NASA Wants to Put a Massive Telescope on the Moon

Graphic depiction of A Lunar Long-Baseline Optical Imaging Interferometer: Artemis-enabled Stellar Imager (AeSI). Credit: Kenneth Carpenter

As part of the Artemis Program, NASA intends to establish all the necessary infrastructure to create a “sustained program of lunar exploration and development.” This includes the Lunar Gateway, an orbiting habitat that will enable regular trips to and from the surface, and the Artemis Base Camp, which will permit astronauts to remain there for up to two months. Multiple space agencies are also planning on creating facilities that will take advantage of the “quiet nature” of the lunar environment, which includes high-resolution telescopes.

As part of this year’s NASA Innovative Advance Concepts (NIAC) Program, a team from NASA’s Goddard Space Flight Center has proposed a design for a lunar Long-Baseline Optical Imaging Interferometer (LBI) for imaging at visible and ultraviolet wavelengths. Known as the Artemis-enabled Stellar Imager (AeSI), this proposed array of multiple telescopes was selected for Phase I development. With a little luck, the AeSI array could be operating on the far side of the Moon, taking detailed images of stellar surfaces and their environments.

Continue reading “NASA Wants to Put a Massive Telescope on the Moon”

Japan’s Moon Lander Touches Down, But Power Problem Mars Its Mission

Illustration: SLIM lander on the moon
An artist's conception shows Japan's SLIM lander on the moon. Credit: ISAS/JAXA

Update for Jan. 21: The Japan Aerospace Exploration Agency shut down its moon lander to conserve battery power, but says the lander might be recharged and revived if sunlight hits the solar cells at the right angle.

Japan has become the fifth nation to land a functioning robot on the moon, but the mission could fall short of complete success due to a problem with the lander’s power-generating solar cells.

Continue reading “Japan’s Moon Lander Touches Down, But Power Problem Mars Its Mission”

NASA Tests Out 3D-printed Rotating Detonation Rocket Engine!

Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, conduct a successful, 251-second hot fire test of a full-scale Rotating Detonation Rocket Engine combustor in fall 2023, achieving more than 5,800 pounds of thrust. Credit: NASA

Looking to the future, NASA is investigating several technologies that will allow it to accomplish some bold objectives. This includes returning to the Moon, creating the infrastructure that will let us stay there, sending the first crewed mission to Mars, exploring the outer Solar System, and more. This is particularly true of propulsion technologies beyond conventional chemical rockets and engines. One promising technology is the Rotating Detonation Engine (RDE), which relies on one or more detonations that continuously travel around an annular channel.

In a recent hot fire test at NASA’s Marshall Space Flight Center in Huntsville, Alabama, the agency achieved a new benchmark in developing RDE technology. On September 27th, engineers successfully tested a 3D-printed rotating detonation rocket engine (RDRE) for 251 seconds, producing more than 2,630 kg (5,800 lbs) of thrust. This sustained burn meets several mission requirements, such as deep-space burns and landing operations. NASA recently shared the footage of the RDRE hot fire test (see below) as it burned continuously on a test stand at NASA Marshall for over four minutes.

Continue reading “NASA Tests Out 3D-printed Rotating Detonation Rocket Engine!”

A Radio Telescope on the Moon Could Help Us Understand the First 50 Million Years of the Universe

Artist's illustration of a radio telescope inside a crater on the Moon. Credit: NASA/JPL-Caltech

In the coming decade, multiple space agencies and commercial space providers are determined to return astronauts to the Moon and build the necessary infrastructure for long-duration stays there. This includes the Lunar Gateway and the Artemis Base Camp, a collaborative effort led by NASA with support from the ESA, CSA, and JAXA, and the Russo-Chinese International Lunar Research Station (ILRS). In addition, several agencies are exploring the possibility of building a radio observatory on the far side of the Moon, where it could operate entirely free of radio interference.

For years, researchers have advocated for such an observatory because of the research that such an observatory would enable. This includes the ability to study the Universe during the early “Cosmic Dark Ages,” even before the first stars and galaxies formed (about 50 million years after the Big Bang). While there have been many predictions about what kind of science a lunar-based radio observatory could perform, a new research study from Tel Aviv University has predicted (for the first time) what groundbreaking results this observatory could actually obtain.

Continue reading “A Radio Telescope on the Moon Could Help Us Understand the First 50 Million Years of the Universe”

We've Entered a New Era: The Lunar Anthropocene

Humans on the Moon. Image credit: Envato Elements
Humans on the Moon. Image credit: Envato Elements

For almost half a century, the term “Anthropocene” has been informally used to describe the current geological epoch. The term acknowledges how human agency has become the most significant factor when it comes to changes in Earth’s geology, landscape, ecosystems, and climate. According to a new study by a team of geologists and anthropologists, this same term should be extended to the Moon in recognition of humanity’s exploration (starting in the mid-20th century) and the growing impact our activities will have on the Moon’s geology and the landscape in the near future.

Continue reading “We've Entered a New Era: The Lunar Anthropocene”

How Can Astronauts Maintain Their Bodies With Minimal Equipment?

NASA astronauts Bob Hines and Kjell Lindgren work out on the Advanced Resistive Exercise Device (ARED). Credits: NASA

Decades of research aboard the International Space Station (ISS) and other spacecraft in Low Earth Orbit (LEO) have shown that long-duration stays in microgravity will take a toll on human physiology. Among the most notable effects are muscle atrophy and bone density loss and effects on eyesight, blood flow, and cardiovascular health. However, as research like NASA’s Twin Study showed, the effects extend to organ function, psychological effects, and gene expression. Mitigating these effects is vital for future missions to the Moon, Mars, and other deep-space destinations.

To reduce the impact of microgravity, astronauts aboard the ISS rely on a strict regiment of resistance training, proper diet, and cardiovascular exercise to engage their muscles, bones, and other connective tissues that comprise their musculoskeletal systems. Unfortunately, the machines aboard the ISS are too large and heavy to bring aboard spacecraft for long-duration spaceflights, where space and mass requirements are limited. To address this, NASA is investigating whether exercise regimens that rely on minimal or no equipment could provide adequate physical activity.

Continue reading “How Can Astronauts Maintain Their Bodies With Minimal Equipment?”

Ariane 6 Fires its Engines, Simulating a Flight to Space

The Ariane 6 rocket test firing on its launch pad at the European Spaceport in French Guiana. Credit: ESA

Since 2010, the European aerospace manufacturer ArianeGroup has been developing the Ariane 6 launch vehicle, a next-generation rocket for the European Space Agency (ESA). This vehicle will replace the older Ariane 5 model, offering reduced launch costs while increasing the number of launches per year. In recent years, the ArianeGrouip has been putting the rocket through its paces to prepare it for its first launch, which is currently scheduled for 2024. This past week, on Wednesday, November 23rd, the Ariane 6 underwent its biggest test to date as ground controllers conducted a full-scale dress rehearsal.

Continue reading “Ariane 6 Fires its Engines, Simulating a Flight to Space”

NASA is Getting the Plutonium it Needs for Future Missions

Close-up of NASA’s Perseverance Mars rover as it looks back at its wheel tracks on March 17, 2022, the 381st Martian day, or sol, of the mission. Credit: NASA

Radioisotope Thermoelectric Generators (RTGs) have a long history of service in space exploration. Since the first was tested in space in 1961, RTGs have gone on to be used by 31 NASA missions, including the Apollo Lunar Surface Experiments Packages (ALSEPs) delivered by the Apollo astronauts to the lunar surface. RTGs have also powered the Viking 1 and 2 missions to Mars, the Ulysses mission to the Sun, Galileo mission to Jupiter, and the Pioneer, Voyager, and New Horizons missions to the outer Solar System – which are currently in (or well on their way to) interstellar space.

In recent years, RTGs have allowed the Curiosity and Perseverance rovers to continue the search for evidence of past (and maybe present) life on Mars. In the coming years, these nuclear batteries will power more astrobiology missions, like the Dragonfly mission that will explore Saturn’s largest moon, Titan. In recent years, there has been concern that NASA was running low on Plutonium-238, the key component for RTGs. Luckily, the U.S. Department of Energy (DOE) recently delivered a large shipment of plutonium oxide, putting it on track to realize its goal of regular production of the radioisotopic material.

Continue reading “NASA is Getting the Plutonium it Needs for Future Missions”

Plants Could Grow in Lunar Regolith Using Bacteria

Plants grown in a volcanic ash lunar simulant (left) compared with those grown in the lunar soil (right) Credit: UF/IFAS/Tyler Jones

In the next decade, NASA, China, and their international and commercial partners plan to establish habitats on the Moon. Through the Artemis Program, NASA will deploy the orbiting Lunar Gateway and the Artemis Base Camp on the lunar surface. Meanwhile, China (and its partner Roscosmos) will deploy the International Lunar Research Station (ILRS), consisting of an orbital and surface element. The creation of this infrastructure will enable a “sustained program of lunar exploration and development” that could lead to a permanent human presence there.

To ensure that humans can work and live sustainably beyond Earth, astronauts and crews will need to be able to harvest local resources to see to their needs – in-situ resource utilization (ISRU). This includes using lunar water ice and regolith to grow plants, providing astronauts with food and an additional source of oxygen and biomass. To test the potential for growing plants on the Moon, a Chinese research team conducted a series of experiments where they grew tobacco plants in simulated lunar soil with the help of bacteria.

Continue reading “Plants Could Grow in Lunar Regolith Using Bacteria”

Japan Tests Robotic Earth-Moving Equipment in a Simulated Lunar Jobsite

Artist's impression of the A4CSEL technology creating a lunar base. Credit: Kajima

Japan has embarked on an exciting new lunar program that will test automated remote construction machinery for the Moon. In 2021, representatives from the Kajima Corporation, the National Research and Development Agency, the Japan Aerospace Exploration Agency (JAXA), and the Shibaura Institute of Technology announced they would be working with the Ministry of Land, Infrastructure, Transport, and Tourism (MLIT) to develop a next-generation construction system (A4CSEL®) that will enable the creation of lunar infrastructure.

This new collaborative venture, known as the Space Unmanned Construction Innovative Technology Development Promotion Project, will create an A4CSEL system capable of operating in the harsh lunar environment. In a recent statement, Kajima announced that it would connect the approximately 20-square kilometer (7.72 mi2) Kashima Seisho Experimental Field with JAXA’s Sagamihara Campus. Here, they are conducting experiments to validate automated remote construction machinery in a simulated lunar environment, which could lead to the creation of a lunar base!

Continue reading “Japan Tests Robotic Earth-Moving Equipment in a Simulated Lunar Jobsite”