Fly Over a Pristine Lunar Crater

Color coded shaded relief map of Linné crater (2.2 km diameter) created from an LROC NAC stereo topographic model. The colors represent elevations; cool colors are lowest and hot colors are highest. Credit: NASA/GSFC/Arizona State University.

Linné crater on the Moon is one of the youngest, most well-preserved lunar impact craters. This cone-shaped crater thought to be less than 10 million years old – a mere whippersnapper when it comes to impact craters. Scientists have been studying this crater for years, using it to investigate how cratering occurs in mare basalt. This “barnstorming” flyover video was created with data from the Lunar Reconnaissance Orbiter.

LRO helped discern the actual shape of this crater, and other craters too. It was once thought that the circular Linné crater was bowl-shaped, and that set a precedent for understanding the morphology of craters on the Moon, and also on Earth. But laser-mapping observations by NASA’s Lunar Reconnaissance Orbiter determined Linné is actually more of a truncated inverted cone, with a flattened interior floor surrounded by sloping walls that rise up over half a kilometer to its rim.

It’s a magnificent crater, and enjoy this unique chance to see it up close.

There’s Poop on the Moon

When the Apollo boys visited the Moon back in the ’60s and ’70s they left more than just some experiments, rovers, and family portraits behind –- they also left, shall we say, a little bit of themselves on the lunar surface. It makes total sense when you think about it, but still… there’s poop on the Moon.

In this video, Minute Physics and Destin from Smarter Every Day show how astronauts would relieve themselves during the Apollo missions (or at least the gadgets they used — we all know how they did it) and why it was decided to make astronaut poop a permanent part of their lunar litter.

(Because there’s no public toilets in the Sea of Tranquility.)

In another video Destin goes on to discuss some of the other things the Apollo astronauts left on the lunar surface as part of their… duties… most notably the Laser Ranging Retroreflectors that are still being used today to measure distances between Earth and the Moon. Destin explains how their corner-cube reflectors work — using, fittingly, the mirrors in a restroom shared with NASA at the University of Alabama at Huntsville. Check out the video below.

According to the Lunar and Planetary Institute: “The Laser Ranging Retroreflector experiment has produced many important measurements. These include an improved knowledge of the Moon’s orbit and the rate at which the Moon is receding from Earth (currently 3.8 centimeters per year) and of variations in the rotation of the Moon. These variations in rotation are related to the distribution of mass inside the Moon and imply the existence of a small core, with a radius of less than 350 kilometers, somewhat smaller than the limits imposed by the passive seismic and magnetometer experiments. These measurements have also improved our knowledge of changes of the Earth’s rotation rate and the precession of its spin axis and have been used to test Einstein’s theory of relativity.”

Want to see how corner-cube reflectors work? Click here.

laser_rr_lg

The Laser Ranging Retroreflector experiment deployed on Apollo 11 (NASA)

Just goes to show that not everything that got left behind was crap.

See more videos from Destin at Smarter Every Day here and more Minute Physics here.

Watch a Magical Moonrise

This is absolutely lovely. Photographer Mark Gee says this incredible real-time video “is as it came off the memory card and there has been no manipulation whatsoever.” It shows the full Moon rising over the Mount Victoria Lookout in Wellington, New Zealand.

“People had gathered up there this night to get the best view possible of the moon rising,” Gee wrote on Vimeo. “I captured the video from 2.1km away on the other side of the city. It’s something that I’ve been wanting to photograph for a long time now, and a lot of planning and failed attempts had taken place. Finally, during moon rise on the 28th January 2013, everything fell into place and I got my footage.”

While Gee said it was a challenge to shoot, the final result is stunning.

Full Moon Silhouettes from Mark Gee on Vimeo.

Astrophotos: Jupiter and the Moon Conjunction

The Galilean Satellites of Jupiter are clearly visible just above a halo around the Moon, seen over central Italy on January 21, 2013. Credit: Giuseppe Petricca

Last night, the Moon and Jupiter snuggled up in the sky, coming within 29 arcminutes of each other. This will be the closest conjunction of these two bodies in the sky until 2026. The waxing gibbous Moon and the gas giant planet made for a great pair in the western night sky, and some astrophotographers, like Giuseppe Petricca in the image above, were also able to capture some of the Moons of Jupiter as well.

See more images from around the world, below.

Jupiter and the Moon 1-21-13. The Moon is intentionally overexposed so you can see three moons. Ganymede on the left and Io and Callisto on the right (Europa was transiting at the time).  Credit and copyright: Robert Sparks.
Jupiter and the Moon 1-21-13. The Moon is intentionally overexposed so you can see three moons. Ganymede on the left and Io and Callisto on the right (Europa was transiting at the time). Credit and copyright: Robert Sparks.
Moon & Jupiter Conjunction, January 21, 2013. Quick 2-frame collage of this remarkable conjunction between our Moon and the giant planet. This was taken with a Canon EOS Rebel T2i DSLR and a Celestron C90 Maksutov-Cassegrain telescope. Credit an copyright: Gustavo Sanchez/Observatorio Guajataca.
Moon & Jupiter Conjunction, January 21, 2013. Quick 2-frame collage of this remarkable conjunction between our Moon and the giant planet. This was taken with a Canon EOS Rebel T2i DSLR and a Celestron C90 Maksutov-Cassegrain telescope. Credit an copyright: Gustavo Sanchez/Observatorio Guajataca.
Reflections over Lavender Bay, Sydney Australia, Jupiter and Moon conjunction. ‘By this point I had to leave the bay area but one last look back and I saw this frame, so I tried my best to capture it whilst the timer on my parking ticket was quickly running out.’ Credit and copyright: Carlos Orue (ourkind on Flickr.)
Reflections over Lavender Bay, Sydney Australia, Jupiter and Moon conjunction. ‘By this point I had to leave the bay area but one last look back and I saw this frame, so I tried my best to capture it whilst the timer on my parking ticket was quickly running out.’ Credit and copyright: Carlos Orue (ourkind on Flickr.)
Moon-Jupiter January conjunction. Taken with Nikon 55-300 + kenko 2X, 3 different shots for each body. Credit: Alejandro García (bokepacha on Flickr).
Moon-Jupiter January conjunction. Taken with Nikon 55-300 + kenko 2X, 3 different shots for each body. Credit and copyright: Alejandro García (bokepacha on Flickr).
Planet Jupiter vs. the Moon. The small orb on the lower left is the planet Jupiter visible near the moon in the night sky of January 21, 2013. Credit and copyright: Daniel Lowe/danieldragonfilms.com./IStockTimelapse.com
Planet Jupiter vs. the Moon. The small orb on the lower left is the planet Jupiter visible near the moon in the night sky of January 21, 2013. Credit and copyright: Daniel Lowe/danieldragonfilms.com./IStockTimelapse.com
In some areas of South America, the conjunction actually became an occultation. This picture captures the moment when about half of Jupiter was behind the (dark part of) the disk of the Moon. Credit and copyright: Sergio Gorbach, Buenos Aires, Argentina.
In some areas of South America, the conjunction actually became an occultation. This picture captures the moment when about half of Jupiter was behind the (dark part of) the disk of the Moon. Credit and copyright: Sergio Gorbach, Buenos Aires, Argentina.

Sergio Gorbach, from Buenos Aires, Argentina sent us this image, showing how he was in a region where the conjunction turned into an occulation. “This captures the moment when about half of Jupiter was behind the dark part of the disk of the moon,” Sergio wrote via email. “On the scope three of the Galilean moons where visible, but not on this picture, unfortunately. The picture quality is not great since they were taken by a smartphone held by hand in front of the eyepiece of my (cheap) telescope, but the resulting image is not that bad.”

Not bad indeed!

Jupiter and the Moon over London, England on January 21, 2013. Credit and copyright: Sculptor Lil on Flickr.
Jupiter and the Moon over London, England on January 21, 2013. Credit and copyright: Sculptor Lil on Flickr.
Jupiter and the Moon. Hooligan handhelded shot series with EF-S 60 mm f/2.8 macro lens. Credit and copyright: Sergei Golyshev.
Jupiter and the Moon. Hooligan handhelded shot series with EF-S 60 mm f/2.8 macro lens. Credit and copyright: Sergei Golyshev.
 Luna con Jupiter -- as seen from Spain. Credit and copyright: Jordi Villanueva Alberich.
Luna con Jupiter -- as seen from Spain. Credit and copyright: Jordi Villanueva Alberich.
Moon/Jupiter Conjunction - 21st January 2013. Canon EOS Rebel T3, f5.6, 1/4000 sec. ISO 6400, 300mm. Credit and copyright: Apple Lily.
Moon/Jupiter Conjunction - 21st January 2013. Canon EOS Rebel T3, f5.6, 1/4000 sec. ISO 6400, 300mm. Credit and copyright: Apple Lily.
Moon and Jupiter conjunction Jan. 21, 2013. Two exposures back to back to compensate for the exposure differences. Credit and copyright: jimnista on Flickr.
Moon and Jupiter conjunction Jan. 21, 2013. Two exposures back to back to compensate for the exposure differences. Credit and copyright: jimnista on Flickr.
This is a collage of three photos, all taken on January 21, 2013: one of the Moon and Jupiter, another focusing on Jupiter’s Moons (both with a Canon Rebel T2i), and another through an 8 inch Dobsonian telescope of Jupiter, which was scaled to size and overlayed on Jupiter to provide some detail. ‘The moons are obviously not to scale because they are out of focus, I think it makes the photo a bit more dramatic,’ said photographer Chris Gorman.
This is a collage of three photos, all taken on January 21, 2013: one of the Moon and Jupiter, another focusing on Jupiter’s Moons (both with a Canon Rebel T2i), and another through an 8 inch Dobsonian telescope of Jupiter, which was scaled to size and overlayed on Jupiter to provide some detail. ‘The moons are obviously not to scale because they are out of focus, I think it makes the photo a bit more dramatic,’ said photographer Chris Gorman.
Who says you can't enjoy the night sky even in Urban areas!  This photo of Jupiter and the Moon in close proximity was taken in the light polluted suburbs of Atlanta, Georgia. This photo is one shot - not a collage! Credit and copyright: Dave Hudson.
Who says you can't enjoy the night sky even in Urban areas! This photo of Jupiter and the Moon in close proximity was taken in the light polluted suburbs of Atlanta, Georgia. This photo is one shot - not a collage! Credit and copyright: Dave Hudson.

Dave Hudson took this great shot on Tuesday, January 21, 2013 @ 10:32pm EST.
Camera and Telescope: Celestron C8 on a Celestron CG5 EQ mount
Canon 60D using Eyepiece projection with MAXIM adapter and Celestron .63 Focal Reducer
17mp picture, ISO 100, 1/60 second exposure, no filters
Telescope: 203.2 mm aperture, 2000mm focal length, F10 – reduced to F6.3 using Celestron Focal Reducer

Jupiter-Moon Conjunction, Jan 21, 2013 from San Diego, California. Shot with a Fuji Finepix 2000hd. Credit and copyright: Bob Gould.
Jupiter-Moon Conjunction, Jan 21, 2013 from San Diego, California. Shot with a Fuji Finepix 2000hd. Credit and copyright: Bob Gould.
Jupiter-Moon conjunction on January 21, 2013. Credit and copyright: Paul Latham. .
Jupiter-Moon conjunction on January 21, 2013. Credit and copyright: Paul Latham.
Jupiter-Moon conjunction 1/21/13 from Houston Texas. Credit and copyright: Chris Grabo.
Jupiter-Moon conjunction 1/21/13 from Houston Texas. Credit and copyright: Chris Grabo.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

NASA’s Curiosity and Orion Shine at Presidential Inaugural Parade

Video caption: Preview of Mars Curiosity Parade Float. Jim Green, Director of the Science Mission Directorate Planetary Systems Division at NASA Headquarters, describes the replica of the Mars Curiosity Rover on the second NASA float in Monday’s (Jan 21, 2013) presidential inaugural parade. Parade photos below

Full scale models of NASA’s Curiosity Mars rover and the Orion crew capsule are participating in the 2013 Presidential Inaugural Parade on Monday, Jan 21, 2013, in Washington, DC – representing NASA’s robotic and human spaceflight endeavors.

The fantastically successful Curiosity rover is discovering widespread evidence for the ancient flow of liquid water on Mars.

The Orion multi-purpose capsule will take our astronauts back to the Moon and farther into space than ever.

NASA is the ONLY federal agency asked to be in the inaugural parade and now Curiosity is leading the NASA group with Orion after Curiosity.

Update 530 PM EDT – NASA’s 2 floats just passed by a cheering and waving President Obama & VP Biden at the reviewing stand in front of the White House – prominently near the front of the parade. See float photos from the parade below

Walking alongside both floats are members of the Curiosity team from NASA’s Jet Propulsion Laboratory – including ‘Mohawk Guy’ – and several current and former astronauts.

The participating astronauts are Alvin Drew, Serena Aunon, Kate Rubins, Mike Massimino, Lee Morin and Kjell Lindgren, as well as Leland Melvin, NASA’s associate administrator for Education, and John Grunsfeld, NASA’s associate administrator for Science.

The marching team for Curiosity includes Richard Cook-project manager (from JPL), Bobak Ferdowsi (otherwise known as ‘Mohawk Guy’)-flight director (from JPL), Dave Lavery – program executive (from NASA Headquarters) , Michael Meyer – program Scientist (from NASA Headquarters), Jennifer Trosper-mission manager (from JPL) and Ashwin Vasavada, Deputy Project Scientist (from JPL)

Image caption: Orion crew capsule float with NASA astronauts at the Presidential Inaugural parade on Jan 21, 2013 in Washington, DC. Credit: NASA

8402760689_9bf9ce1a26_c

Image caption: Curiosity float with team members at the Presidential Inaugural parade on Jan 21, 2013 in Washington, DC. Credit: NASA

Be sure to check out NASA’s Flickr stream for many photos from the 2013 Inaugural Day festivities and parade – here and here

Here’s another video about the Curiosity float:

Ken Kremer

8398255959_1f3cc1f421_c

Image caption: Orion crew capsule arrives in Washington, DC, for Presidential Inaugural parade on Jan 21, 2013. Credit: NASA

The Secrets of Moondogs

A Moondog, captured over Hampton Bays, New York in December 2011. Credit: Jeff Schultz

[/caption]

You’ve probably heard of — and likely have even seen — a Sundog, the atmospheric phenomenon that creates rainbow-colored blobs or arcs of light on either side of the Sun. But did you know the Moon can have ‘dogs’ too? Also known as mock moons, false moons, or the scientific name of paraselenae, Moondogs aren’t seen as often as Sundogs. However, the conditions needed to create either of the ‘dogs’ are about the same. This great image of a Moondog, above, by Jeff Schultz is a perfect example of the kind of night you might see this gorgeous phenomenon.

What are the secrets to how Moondogs are produced?

A bright Moondog on January 20, 2012 seen in Wiltshire, England. Credit and copyright: Richard Fleet. Used by permission.
A bright Moondog on January 20, 2012 seen in Wiltshire, England. Credit: Richard Fleet

Moondogs are seen most often in the winter when ice crystals may be present in the atmosphere. But they can appear anytime of the year when hexagon-shaped ice crystals might be high in the sky, or also when thin cirrus or cirrostratus clouds are just right. What happens is that the ice crystals or clouds refract the moonlight, creating blobs or arcs of light to the left and right of the Moon, or sometimes just on one side.

Also, the Moon usually needs to be full or nearly full, along with being low in the sky for the effect to be produced. The angular separation of the light blobs from the Moon is usually 22 degrees.

Sometimes, a full halo of light around the Moon will also appear in conjunction with the Moondogs; other times smaller arcs of light will be part of the effect, but often Moondogs appear without any other effects.

Moondogs can appear colorful like a Sundog or ‘shine’ with a light similar to the Moon.

A Moondog seen in Adelaide, Australia on November 28, 2012. Credit: Ian Musgrave.
A Moondog seen over Adelaide, Australia on November 28, 2012. Credit: Ian Musgrave.

Moondogs are seen in both hemispheres, as this image from Ian Musgrave in Australia attests, but it seems that the effect is seen most often the farther north you are in the northern hemisphere and the farther south you are in the southern hemisphere.

You never know exactly when you might be lucky enough to see a Moondog, so we recommend looking at the Moon every night! Also, don’t forget to wink at the Moon, too.

For more detailed information and images of Moondogs, Sundogs and other optical effects, Richard Fleet (the photographer who captured the second image in this article) has a great website: “Glows, Bows and Haloes.”

Crescent Moon Photos from Around the World

Venus and the Moon on 1-10-13 from Tucson, Arizona. Credit: Robert Sparks

For the past week or so, we’ve had either a waxing or waning crescent Moon (save for the New Moon on January 11) and astrophotographers have been out in full force capturing the beauty of this sliver of light, and sometimes, like the image above by Rob Sparks (hale_bopp37 on Flickr) even a little Earthshine. Enjoy these stunning photos from our readers around the world!

Luna, January 14, 2013. Credit: Raymond Gilchrist
Luna, January 14, 2013. Credit and copyright: Raymond Gilchrist
The 2% waxing crescent Moon at sunset, January 12, 2013. Credit and copyright, Tavi Greiner.
The 2% waxing crescent Moon at sunset, January 12, 2013. Credit and copyright, Tavi Greiner.
Waxing crescent Moon on January 14, 2013. Credit and copyright: Sculptor Lil on Flickr.
Waxing crescent Moon on January 14, 2013 from London, England. Credit and copyright: Sculptor Lil on Flickr.
The crescent Moon taken at sunrise on  January 9, 2013 from Carmyllie, Scotland. Credit and copyright: Mike Walton.
The crescent Moon taken at sunrise on January 9, 2013 from Carmyllie, Scotland. Credit and copyright: Mike Walton.
Earthshine on January 15, 2013 from Kuala Lumpur. Credit and copyright: Shahrin Ahmad.
Earthshine on January 15, 2013 from Kuala Lumpur. Credit and copyright: Shahrin Ahmad.
The crescent Moon -- the 'easy way' -- a hand-held camera, no tripod, just Lumix DMC-FZ48 at max. optical zoom. Credit and copyright: Daniel Fischer.
The crescent Moon -- the 'easy way' -- a hand-held camera, no tripod, just a Lumix DMC-FZ48 at maximum optical zoom. Credit and copyright: Daniel Fischer.

Astrophotographer (and blogger) Daniel Fischer notes that his image, above, was taken freehand with a simple camera, “a ‘work’ of a few seconds,” he said. “Might encourage others to give it a try with their own cameras.”

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

New Video Shows the GRAIL MoonKAM’s Final Looks at the Moon

Artist's conception of the twin GRAIL spacecraft, called Ebb and Flow. Credit: NASA/JPL-Caltech

As a fond farewell, here are some of the final images taken by the GRAIL MoonKAM educational cameras on board Ebb and Flow, the twin spacecraft for the mission. This footage was shot just three days prior to when the mission ended with the planned impacts on a rim of a crater near the lunar north pole. At that point in the mission, the spacecraft had lowered their orbit to only about 11 km above the lunar surface. While these images aren’t of the highest of resolution, they provide a great sense of what it would be like to orbit close to the Moon. Additionally, they are an inspiration to school children. With MoonKAM (Moon Knowledge Acquired by Middle School Students) the cameras took more than 115,000 total images of the lunar surface, and imaging targets were proposed by middle school students from across the country and the resulting images returned for them to study.

The two probes were purposely crashed into the Moon because they no longer had enough altitude or fuel to continue science operations.

What Craters on the Moon Teach Us About Earth

When the Moon was receiving its highest number of impacts, so was Earth. Credit: Dan Durda

Some questions about our own planet are best answered by looking someplace else entirely… in the case of impact craters and when, how and how often they were formed, that someplace can be found shining down on us nearly every night: our own companion in space, the Moon.

By studying lunar impact craters both young and old scientists can piece together the physical processes that took place during the violent moments of their creation, as well as determine how often Earth — a considerably bigger target — was experiencing similar events (and likely in much larger numbers as well.)

With no substantial atmosphere, no weather and no tectonic activity, the surface of the Moon is a veritable time capsule for events taking place in our region of the Solar System. While our constantly-evolving Earth tends to hide its past, the Moon gives up its secrets much more readily… which is why present and future lunar missions are so important to science.

linne_shade_scalebTake the crater Linné, for example. A young, pristine lunar crater, the 2.2-km-wide Linné was formed less than 10 million years ago… much longer than humans have walked the Earth, yes, but very recently on lunar geologic terms.

It was once thought that the circular Linné (as well as other craters) is bowl-shaped, thus setting a precedent for the morphology of craters on the Moon and on Earth. But laser-mapping observations by NASA’s Lunar Reconnaissance Orbiter (at right) determined in early 2012 that that’s not the case; Linné is actually more of a truncated inverted cone, with a flattened interior floor surrounded by sloping walls that rise up over half a kilometer to its rim.

On our planet the erosive processes of wind, water, and earth soon distort the shapes of craters like Linné, wearing them down, filling them in and eventually hiding them from plain sight completely. But in the Moon’s airless environment where the only weathering comes from more impacts they retain their shape for much longer lengths of time, looking brand-new for many millions of years. By studying young craters in greater detail scientists are now able to better figure out just what happens when large objects strike the surface of worlds — events that can and do occur quite regularly in the Solar System, and which may have even allowed life to gain a foothold on Earth.

Most of the craters visible on the Moon today — Linné excluded, of course — are thought to have formed within a narrow period of time between 3.8 and 3.9 billion years ago. This period, called the Late Heavy Bombardment, saw a high rate of impact events throughout the inner Solar System, not only on the Moon but also on Mars, Mercury, presumably Venus and Earth as well. In fact, since at 4 times its diameter the Earth is a much larger target than the Moon, it stands to reason that Earth was impacted many more times than the Moon as well. Such large amounts of impacts introduced material from the outer Solar System to the early Earth as well as melted areas of the surface, releasing compounds like water that had been locked up in the crust… and even creating the sorts of environments where life could have begun to develop and thrive.

(It’s been suggested that there was even a longer period of heavy impact rates nicknamed the “late late heavy bombardment” that lingered up until about 2.5 billion years ago. Read more here.)

In the video below lunar geologist David Kring discusses the importance of impacts on the evolution of the Moon, Earth and eventually life as we know it today:

“Impact cratering in Earth’s past has affected not only the geologic but the biologic evolution of our planet, and we were able to deduce that in part by the lessons we learned by studying the Moon… and you just have to wonder what other things we can learn by going back to the Moon and studying that planetary body further.”

– David Kring

David is a senior staff scientist at the Lunar and Planetary Institute in Houston, TX.

It’s these sorts of connections that make lunar exploration so valuable. Keys to our planet’s past are literally sitting on the surface of the Moon, a mere 385,000 km away, waiting for us to just scoop them up and bring them back. While the hunt for a biological history on Mars or resource-mining an asteroid are definitely important goals in their own right, only the Moon holds such direct references to Earth. It’s like an orbiting index to the ongoing story of our planet — all we have to do is make the connections.

 

Learn more about lunar research at the LPI site here, and see the latest news and images from LRO here.