how my dog’s been living all along. Canine wisdom: one billion years = one moment. Both feel like forever.

Sammy’s lost much of her hearing and some of her eyesight. We’re not sure how long she has. Maybe a few months, maybe even another year, but her legacy is clear. She’s been a great pet and teacher even if she never figured out how to fetch. We’ve hiked hard trails together and then rested atop precipices with the sun sinking in the west. I look into her clouded eyes these days and have to speak up when I call her name, but she’s been and remains a “Good dog!”

November 2016 Super Moon Images from Around the World

Moonrise over the London, as see from Waterloo Bridge on Nov. 13, 2016. Credit and copyright: Owen Llewellyn.

Now updated with more great images!

Although there’s been quite a bit of hype about the Super Moon on November 13, 2016, to many, the full Moon tonight may have appeared quite similar to other full Moon’s you’ve seen. Yes, the “super-ness” of this Moon, while noteworthy, is fairly imperceptible. While, as our own David Dickinson noted in his preview article, this full Moon is not only the closest for the year, but the nearest Full Moon for a 80 year plus span. However, the closest full moon of 2017 will be only 0.02% farther away than this one.

But any chance to get the public to look up at the night sky is a good one! And we’ll also take this opportunity to share some of the great images from around the world posted on Universe Today’s Flickr page, as well as on social media. Enjoy!

Here’s a “classic” but gorgeous look at the Moon:

The Moon just before full on November 13, 2016 imaged through cloud from London. Credit and copyright: Roger Hutchinson.
The Moon just before full on November 13, 2016 imaged through cloud from London. Credit and copyright: Roger Hutchinson.
Supermoon over Glastonbury Tor, Somerset, England on Nov. 13, 2016. Credit and copyright: Tim Graham/TJG Photography.
Supermoon over Glastonbury Tor, Somerset, England on Nov. 13, 2016. Credit and copyright: Tim Graham/TJG Photography.
Some astrophotographers took this opportunity to take close-ups of the Moon's surface. Pythagoras and Babbage Craters are seen here in this image from the UK on Nov. 13, 2016. Credit and copyright:  Alun Halsey.
Some astrophotographers took this opportunity to take close-ups of the Moon’s surface. Pythagoras and Babbage Craters are seen here in this image from the UK on Nov. 13, 2016. Credit and copyright:
Alun Halsey.
The 'Super Moon' over Rome on November 14, 2016. Credit and copyright: Gianluca Masi.
The ‘Super Moon’ over Rome on November 14, 2016. Credit and copyright: Gianluca Masi.
A view of the supermoon as seen from Lahore, Pakistan, with color added for contrast. Credit and copyright: Roshaan Bukhari.
A view of the supermoon as seen from Lahore, Pakistan, with color added for contrast. Credit and copyright: Roshaan Bukhari.
Moon and clouds as seen from the UK on Nov. 13, 2016. Credit and copyright: Sculptor Lil on Flickr.
Moon and clouds as seen from the UK on Nov. 13, 2016. Credit and copyright: Sculptor Lil on Flickr.

Pale Moon rising, as seen from North Bedfordshire, UK on Nov. 13, 2016. Credit and copyright: Dawn Sunrise on Flickr.
Pale Moon rising, as seen from North Bedfordshire, UK on Nov. 13, 2016. Credit and copyright: Dawn Sunrise on Flickr.

Noted NASA photographer Bill Ingalls is in Russia for the next launch of astronauts to the International Space Station. He took this image from Baikonur, Kazakhstan and also provided some tips on photographing the Moon.

And former astronaut Clayton Anderson shared this images from Houson, Texas:

Moonrise near Keene, Ontario on November 13, 2016. Credit and copyright: Rick Stankiewicz.
Moonrise near Keene, Ontario on November 13, 2016. Credit and copyright: Rick Stankiewicz.

A comparison of ‘super’ and ‘mini’ Moons and how they appear in the sky:

A perigee 'Supermoon' versus an apogee 'Minimoon'. Image credit and copyright: Raven Yu.
A perigee ‘Supermoon’ versus an apogee ‘Minimoon’. Image credit and copyright: Raven Yu.

Thanks to everyone for sharing their images, and be sure to check out UT’s Flickr pool for the most recent shots.

Link to the lead image by Owen Llewellyn can be found here.