What it Would Look Like if the Sun was Replaced with Other Stars?

How our horizon might look if Earth orbited the star Artcurus. Credit: TV Roskosmos.

How would our horizon look if Earth orbited around another star, such as Alfa-Centauri, Sirius, or Polaris? Roscosmos TV has released two new videos that replace our familiar Sun and Moon with other stars and planets. While these are completely fantastical — as Earth would have evolved very differently or not evolved at all in orbit around a giant or binary star — the videos are very well done and they give a new appreciation for the accustomed and comforting views we have. The Sun video is above; the Moon below:

Check out Roscosmos TV You Tube page — they have a great collection of videos, from launches to science to fantastical videos like the ones we featured here.

Is The Moon A Planet?

Composite picture of a dark red Moon during a total lunar eclipse. Credit: NASA/ Johannes Schedler (Panther Observatory)

What makes a planet a planet? The Moon is so big compared to the Earth — roughly one-quarter our planet’s size — that occasionally you will hear our system being referred to as a “double planet”. Is this correct?

And we all remember how quickly the definition of a planet changed in 2006 when more worlds similar to Pluto were discovered. So can the Moon stay the Moon, or is the definition subject to change?

Defining a planet

First, it’s important to understand what the official definition of a “planet” is, at least according to the International Astronomical Union. In its own words, according to a vote in Prague in 2006, the union has this definition:

“A planet is a celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the neighborhood around its orbit.”

What this means is that a planet must move around the Sun (and not move around something else), that it’s massive enough to have a round shape due to gravity, and that it will swoop up any dust or debris in its orbit as it moves around the Sun.

But let’s be clear on something; the IAU definition of planet is not without controversy. There is still a strong contingent of people who say that Pluto is indeed a planet, including the principal investigator of a spacecraft (New Horizons) to examine the world: Alan Stern.

“It’s an awful definition; it’s sloppy science and it would never pass peer review,” he told the BBC in 2006. He said that the line between dwarf planets and planets is too artificial, and that the definition of a “cleared neighborhood” is muddy. The Earth alone has many asteroids that follow it — or approach or cross its orbit — not to mention the massive planet Jupiter.

UV observations from Hubble show the size of water vapor plumes coming from Europa's south pole (NASA, ESA, and M. Kornmesser)
UV observations from Hubble show the size of water vapor plumes coming from Europa’s south pole (NASA, ESA, and M. Kornmesser)

Definition of a ‘satellite’

The Moon is not a unique phenomenon in our Solar System, in the sense that there are other planets that have satellites around them. Jupiter and Saturn have many dozens! Referring again to the IAU, the union also said in 2006 that it does not consider Charon a dwarf planet despite its large relative size to Pluto.

But Charon’s status as a moon could change in future, the IAU acknowledged. That’s primarily because the center of gravity in the system is not inside of Pluto, but in “free space between Pluto and Charon”. This center is called the “barycenter”, technically — and in Jupiter and Saturn’s cases, for example, all the barycenters of the various moons reside “inside” the huge gas giants.

Another caution, however: the IAU says “there has been no official recognition that the location of the barycenter is involved with the definition of a satellite.” So for now, it doesn’t have any bearing. That said, one question to consider is if the Moon’s barycenter is inside the Earth?

This Cassini raw image shows a portion of  Saturn's rings along with several moons.  How many can you find? Credit: NASA/JPL/Space Science Institute
This Cassini raw image shows a portion of Saturn’s rings along with several moons. How many can you find? Credit: NASA/JPL/Space Science Institute

The answer right now is “yes”. But over time, that barycenter will move outside of Earth. That’s because the Moon is slowly receding from our planet at a rate of about 3.8 centimeters (1.5 inches) a year. It’ll take a long time, but eventually the center of our system’s mass will not be within our planet.

And if you read back to an IAU interview in 2006, you’ll see that at that time, the IAU defined a “double planet” as a system where both bodies meet the definition of a planet, and the barycenter is not inside either one of the objects. So for now, the Earth is a planet and the Moon a satellite — at least under IAU rules.

We have written many articles about the Moon for Universe Today. Here’s an article about how long it takes to get to the Moon, and here are some interesting facts about the Moon. We’ve also recorded an entire episode of Astronomy Cast all about the Moon. Listen here, Episode 113: The Moon, Part 1.

News Flash: Asteroid Flying Past Earth Today Has Mini-Moon!

This animation, created from individual radar images, clearly show the rough outline of 2004 BL86 and its newly-discovered moon. Credit: NASA/JPL-Caltech

Wonderful news! Asteroid 2004 BL86, which passed closest to Earth today at a distance of 750,000 miles (1.2 million km), has a companion moon. Scientists working with NASA’s 230-foot-wide (70-meter) Deep Space Network antenna at Goldstone, California, have released the first radar images of the asteroid which show the tiny object in orbit about the main body.

While these are the first images of it, the “signature” of the satellite was seen in light curve data reported earlier by Joseph Pollock (Appalachian State University, North Carolina) and Petr Prave (Ondrejov Observatory, Czech Republic) according to Lance Benner who works with the radar team at Goldstone.

2004 BL86 measures about 1,100 feet (325 meters) across while its moon is approximately 230 feet (70 meters) across. The asteroid made its closest approach today (Jan. 26th) at 10:19 a.m. (CST), however it will peak in brightness this evening around 10 p.m. (4:00 UT) at magnitude +9.0. Unlike some flybys, 2004 BL86 will remain within a few tenths of a magnitude of peak brightness from 6 p.m. tonight (CST) through early tomorrow morning, so don’t miss the chance to see it in your telescope.

Don’t expect to see the diminutive moon visually – the entire system will only appear as a point of light, but I’m sure you’ll agree it’s cool just knowing it’s there.

The double asteroid (90) Antiope and S/2000 (90) 1. The two objects are separated by 171 km, and they perform their celestial dance in 16.5 hours. The adaptive optics observations could, however, never resolve the shape of the individual components as they are too small. Credit: ESO
The double asteroid (90) Antiope and its companion S/2000 (90) 1. The two objects are separated by 106 miles (171 km), and they perform their celestial dance in 16.5 hours. The adaptive optics observations couldn’t resolve the shape of the individual components as they are too small. Credit: ESO

Among near-Earth asteroids, about 16% that are about 655 feet (200 meters) or larger are either binary or triple systems. While that’s not what you’d call common, it’s not unusual either. To date, we know of 240 asteroids with a single moon, 10 triple systems and the sextuple system of Pluto (I realize that’s stretching a bit, since Pluto’s a dwarf planet) – 268 companions total. 52 of those are near-Earth asteroids.

With a resolution of 13 feet (4-meters) per pixel we can at least see the roughness of the the main body’s surface and perhaps imagine craters there. No details are visible on the moon though it does appear elongated. I’m surprised how round the main body is given its small size. An object that tiny doesn’t normally have the gravity required to crush itself into a sphere. Yet another fascinating detail needing our attention.

Of course the main asteroid will get your attention tonight. Please check out our earlier story on 2004 BL86 which includes more details as well as charts to help you track it as it flies across Cancer the Crab tonight. This is the best view we’re going to get of it for the next two centuries.

See a Rare Comet-Moon Conjunction Tonight

Tonight (Friday, Jan. 23rd) the moon will pass only about 1° (two moon diameters) south of Comet 15P/Finlay as seen from the Americas. This map shows the view from the upper Midwest at 7 p.m. Two 6th magnitude stars in Pisces are labelled. Created with Chris Marriott's SkyMap software

I want to alert you to a rather unusual event occurring this evening.

Many of you already know about the triple shadow transit of Jupiter’s moons Io, Europa and Callisto. That’s scheduled for late tonight.

Earlier, around nightfall, the crescent moon will lie 1° or less to the south-southwest of comet 15P/Finlay. No doubt lunar glare will hamper the view some, but what a fun opportunity to use the moon to find a comet.

Finlay underwent a flare in brightness last week when it became easily visible in binoculars.

The farther south you live, the closer the moon will approach the comet tonight. This diagram shows the view from Tucson, Ariz. at nightfall when less than 1/2° will separate the two. At about the same time (~7 p.m. local time) the moon will occult or cover up a 6th magnitude star (seen poking out from its left side). Source: SkyMap
The farther south you live, the closer the moon will approach the comet tonight. This diagram shows the view from Tucson, Ariz. at nightfall when less than 1/2° will separate the two. At about the same time (~7 p.m. local time) the moon will occult or cover up a 6th magnitude star (seen poking out from its left side). Source: SkyMap

Though a crescent moon isn’t what you’d call a glare bomb, I can’t predict for certain whether you’ll still see the comet in binoculars tonight or need a small telescope instead. Most likely a scope. Finlay has faded some since its outburst and now glows around magnitude +8.5.

You can try with a 10×50 or larger glass, and if you don’t succeed, whip out your telescope; a 4.5-inch or larger instrument should handle the job.

Just point it at the moon at star-hop a little to the north-northeast using the map until you see a fuzzy spot with a brighter center. That’s your comet. The tail won’t be visible unless you’re using more firepower, something closer to 10-inches.

Comet Finlay in outburst on January 20, 2015 shows a beautiful parabolic-shaped head. Credit: Joseph Brimacombe
Comet Finlay in outburst on January 20, 2015 showing a beautiful parabolic-shaped head. Credit: Joseph Brimacombe

By the way, the father south you live, the closer the moon approaches Finlay. From the far southern U.S. they’ll be just 1/2° apart. Keep going south and parts of Central and South America will actually see the earth-lit edge of moon approach and then occult the comet from view!

UPDATE: Although light clouds marred the view I had difficulty finding the comet this evening in my 10-inch scope. It’s possible it’s further faded or my conditions weren’t optimal or both. No luck BTW in binoculars.

Moonlight Is a Many-Splendored Thing

We see the Moon differently depending upon the wavelength in which we view it. Top row from left:

“By the Light of the Silvery Moon” goes the song. But the color and appearance of the Moon depends upon the particular set of eyes we use to see it. Human vision is restricted to a narrow slice of the electromagnetic spectrum called visible light.

With colors ranging from sumptuous violet to blazing red and everything in between, the diversity of the visible spectrum provides enough hues for any crayon color a child might imagine. But as expansive as the visual world’s palette is, it’s not nearly enough to please astronomers’ retinal appetites.

Visible light is a sliver of light's full range of "colors" which span from kilometers-long, low-energy radio waves (left) to short wavelength, energetic gamma rays. It's all light, with each color determined by wavelength. Familiar objects along the bottom reference light wave sizes. Visible light waves are about one-millionth of a meter wide. Credit: NASA
Visible light is a sliver of light’s full range of “colors” which span from kilometers-long, low-energy radio waves (left) to short wavelength, energetic gamma rays. It’s all light, with each color determined by wavelength. Familiar objects along the bottom reference light wave sizes. Visible light waves are about one-millionth of a meter wide. Credit: NASA

Since the discovery of infrared light by William Herschel in 1800 we’ve been unshuttering one electromagnetic window after another. We build telescopes, great parabolic dishes and other specialized instruments to extend the range of human sight.  Not even the atmosphere gets in our way. It allows only visible light, a small amount of infrared and ultraviolet and selective slices of the radio spectrum to pass through to the ground. X-rays, gamma rays and much else is absorbed and completely invisible.

Earth's atmosphere blocks a good portion of light's diversity from reaching the ground, the reason we launch rockets and orbiting telescopes into space. Large professional telescopes are often built on mountain tops above much of the atmosphere allowing astronomers to see at least some infrared light that is otherwise absorbed by air at lower elevations. Credit: NASA
Earth’s atmosphere blocks a good portion of light’s diversity from reaching the ground, the reason we launch rockets and orbiting telescopes into space. Large professional telescopes are often built on mountain tops above much of the denser, lower atmosphere. This expands the viewing “window” into the infrared. Credit: NASA

To peer into these rarified realms, we’ve lofting air balloons and then rockets and telescopes into orbit or simply dreamed up the appropriate instrument to detect them. Karl Jansky’s homebuilt radio telescope cupped the first radio waves from the Milky Way in the early 1930s; by the 1940s  sounding rockets shot to the edge of space detected the high-frequency sizzle of X-rays.  Each color of light, even the invisible “colors”, show us a new face on a familiar astronomical object or reveal things otherwise invisible to our eyes.

So what new things can we learn about the Moon with our contemporary color vision?

Radio Moon
Radio Moon

Radio: Made using NRAO’s 140-ft telescope in Green Bank, West Virginia. Blues and greens represent colder areas of the moon and reds are warmer regions. The left half  of Moon was facing the Sun at the time of the observation. The sunlit Moon appear brighter than the shadowed portion because it radiates more heat (infrared light) and radio waves.

Submillimeter Moon
Submillimeter Moon

Submillimeter: Taken using the SCUBA camera on the James Clerk Maxwell Telescope in Hawaii. Submillimeter radiation lies between far infrared and microwaves. The Moon appears brighter on one side because it’s being heated by Sun in that direction. The glow comes from submillimeter light radiated by the Moon itself. No matter the phase in visual light, both the submillimeter and radio images always appear full because the Moon radiates at least some light at these wavelengths whether the Sun strikes it or not.

Mid-infrared Moon
Mid-infrared Moon

Mid-infrared: This image of the Full Moon was taken by the Spirit-III instrument on the Midcourse Space Experiment (MSX) at totality during a 1996 lunar eclipse. Once again, we see the Moon emitting light with the brightest areas the warmest and coolest regions darkest. Many craters look like bright dots speckling the lunar disk, but the most prominent is brilliant Tycho near the bottom. Research shows that young, rock-rich surfaces, such as recent impact craters, should heat up and glow more brightly in infrared than older, dust-covered regions and craters. Tycho is one of the Moon’s youngest craters with an age of just 109 million years.

Near-infrared Moon
Near-infrared Moon

Near-infrared: This color-coded picture was snapped just beyond the visible deep red by NASA’s Galileo spacecraft during its 1992 Earth-Moon flyby en route to Jupiter. It shows absorptions due to different minerals in the Moon’s crust. Blue areas indicate areas richer in iron-bearing silicate materials that contain the minerals pyroxene and olivine. Yellow indicates less absorption due to different mineral mixes.

Visible light Moon
Visible light Moon

Visible light: Unlike the other wavelengths we’ve explored so far, we see the Moon not by the light it radiates but by the light it reflects from the Sun.

The iron-rich composition of the lavas that formed the lunar “seas” give them a darker color compared to the ancient lunar highlands, which are composed mostly of a lighter volcanic rock called anorthosite.

UV Moon
UV Moon

Ultraviolet: Similar to the view in visible light but with a lower resolution. The brightest areas probably correspond to regions where the most recent resurfacing due to impacts has occurred. Once again, the bright rayed crater Tycho stands out in this regard. The photo was made with the Ultraviolet Imaging Telescope flown aboard the Space Shuttle Endeavour in March 1995.

X-ray Moon
X-ray Moon

X-ray: The Moon, being a relatively peaceful and inactive celestial body, emits very little x-ray light, a form of radiation normally associated with highly energetic and explosive phenomena like black holes. This image was made by the orbiting ROSAT Observatory on June 29, 1990 and shows a bright hemisphere lit by oxygen, magnesium, aluminum and silicon atoms fluorescing in x-rays emitted by the Sun. The speckled sky records the “noise” of distant background X-ray sources, while the dark half of the Moon has a hint of illumination from Earth’s outermost atmosphere or geocorona that envelops the ROSAT observatory.

Gamma ray Moon
Gamma ray Moon

Gamma rays: Perhaps the most amazing image of all. If you could see the sky in gamma rays the Moon would be far brighter than the Sun as this dazzling image attempts to show. It was taken by the Energetic Gamma Ray Experiment Telescope (EGRET).  High-energy particles (mostly protons) from deep space called cosmic rays constantly bombard the Moon’s surface, stimulating the atoms in its crust to emit gamma rays. These create a unique high-energy form of “moonglow”.

Astronomy in the 21st century is like having a complete piano keyboard on which to play compared to barely an octave a century ago. The Moon is more fascinating than ever for it.

Cool Video: Space Station Flies in Front of the Moon

The International Space Station is seen just before is passes in front of the Moon on Dec. 28, 2014, seen from Ganot, Israel. Credit and copyright: Gadi Eidelheit.

This has been on my bucket list for a while, but I’ve never had the opportunity to witness it myself: seeing the International Space Station transit the Moon. And now thanks to my friend Gadi Eidelheit, I want to see it for myself even more! He captured video and imagery of the ISS scooting in front of the Moon, from Ganot, Israel.

“This was just about 10km from my house!” Gadi told me via email. “I used a Canon 700d with Sigma 18-250 for the first clip and Canon sx50HS for the second clip (maximum zoom which equivalent to 1200mm). To find the best place I used Heavens-Above and a little trial and error! I just choose different locations near my home until I found the correct spot.”

For the first part of the video you need to look closely, as the transit happens quite quickly. But then Gadi slows it down, and later zooms in on the action. It still happens quite quickly but it’s very fun to see.

Gadi is an amateur astronomer and blogger who always has interesting things to post on social media or on his blog. You’ve really got me motivated now, Gadi!!

Half-Moon Makes Dramatic Pass at Uranus Tonight

The half-moon creeps up on the planet Uranus this evening. The two will be near each other all night in the constellation Pisces, but closest - less than one-third of a moon diameter apart - just before midnight (CST). The views are what you'll see in a pair of binoculars. The 4th magnitude star Delta Piscium is at top in the field. Source: Stellarium

Sunlight. Moonlight. Starlight. I saw all three for the first time in weeks yesterday. Filled with photons, I feel lighter today, less burdened. Have you been under the clouds too? Let’s hope it’s clear tonight because there’s a nice event you’ll want to see if only because it’s so effortless.

The half-moon will pass very close to the planet Uranus for skywatchers across North America this evening Sunday, Dec. 28th. Pop the rubber lens caps off those binoculars and point them at the Moon. If you look a short distance to the left you’ll notice a star-like object. That’s the planet!

Seattle, two time zones west of the Midwest, will see the two closest around 9:30 p.m. local time. Source: Stellarium
Seattle, two time zones west of the Midwest, will see the two closest around 9:30 p.m. local time. Source: Stellarium

You can do this anytime it’s dark, but the later you look the better because the Moon moves eastward and closer to the planet as the hours tick by. Early in the evening, the two will be separated by a couple degrees, but around 11:30 p.m. CST (9:30 p.m. PST) when the Moon reclines in the western sky, the planet will dangle like an solitary diamond less than a third of a lunar diameter away. When closest to the Moon, Uranus may prove tricky to see in its glare. If you hide the Moon behind a chimney, roofline or power pole, you’ll find it easier to see the planet.

The farther north you live, the closer the twain will be. Skywatchers in Japan, the northeastern portion of Russia, northern Canada and Alaska will see the Moon completely hide Uranus for a time. The farther west you are, the higher the Moon will be when they conjoin. West Coast states see the pair highest when they’re closest, but everyone will get a good view.

Binocular view from the desert city of Tucson around 10:45 p.m. local time tonight. Source: Stellarium
Binocular view from the desert city of Tucson around 10:45 p.m. local time tonight. You can see that the Moon is a little farther north of the planet compared to the view from Seattle. The 1,500 miles between the two cities is enough to cause our satellite, which is relatively close to the Earth, to shift position against the background stars. Source: Stellarium

When closest, the radically different character of each world can best be appreciated in a telescope. Pump the magnification up to 150x and slide both planet and Moon into the same field of view. Uranus, a pale blue dot, wears a permanent cover of methane-laced clouds where temperatures hover around -350°F (-212°C).

Though the moon will be lower in the sky, observers in the eastern U.S. and Canada will still see planet and moon only about 1/2 degree apart before moonset. Source: Stellarium
Though the Moon will be lower in the sky in the eastern U.S. and Canada when it’s closest to Uranus, observers there will still see planet and Moon only 1/2 degree apart shortly before moonset. Source: Stellarium

The fantastically large-appearing Moon in contrast has precious little atmosphere and its sunny terrain bakes at 250°F (121°C). And just look at those craters! First-quarter phase is one of the best times for Moon viewing. The terminator or shadow-line that divides lunar day from night slices right across the middle of the lunar landscape.

Shadows cast by mountain peaks and crater rims are longest and most dramatic around this time because we look squarely down upon them. At crescent and gibbous phases, the terminator is off to one side and craters and their shadows appear scrunched and foreshortened.

The day-night line or terminator cuts across a magnificent landscape rich with craters and mountain ranges emerging from the lunar night. Several prominent lunar "seas" or maria and prominent craters are shown. Credit: Christian Legrand and Patrick Chevalley / Virtual Moon Atlas
The day-night line or terminator cuts across a magnificent landscape rich with craters and mountain ranges emerging from the lunar night. Several prominent lunar “seas” or maria and prominent craters are shown. Credit: Christian Legrand and Patrick Chevalley / Virtual Moon Atlas

Enjoy the tonight’s conjunction and consider the depth of space your view encompasses. Uranus is 1.85 billion miles (2.9 billion km) from Earth today, some 7,700 times farther away than the half-moon.

Solar System History: How Was the Earth Formed?

Winter Solstice
Earth as viewed from the cabin of the Apollo 11 spacecraft. Credit: NASA

Just how did the Earth — our home and the place where life as we know it evolved — come to be created in the first place? In some fiery furnace atop a great mountain? On some divine forge with the hammer of the gods shaping it out of pure ether? How about from a great ocean known as Chaos, where something was created out of nothing and then filled with all living creatures?

If any of those accounts sound familiar, they are some of the ancient legends that have been handed down through the years that attempt to describe how our world came to be. And interestingly enough, some of these ancient creation stories contain an element of scientific fact to them.

Continue reading “Solar System History: How Was the Earth Formed?”

Earth May Have Lost Some Primoridial Atmosphere to Meteors

Earth's Hadean Eon is a bit of a mystery to us, because geologic evidence from that time is scarce. Researchers at the Australian National University have used tiny zircon grains to get a better picture of early Earth. Credit: NASA
Earth's Hadean Eon is a bit of a mystery to us, because geologic evidence from that time is scarce. Researchers at the Australian National University have used tiny zircon grains to get a better picture of early Earth. Credit: NASA

During the Hadean Eon, some 4.5 billion years ago, the world was a much different place than it is today. As the name Hades would suggest (Greek for “underworld”), it was a hellish period for Earth, marked by intense volcanism and intense meteoric impacts. It was also during this time that outgassing and volcanic activity produced the primordial atmosphere composed of carbon dioxide, hydrogen and water vapor.

Little of this primordial atmosphere remains, and geothermal evidence suggests that the Earth’s atmosphere may have been completely obliterated at least twice since its formation more than 4 billion years ago. Until recently, scientists were uncertain as to what could have caused this loss.

But a new study from MIT, Hebrew Univeristy, and Caltech indicates that the intense bombardment of meteorites in this period may have been responsible.

This meteoric bombardment would have taken place at around the same time that the Moon was formed. The intense bombardment of space rocks would have kicked up clouds of gas with enough force to permanent eject the atmosphere into space. Such impacts may have also blasted other planets, and even peeled away the atmospheres of Venus and Mars.

In fact, the researchers found that small planetesimals may be much more effective than large impactors –  such as Theia, whose collision with Earth is believed to have formed the Moon – in driving atmospheric loss. Based on their calculations, it would take a giant impact to disperse most of the atmosphere; but taken together, many small impacts would have the same effect.

Artist's concept of a collision between proto-Earth and Theia, believed to happened 4.5 billion years ago. Credit: NASA
Artist’s concept of a collision between proto-Earth and Theia, believed to happened 4.5 billion years ago. Credit: NASA

Hilke Schlichting, an assistant professor in MIT’s Department of Earth, Atmospheric and Planetary Sciences, says understanding the drivers of Earth’s ancient atmosphere may help scientists to identify the early planetary conditions that encouraged life to form.

“[This finding] sets a very different initial condition for what the early Earth’s atmosphere was most likely like,” Schlichting says. “It gives us a new starting point for trying to understand what was the composition of the atmosphere, and what were the conditions for developing life.”

What’s more, the group examined how much atmosphere was retained and lost following impacts with giant, Mars-sized and larger bodies and with smaller impactors measuring 25 kilometers or less.

What they found was that a collision with an impactor as massive as Mars would have the necessary effect of generating a massive a shockwave through the Earth’s interior and potentially ejecting a significant fraction of the planet’s atmosphere.

However, the researchers determined that such an impact was not likely to have occurred, since it would have turned Earth’s interior into a homogenous slurry. Given the appearance of diverse elements observed within the Earth’s interior, such an event does not appear to have happened in the past.

A series of smaller impactors, by contrast, would generate an explosion of sorts, releasing a plume of debris and gas. The largest of these impactors would be forceful enough to eject all gas from the atmosphere immediately above the impact zone. Only a fraction of this atmosphere would be lost following smaller impacts, but the team estimates that tens of thousands of small impactors could have pulled it off.

An artistic conception of the early Earth, showing a surface pummeled by large impact, resulting in extrusion of deep seated magma onto the surface. At the same time, distal portion of the surface could have retained liquid water. Credit: Simone Marchi
Artist’s concept of the early Earth, showing a surface pummeled by large impacts. Credit: Simone Marchi

Such a scenario did likely occur 4.5 billion years ago during the Hadean Eon. This period was one of galactic chaos, as hundreds of thousands of space rocks whirled around the solar system and many are believed to have collided with Earth.

“For sure, we did have all these smaller impactors back then,” Schlichting says. “One small impact cannot get rid of most of the atmosphere, but collectively, they’re much more efficient than giant impacts, and could easily eject all the Earth’s atmosphere.”

However, Schlichting and her team realized that the sum effect of small impacts may be too efficient at driving atmospheric loss. Other scientists have measured the atmospheric composition of Earth compared with Venus and Mars; and compared to Venus, Earth’s noble gases have been depleted 100-fold. If these planets had been exposed to the same blitz of small impactors in their early history, then Venus would have no atmosphere today.

She and her colleagues went back over the small-impactor scenario to try and account for this difference in planetary atmospheres. Based on further calculations, the team identified an interesting effect: Once half a planet’s atmosphere has been lost, it becomes much easier for small impactors to eject the rest of the gas.

The researchers calculated that Venus’ atmosphere would only have to start out slightly more massive than Earth’s in order for small impactors to erode the first half of the Earth’s atmosphere, while keeping Venus’ intact. From that point, Schlichting describes the phenomenon as a “runaway process — once you manage to get rid of the first half, the second half is even easier.”

This gave rise to another important question: What eventually replaced Earth’s atmosphere? Upon further calculations, Schlichting and her team found the same impactors that ejected gas also may have introduced new gases, or volatiles.

“When an impact happens, it melts the planetesimal, and its volatiles can go into the atmosphere,” Schlichting says. “They not only can deplete, but replenish part of the atmosphere.”

The "impact farm:, an area on Venus marked by impact craters and volcanic activity. Credit: NASA/JPL
The “impact farm:, an area on Venus marked by impact craters and volcanic activity. Credit: NASA/JPL

The group calculated the amount of volatiles that may be released by a rock of a given composition and mass, and found that a significant portion of the atmosphere may have been replenished by the impact of tens of thousands of space rocks.

“Our numbers are realistic, given what we know about the volatile content of the different rocks we have,” Schlichting notes.

Jay Melosh, a professor of earth, atmospheric, and planetary sciences at Purdue University, says Schlichting’s conclusion is a surprising one, as most scientists have assumed the Earth’s atmosphere was obliterated by a single, giant impact. Other theories, he says, invoke a strong flux of ultraviolet radiation from the sun, as well as an “unusually active solar wind.”

“How the Earth lost its primordial atmosphere has been a longstanding problem, and this paper goes a long way toward solving this enigma,” says Melosh, who did not contribute to the research. “Life got started on Earth about this time, and so answering the question about how the atmosphere was lost tells us about what might have kicked off the origin of life.”

Going forward, Schlichting hopes to examine more closely the conditions underlying Earth’s early formation, including the interplay between the release of volatiles from small impactors and from Earth’s ancient magma ocean.

“We want to connect these geophysical processes to determine what was the most likely composition of the atmosphere at time zero, when the Earth just formed, and hopefully identify conditions for the evolution of life,” Schlichting says.

Schlichting and her colleagues have published their results in the February edition of the journal Icarus.

Further Reading: MIT News

This Short Film is a Stunning Preview of Human Space Exploration

One day – and it really is only matter of time – humans will set foot on the surfaces of other far-flung worlds in our Solar System, leaving the Earth and Moon far behind to wander the valleys of Mars, trek across the ice of Europa, and perhaps even soar through the skies of Titan like winged creatures from ancient legends. But until then we must rely on the exploration of our robotic emissaries and our own boundless imagination and curiosity to picture what such voyages would be like. Here in “Wanderers,” video artist Erik Wernquist has used both resources in abundance to visualize fascinating off-world adventures yet to be undertaken by generations to come.
Continue reading “This Short Film is a Stunning Preview of Human Space Exploration”