A little play on words for the headline, but we just had to share this great shot by astrophotographer Sculptor Lil from London, England!
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
Color-composite raw image of Titan’s southern hemisphere. Note the growing south polar vortex. (NASA/JPL/SSI/Jason Major)
Last Thursday, November 29, Cassini sailed past Titan for yet another close encounter, coming within 1,014 kilometers (603 miles) of the cloud-covered moon in order to investigate its thick, complex atmosphere. Cassini’s Visible and Infrared Mapping Spectrometer (VIMS), Composite Infrared Spectrometer (CIRS) and Imaging Science Subsystems (ISS) instruments were all busy acquiring data on Titan’s atmosphere and surface… here are a couple of color-composites made from raw images captured in visible light channels as well as some of the more interesting monochrome raw images. Enjoy!
The structure of Titan’s upper-level hazes, which extend ten times the height of Earth’s atmosphere. (NASA/JPL/SSI)
Cassini captured this view of Titan’s crescent during its approach, from a distance of 193,460 kilometers (NASA/JPL/SSI/Jason Major)
Cassini’s continuum filter (CB3) allows it to image Titan’s surface. The dark areas are vast fields of hydrocarbon sand dunes (NASA/JPL/SSI)
These images have not been validated or calibrated by NASA or the mission team.
The Moon’s shadow stretches over the Earth in this balloon-mounted camera view of the November 14 solar eclipse (Catalin Beldea, Marc Ulieriu, Daniel Toma et. al/Stiinta&Tehnica)
On November 14, 2012, tens of thousands of viewers across northeastern Australia got a great view of one of the most awe-inspiring sights in astronomy — a total solar eclipse. Of course many fantastic photos and videos were taken of the event, but one team of high-tech eclipse hunters from Romania went a step further — or should I say higher — and captured the event from a video camera mounted on a weather balloon soaring over 36,800 meters (120,000 feet) up!
Their video can be seen below:
During a solar eclipse the Moon passes in front of the disk of the Sun, casting its shadow upon the Earth. Any viewers within the darkest part of the shadow — the umbra — will experience a total eclipse, while those within the wider, more diffuse shadow area along the perimeter — the penumbra — will see a partial eclipse.
By launching a weather balloon carrying a wide-angle camera into the stratosphere above Queensland, eclipse hunter and amateur astronomer Catalin Beldea, ROSA research scientist Florin Mingireanu and others on the team were able to obtain their incredible video of the November 14 total eclipse from high enough up that the shadow of the Moon was visible striking Earth’s atmosphere. Totality only lasted a couple of minutes so good timing was essential… but they got the shot. Very impressive!
The mission was organized by teams from the Romanian Space Agency (ROSA) and Stiinta&Tehnica.com, with the video assembled by Daniel Toma and posted on YouTube by editor-in-chief Marc Ulieriu. Music by Shamil Elvenheim.
The full Moon rising with Jupiter and Aldebaran on November 28, 2012 in North Carolina, USA. Credit: Tavi Greiner.
The full Moon is a-rising tonight, and it is not alone. There are lots of other bright and beautiful stars and planets out there — some snuggling right up together — and already we’ve got astrophotographers out there capturing the views. Above, Tavi Greiner had a gorgeous view of the Moon, along with bright Jupiter and Aldebaran. November’s full Moon is known as the “Beaver Moon,” or “Frosty Moon,” and this year it is the smallest full Moon of 2012, since the Moon is at apogee, the farthest distance in its orbit around the Earth. There was also a penumbral lunar eclipse earlier today, depending on where you are…
See more below:
The Moon, along with Jupiter and its moons. Credit: Kevin Gassen
“This is a composite of two images of the Moon and Jupiter, taken in Central Texas, November 28th, with my Canon T2i,” writes Kevin Gassen. “The images were taken less than a minute apart, one each with the proper settings to capture the moon and Jupiter as seen. The images were combined in Photoshop Elements 6 with only minor contrast adjustments to the moon. Relative sizes were unchanged.”
Moon – Jupiter Conjunction, November 28, 2012. Credit: Gustavo Sanchez
Speaking of bright Jupiter, here’s a great view of the giant planet in all its glory near the Moon.
Corona around the Full Moon November 27, 2012. (The Pleiades are in amongst the clouds, too). Credit: Sculptor Lil
Visibility of penumbral lunar eclipse of November 28, 2012. Image Credit: Fred Espenak
The penumbral eclipse of the Moon occurred during the early dawn on Wednesday morning for western North America, and during the middle of the night for the longitudes of Australia and Japan, in late evening of the 28th local date for China and Southeast Asia, and early that evening for India. Eastern Canada and the USA couldn’t see it at all as it occurred after Moonset.
Saturn, Venus, & Mercury Conjunction on 11-28-2012. Credit: John Chumack
And early this morning John Chumack was out to capture a plethora of planets together. Saturn, Venus, and Mercury Conjunction – Planetary Alignment on 11-28-2012 06:39am E.S.T. Venus is the brightest between the house and tree , Saturn right above Venus, and Mercury is below in between the power lines.
We’ll add more images as they come in!
And if you want to know when the next full Moon is coming up, check out our Phases of the Moon app on either Google Play or the iTunes Store, and help support Universe Today.
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
This new video shows exactly how the Moon will look to us on Earth during the entire year of 2013. While the Moon always keeps the same face to us, it’s not exactly the same face. Because of the tilt in its axis and shape of its orbit, we see the Moon from slightly different angles over the course of a month, and the year. Normally, we don’t see how the Moon “wobbles” in its orbit or as it moves closer and farther away from Earth. But seeing the entire year compressed down to 5 minutes, we can see the changes in libration, and axis tilt — as well as the most noticeable changes, the Moon’s phases.
In this new video from Goddard’s Scientific Visualization Studio, each frame represents one hour. In addition, as an improvement from their previous Moon visualization , this also shows other relevant information, including Moon orbit position, subearth and subsolar points, distance from the Earth.
At the SVS website, there is more information, including a Dial-A-Moon, where you can put in a certain date and find out how the Moon will look on a specific day.
“Thanks to Lunar Reconnaissance Orbiter, we now have excellent terrain maps of the Moon that can tell us the elevation at any point on the surface,” said Ernie Wright, who put this new video together. “I use those maps to make the Moon sphere bumpy in all the right places. That allows the rendering software to realistically simulate all the shadows and the ragged terminator (the dividing line between day and night).”
And if you’d like to have a handy bring-along app to find out anywhere what they Moon will be doing, check out Universe Today’s Phases of the Moon app, – available on iPhone or Android.
Dealing with those who think the Apollo Moon landings never happened can be frustrating. Most of us just throw up our hands in exasperation, but Italian amateur astronomer Roberto Beltramini came up with a better idea: create a full 360-degree 3-D panorama of images from Apollo 16 to show “the true depth of the views taken by astronauts Apollo,” he said. “What better proof? This was the motivation that prompted me to start, but the spectacle and the interest in new ways of seeing the [Moon’s] wilderness, made me go farther.”
This panorama has now been put into a “Zoomify” making it fully interactive and lots of fun to explore. Grab your 3-D glasses, and you can find a rock and zoom in, follow the astronauts’ footprints and see one of the astronauts tinkering with the Lunar Rover. Click here and enjoy!
Beltramini’s initial plan was to create just a few 3-D anaglyghs, but once he got started, he just kept going. But of course, the Apollo 16 images taken by astronauts John Young and Charlie Duke as they walked, bounded and drove the lunar rover on the Moon’s surface were not originally taken with the intent to be made into 3-D view, making Beltramini’s job fairly difficult.
“The difficulty of making anaglyph, due to the shots not performed specifically for the purpose, may have dampened the attempts of other enthusiasts,” he writes on the website for amateur astronomy group in Viareggio, in the Tuscany region of Italy (Gruppo Astronomico Viareggio.) “To overcome this obstacle, I had to work adapting the pairs of pictures with graphics programs, cropping, resizing, by cleaning scratches and stains present because of the scans on the original story. Other marks are very annoying problem, that is, the black crosses placed at regular intervals in photographs taken during the Apollo missions that I had to delete one by one to avoid that interfere with 3D viewing.”
But over time he figured out how to make it work, “thanks to the phenomenon of rotation around a nodal point during the panning of the Apollo missions is possible, if there is plenty of overlap of the images, create a 3D 360 degree panorama,” he told Universe Today.
Apollo 16 was the fourth mission to land on the moon and launched on July 26, 1971, and the astronauts returned to Earth on August 7. Find out more about Apollo 16 here.
A pair of images from NASA’s Cassini spacecraft show Titan glowing in the dark.
Titan never ceases to amaze. Saturn’s largest moon, it’s wrapped in a complex, multi-layered nitrogen-and-methane atmosphere ten times thicker than Earth’s. It has seasons and weather, as evidenced by the occasional formation of large bright clouds and, more recently, an area of open-cell convection forming over its south pole. Titan even boasts the distinction of being the only other world in the Solar System besides Earth with large amounts of liquid existing on its surface, although there in the form of exotic methane lakes and streams.
We have NASA’s Cassini spacecraft to thank for these discoveries, and now there’s one more for the ceaseless explorer to add to its list: Titan glows in the dark.
Seen above in two versions of the same calibrated raw image, acquired by Cassini on May 7, 2009, Titan hovers in front of a background field of stars which appear as blurred streaks due to the 560 seconds (about 9 1/2 minutes) exposure time and the relative motion of the spacecraft.
The image on the left shows Titan in visible light, receiving reflected sunlight off Saturn itself — “Saturnshine” — while the moon was on the ringed planet’s night side. The image on the right was processed to exclude this reflected light… and yet it still shines. (E pur si candeo?)
The hazy moon’s dim glow — measuring only around a millionth of a watt — comes from not only the top of its atmosphere (which was expected) but also from much deeper within, at altitudes of 300 km (190 miles).
The glow is created by chemical reactions within Titan’s atmosphere, sparked by interactions with charged particles from the Sun and Saturn’s magnetic field.
“It turns out that Titan glows in the dark – though very dimly,” said Robert West, the lead author of a recent study in the journal Geophysical Research Letters and a Cassini imaging team scientist at NASA’s Jet Propulsion Laboratory. “It’s a little like a neon sign, where electrons generated by electrical power bang into neon atoms and cause them to glow. Here we’re looking at light emitted when charged particles bang into nitrogen molecules in Titan’s atmosphere.”
The light is analogous to the airglow seen in Earth’s atmosphere, often photographed by astronauts aboard the ISS.
Still, even taking known sources of external radiation into account, Titan is glowing from within with an as-yet-unexplained light. More energetic cosmic rays may be to blame, penetrating deeper into the moon’s atmosphere, or there could be unexpected chemical reactions or phenomena at work — a little Titanic lightning, perhaps?
“This is exciting because we’ve never seen this at Titan before,” West said. “It tells us that we don’t know all there is to know about Titan and makes it even more mysterious.”
Images: NASA/JPL-Caltech/Space Science Institute. Inset image: Titan’s atmosphere and upper-level hydrocarbon haze, seen in June 2012. Color composite by J. Major.
From the initial expansion of the Big Bang to the birth of the Moon, from the timid scampering of the first mammals to the rise — and fall — of countless civilizations, this fascinating new video by melodysheep (aka John D. Boswell) takes us on a breathless 90-second tour through human history — starting from the literal beginnings of space and time itself. It’s as imaginative and powerful as the most gripping Hollywood trailer… and it’s even inspired by a true story: ours.
Artist’s impression of an impact of two planet-sized worlds (NASA/JPL-Caltech)
Scientists have uncovered a history of violence hidden within lunar rocks, further evidence that our large, lovely Moon was born of a cataclysmic collision between worlds billions of years ago.
Using samples gathered during several Apollo missions as well as a lunar meteorite that had fallen to Earth (and using Martian meteorites as comparisons) researchers have observed a marked depletion in lunar rocks of lighter isotopes, including those of zinc — a telltale element that can be “a powerful tracer of the volatile histories of planets.”
The research utilized an advanced mass spectroscopy instrument to measure the ratios of specific isotopes present in the lunar samples. The spectrometer’s high level of precision allows for data not possible even five years ago.
Scientists have been looking for this kind of sorting by mass, called isotopic fractionation, since the Apollo missions first brought Moon rocks to Earth in the 1970s, and Frédéric Moynier, PhD, assistant professor of Earth and Planetary Sciences at Washington University in St. Louis — together with PhD student, Randal Paniello, and colleague James Day of the Scripps Institution of Oceanography — are the first to find it.
The team’s findings support a now-widely-accepted hypothesis — called the Giant Impact Theory, first suggested by PSI scientists William K. Hartmann and Donald Davis in 1975 — that the Moon was created from a collision between early Earth and a Mars-sized protoplanet about 4.5 billion years ago. The effects of the impact eventually formed the Moon and changed the evolution of our planet forever — possibly even proving crucial to the development of life on Earth.
(What would a catastrophic event like that have looked like? Probably something like this:)
“This is compelling evidence of extreme volatile depletion of the moon,” said Scripps researcher James Day, a member of the team. “How do you remove all of the volatiles from a planet, or in this case a planetary body? You require some kind of wholesale melting event of the moon to provide the heat necessary to evaporate the zinc.”
In the team’s paper, published in the October 18 issue of Nature, the researchers suggest that the only way for such lunar volatiles to be absent on such a large scale would be evaporation resulting from a massive impact event.
“When a rock is melted and then evaporated, the light isotopes enter the vapor phase faster than the heavy isotopes, so you end up with a vapor enriched in the light isotopes and a solid residue enriched in the heavier isotopes. If you lose the vapor, the residue will be enriched in the heavy isotopes compared to the starting material,” explains Moynier.
The fact that similar isotopic fractionation has been found in lunar samples gathered from many different locations indicates a widespread global event, and not something limited to any specific regional effect.
The next step is finding out why Earth’s crust doesn’t show an absence of similar volatiles, an investigation that may lead to clues to where Earth’s surface water came from.
“Where did all the water on Earth come from?” asked Day. “This is a very important question because if we are looking for life on other planets we have to recognize that similar conditions are probably required. So understanding how planets obtain such conditions is critical for understanding how life ultimately occurs on a planet.”
“The work also has implications for the origin of the Earth,” adds Moynier, “because the origin of the Moon was a big part of the origin of the Earth.”
An image of water-filled debris ejected from Cabeus crater about 20 seconds after the 2009 LCROSS impact. Courtesy of Science/AAAS.
Comets? Asteroids? The Earth? The origins of water now known to exist within the Moon’s soil — thanks to recent observations by various lunar satellites and the impact of the LCROSS mission’s Centaur rocket in 2009 — has been an ongoing puzzle for scientists. Now, new research supports that the source of at least some of the Moon’s water is the Sun, with the answer blowing in the solar wind.
Spectroscopy research conducted on Apollo samples by a team from the University of Tennessee, University of Michigan and Caltech has revealed “significant amounts” of hydroxyl within microscopic glass particles found inside lunar soil, the results of micrometeorite impacts.
According to the research team, the hydroxyl “water” within the lunar glass was likely created by interactions with protons and hydrogen ions from the solar wind.
“We found that the ‘water’ component, the hydroxyl, in the lunar regolith is mostly from solar wind implantation of protons, which locally combined with oxygen to form hydroxyls that moved into the interior of glasses by impact melting,” said Youxue Zhang, Professor of Geological Sciences at the University of Michigan.
Hydroxyl is the pairing of a single oxygen atom to a single hydrogen atom (OH). Each molecule of water contains two hydroxyl groups.
Although such glass particles are widespread on the surface of the Moon — the researchers studied samples returned from Apollo 11, Apollo 16 and Apollo 17 missions — the water in hydroxyl form is not something that could be easily used by future lunar explorers. Still, the findings suggest that solar wind-derived hydroxyl may also exist on the surface of other airless worlds, like Mercury, Vesta or Eros… especially within permanently-shadowed craters and depressions.
“These planetary bodies have very different environments, but all have the potential to produce water,” said Yang Liu, University of Tennessee scientist and lead author of the team’s paper.
The discovery of hydroxyl within lunar glasses presents an “unanticipated, abundant reservoir” of water on the Moon, and possibly throughout the entire Solar System.
The study was published online Sunday in the journal Nature Geoscience.