Top Astronomy Events Coming Up in 2012

Stargazing Credit: http://twitter.com/VirtualAstro

[/caption]

As 2011 is drawing to a close, the festive season is here and many of us are winding down and looking forward to the holidays. But this is a great time to look ahead to 2012 and pencil into our calendar and diaries the top astronomical events we don’t want to miss next year.

2012 is going to be a great year for astronomy observing, with some rare and exciting things taking place and a good outlook with some of the regular annual events.

So what top wonders should we expect to see and what will 2012 bring?

Conjunction of Venus and Jupiter

Venus & Jupiter Conjunction Credit: Anthony Arrigo UtahSkies.org

On March 15th the Planets Venus and Jupiter will be within 3 degrees and very close to each other in the early evening sky. This will be quite a spectacle as both planets are very bright (Venus being the brightest) and the pair will burn brightly together like a pair of alien eyes watching us after the Sun sets.

This conjunction (where planets group close together as seen from Earth) will be a fantastic visual and photographic opportunity, as it’s not often you get the brightest Planets in our Solar System so close together.

Transit of Venus

Transit of Venus Credit: Australian Space Alliance

For many, the transit of Venus is the year’s most anticipated astronomical event and it takes place on June 5th – 6th. The Planet Venus will pass between the Earth and the Sun and you will see Venus (a small black circle) slowly move across, or “transit” the disc of the Sun.

Transits of Venus are very rare and only a few have been witnessed since the dawn of the telescope. Be sure not to miss this very rare event as the next one isn’t visible for over another 100 years from now in 2117 and the next after that is in 2125.

The full transit of Venus in 2012 will be visible in North America, the northwest part of South America, Western Pacific, North East Asia, Japan, Australia and New Zealand. Other parts of the world will see a partial transit such as observers in the UK, who will only be able to see the last part of the transit as the Sun rises.

First contact will be at 22:09 UT and final contact will be at 04:49 UT

Take note! You have to use the right equipment for viewing the Sun, such as eclipse glasses, solar filters, or projection through a telescope. Never ever look directly at the Sun and never look at it through a normal telescope or binoculars – You will be permanently blinded! The transit of Venus will be a very popular event, so contact your local astronomy group and see if they are holding an event to celebrate this rare occasion.

Meteor Showers

Don't Miss the Major 2012 Meteor Showers Credit: Shooting Star Wallpapers

2011 was a poor year for meteor showers due to the presence of a largely illuminated Moon on all of the major showers; this prevented all but the brightest meteors being seen.

In contrast 2012 brings a welcome respite from the glare of the Moon as it gives little or no interference with this year’s major showers. The only other issue left to contend with is the weather, but if you have clear skies on the evenings of these celestial fireworks, you are in for a treat.

  • The Quadrantid Meteor Shower peak is narrow and just before dawn on January 4th this shower is expected to have a peak rate (ZHR) of around 80 meteors per hour.
  • The Perseid Meteor Shower peak is fairly broad with activity increasing on the evenings of the August 9th and 10th with the showers peak on the morning of the 12th. Perseids are the most popular meteor shower of the year as it tends to be warm and the shower has very bright meteors and fireballs, with rates of 100+ an hour at its peak.
  • The Geminid Meteor Shower is probably the best meteor shower of the year with high rates of slow bright meteors. The peak is very broad and rates of 100+ meteors per hour can be seen. The best time to look out for Geminids is on the evenings of the 12th to 14th December, but they can be seen much earlier or later than the peak.

If you want to find out more and enjoy the meteor showers of 2012, why not join in with a meteorwatch and visit meteorwatch.org

Jupiter and the Moon

Occultation of Jupiter by the Moon on July 15th as seen from Southern England Credit: Adrian West

European observers are in for a very rare treat as the Moon briefly hides the planet Jupiter on the morning of July 15th. This “lunar occultation” can be seen from southern England and parts of Europe at approximately 1:50am UT (dependant on location) and the planet re-emerges from the dark lunar limb at approximately 3:10am UT.

This is a great chance to watch this rare and bright event, and it will also be a fantastic imaging opportunity.

Annular Eclipse

Annular Eclipse Credit: Kitt Peak Observatory

American observers will have treat on May 20th with an annular eclipse of the Sun. The eclipse will be visible from many western US states and a partial eclipse visible from most of North America.

Because the Moon’s orbit is not a perfect circle and is slightly elliptical, it moves closer and further away from us slightly in its orbit by 13% and on July 15th it is at its furthest point away from the Earth as it passes in front of the Sun.

Normally the Moon covers the entire disc of the Sun and creates a total solar eclipse, but because the Moon is at its furthest point in its orbit on the 15th, we get an annular eclipse, where we can still see a ring of bright light around the Sun, but we don’t get totality.

The eclipse starts roughly at 6:20pm local time for the Western US states and lasts for four and a half minutes.

As mentioned earlier; never, ever look at the Sun without proper protection such as eclipse glasses or filters for equipment! This can damage your eyes and permanently blind you. This is the same for cameras; the sensitive chips inside can be damaged.

The World Not Ending

End Of The World

Finally we get to December 21st, in which astronomy-minded folks will celebrate the solstice. But in case you haven’t heard, some have prophesied the end of the world, saying the Mayan calendar ends. This has been the subject of much discussion, comedy and media coverage, and it has even been made into films.

Will the Antichrist press the red button and will there be the Rapture? Will the Earth reverse its magnetic poles, or will we get wiped out by a solar flare, rogue comet or asteroid?

Nope, probably not. You can read our entire series which explains why this whole 2012 end-of-the-world craze is complete hokum.

All I know is 2012 is going to be a great year for astronomy with some very interesting, rare events taking place, with many more regular events to see, as well.

I’m sure it’s not going to end.

 

Earth’s Other Moons

Saturn's moons Rhea and Dione as seen by the Cassini spacecraft. Could this be a future view from Earth? Image credit: NASA/JPL/Space Science Institute

[/caption]

In the fall of 2006, observers at the Catalina Sky Survey in Arizona found an object orbiting the Earth. At first, it looked like a spent rocket stage — it had a spectrum similar to the titanium white paint NASA uses on rocket stages that end up in heliocentric orbits. But closer inspection revealed that the object was a natural body. Called 2006 RH120, it was a tiny asteroid measuring just a few metres across but it still qualified as a natural satellite just like the Moon. By June 2007, it was gone. Less than a year after it arrived, it left Earth’s orbit in search of a new cosmic companion.

Now, astrophysicists at Cornell are suggesting that 2006 RH120 wasn’t an anomaly; a second temporary moon is actually the norm for our planet.

Temporary satellites are a result of the gravitational pull of Earth and the Moon. Both bodies pull on one another and also pull on anything else in nearby space. The most common objects that get pulled in by the Earth-Moon system’s gravity are near Earth objects (NEOs) — comets and asteroids are nudged by the outer planets and end up in orbits that bring them into Earth’s neighbourhood.

Near Earth object Eros, the type of object that could be a second satellite. Image credit: NASA

The team from Cornell, astrophysicists Mikael Granvik, Jeremie Vaubaillon, Robert Jedicke, has modeled the way our Earth-Moon system captures these NEOs to understand how often we have additional moons and how long they stick around.

They found that the Earth-Moon system captures NEOs quite frequently. “At any given time, there should be at least one natural Earth satellite of 1-meter diameter orbiting the Earth,” the team said. These NEOs orbit the Earth for about ten months, enough time to make about three orbits, before leaving.

Luckily, and very interestingly, this discovery has implication well beyond academic applications.

Knowing that these small satellites come and go but that one is always present around the Earth, astronomers can work on detecting them. With more complete information on these bodies, specifically their position around the Earth at a given time, NASA could send a crew out to investigate. A crew wouldn’t be able to land on something a few metres across, but they could certainly study it up close and gather samples.

Close up image of asteroid 243 Ida. Image credit: NASA/courtesy of nasaimages.org

Proposals for a manned mission to an asteroid have been floating around NASA for years. Now, astronauts won’t have to go all the way out to an asteroid to learn about the Solar System’s early history. NASA can wait for an asteroid to come to us.

If the Cornell team is right and there is no shortage of second satellites around the Earth, the gains from such missions increases. The possible information about the solar system’s formation that we could obtain would be amazing, and amazingly cost-efficient.

Source: Earth Must Have Another Moon, Astronomers Say

Russian Lunar Exploration Program at Full Speed, Despite Failure of Mars Moon Probe

The Lunokhod (lunar rover) vehicle (left) and the Earth return vehicle -- both shown in launch configuration -- would comprise the Luna-Grunt mission. Credit: NPO Lavochkin/RussianSpaceWeb.com

[/caption]

Editor’s note: Dr. David Warmflash, principal science lead for the US team from the LIFE experiment on board the Phobos-Grunt spacecraft, provides an update on the mission for Universe Today.

While the Russian Federal Space Agency (Roscosmos) prepares for the pending destruction of its Phobos-Grunt spacecraft, an ambitious program focusing on lunar exploration is moving to center stage. Although the Soviet Union launched three successful lunar sample return missions, the last such probe was Luna-24, in 1976.

Scheduled for launch in 2014 or 2015, Luna-Glob (Russian for lunar sphere) consists of two craft: Luna-Glob 1 and Luna-Glob 2 (also called Luna-Resource). In addition to carrying out various studies while orbiting the Moon, Luna-Glob 1 is to carry four probes known as penetrators. Built by Japan, the penetrators will be launched from lunar orbit, then slam into the lunar surface and take seismographic readings. Since similar readings were taken in the landing regions of NASA’s Apollo missions (after used stages of the vehicles were crashed on the Moon deliberately to shake it up), two of the penetrators will be aimed near the Apollo 11 and Apollo 12 landing sites. It is hoped that comparison of results with the seismic data that were collected in the 1970s from these and the other sites will answer questions regarding the Moon’s origins.

Artist concept of Russia's Luna-Glob mission which is scheduled to launch in 2014. Credit: NASA

Previously, I’ve used the term Luna-Grunt in reference to a re-purposed Phobos-Grunt, sent to orbit Earth’s own Moon, if control is restored but too late to send it to the Martian moon Phobos. But Grunt is the Russian word for “ground,” or “soil.” Just as Phobos-Grunt was designed to analyze and return Phobosian regolith (not actually soil, but crushed rock and dust on the surface of a celestial body), Russia’s Luna-Grunt program will study lunar regolith. Currently, two Luna-Grunt spacecraft are planned, each featuring an orbiter and a lander. While the first Luna-Grunt lander, scheduled for a 2014 launch, will carry a rover loaded with instruments for regolith analysis, the second lander will feature an ascent stage with a sample return capsule. Designed to return to Earth, the Luna-Grunt capsule will be similar to return capsule of Phobos-Grunt, but will carry five times the amount of regolith (1 kilogram for Luna-Grunt vs. 200 grams for Phobos-Grunt).

Scheduled for launch in 2013 or 2014, Luna-Resource (Luna-Glob 2) will be a joint mission between Roscosmos and the Indian Space Research Agency. Like Luna-Glob 1 and Luna-Grunt 1, the main components will be a lunar orbiter and roving vehicle. Called, Chandrayaan-2, the rover will travel near one of the lunar poles for about a year. Luna-Resource is expected to provide valuable information concerning solar wind on the lunar surface. Like the other missions, it also carries instruments for analysis of the lunar regolith. Included in the analysis will be a search for water, which is thought to be present, particular in the Moon’s polar regions.

While the lunar missions to be launched during the next half decade will be unpiloted, statements by various Russian scientists and cosmonauts in recent months suggest that Roscosmos is interested in Earth’s companion as a location for a lunar base, or even a colony .

Documentary: A Look Back at the Apollo Missions

If you’ve got a spare 45 minutes and want to take a look back at the Apollo missions to the Moon, this documentary, ‘Journey To The Moon: The Apollo Story’ is well worth it. The film chronicles the Apollo program from its inception in 1961 through Apollo 11’s successful moon landing to the final mission, Apollo 17, which took place 39 years ago this week. You’ll see original footage (and those simple 1960’s era animations that showed how lunar orbit insertion and rendezvous and docking would work) and hear from the astronauts themselves.

Continue reading “Documentary: A Look Back at the Apollo Missions”

Wonderful Ice Halos

A bright moon halo surrounds the Moon on Dec. 11, 2011. © Jason Major

[/caption]
Have you ever seen a large ghostly disc around the Moon on a cool, calm, hazy night? If so, you have likely seen what is called an “Ice Halo” or “22° Halo.” Not only can the Moon display these ghostly rings of light, but the Sun does so in the day time too.

22° halos are visible all over the world and throughout the year; look for them whenever the sky is wispy or hazy with thin cirrus clouds – even in the hottest countries.

So what are they and why do they appear?

Ice halos or 22° radius Halos are in fact an optical illusion caused by 3 to 5 mile high, cold and very tenuous cirrostratus cloud, containing millions of tiny ice crystals.

The tiny ice crystals in the atmosphere create halos by refracting and reflecting light from the Moon. The halo is always the same diameter regardless of its position in the sky, though sometimes only parts of the circle are visible.

The much smaller coloured rings directly around the Moon or Sun are a corona produced by water droplets rather than ice crystals. They often form a rainbow effect or Moonbow.

Some people even believe they herald the onset of wet weather, but this has yet to be proved.

Moon Halo Imaged December '03 in Ontario, Canada by Lauri Kangas

The Thirty-Ninth Anniversary of the Last Moonwalk

Image Credit: NASA/Eugene Cernan

[/caption]

On December 13, 1972, Apollo 17 Commander Eugene A. Cernan and Lunar Module Pilot (LMP) Harrison H. “Jack” Schmitt made the final lunar EVA or moonwalk of the final Apollo mission. Theirs was the longest stay on the Moon at just over three days and included over twenty-two hours spent exploring the lunar surface during which they collected over 250 pounds of lunar samples.

To commemorate the thirty-ninth anniversary of this last EVA, NASA posted a picture of Schmitt on the lunar surface as its ‘Image of the Day.’ 

Apollo 17, the only lunar mission to launch at night. Image Credit: NASA/courtesy of nasaimages.org

Apollo 17 launched on a Saturn V rocket on December 7, 1972. Four days later on December 11, Cernan and Schmitt moved into the Lunar Module Challenger and descended to a touchdown in the Taurus-Littrow valley. Command Module Pilot Ron Evans, meanwhile, stayed in orbit aboard the Command Module America.

The Taurus-Littrow valley was chosen as the best landing spot to take advantage of Apollo 17’s capabilities. It was a “J mission,” one designed for extended EVAs that would take the astronauts further from the LM than any previous missions using the Lunar Rover. It was also a geologically interesting area. Here, the astronauts would be able to reach and collect samples from the old lunar highlands as well as relatively young volcanic regions. For this latter goal, Apollo 17’s greatest tool was its LMP, Schmitt.

When NASA began looking for its first group of astronauts in 1959, candidates had to be affiliated with the military, trained engineers, and have logged at least 1,500 hours of flying time in jets. The same basic criteria were applied to the second and third group of astronauts selected in 1962 and 1963 respectively.

Cernan's Apollo 17 lunar suit is currently on display at the Smithsonian National Air and Space Museum, just one of the 137 million Apollo-era artifacts in the museum's collection. Image Credit: National Air and Space Museum

The fourth group brought a change. In June 1965, six trained scientists joined NASA’s astronaut corps. For this group, PhDs were a necessity and the previous flight hours requirement was dropped. Three of the men selected were physicists, two were physicians, and one, Schmitt, was a trained geologist.

Schmitt had explored the geological possibilities of a a lunar mission as a civilian. Before he joined NASA, he worked with the U.S. Geological Survey’s Astrogeology Center in Flagstaff, Arizona. There he devised training programs designed to teach astronauts enough about geology as well as photographic and telescopic mapping to make their journeys to the Moon as fruitful as possible. He was among the astrogeologists that instructed NASA’s astronauts during their geological field trips.

After joining the astronaut corps, Schmitt spent 53 weeks catching up to his colleagues in flight proficiency. He also spent hundreds of hours learning to fly both the Lunar Module and the Command Module. All the while, he remained an integral part of the astronauts’ lunar geology training, often assisting crews in finding and collecting the right kinds of rocks from a control station in Houston during a lunar mission.

Schmitt’s lunar companion, Gene Cernan, was an Apollo veteran. As the LMP on Apollo 10, he had flown within eight miles of the lunar surface but didn’t have enough fuel — or NASA’s blessing — to actually land. As commander of Apollo 17, he spent more time on the Moon than any other man. As commander, he entered the LM after Schmitt at the end of their final moonwalk. His bootprints remain the most recent human-made mark on the lunar surface.

Cernan and Schmitt abord the LM Challenger during their Apollo 17 mission. Image Credit: NASA/courtesy of nasaimages.org

A Blood-Red Moon

December 10 lunar eclipse by Joseph Brimacombe

[/caption]

Photographer Joseph Brimacombe created this stunning image of a ruddy Moon made during the total lunar eclipse of December 10, 2011. Images taken during the penumbral and total phases of the eclipse were combined to create a full-face image of the Moon in color. Beautiful!

The red tint of the Moon during an eclipse is caused by sunlight passing through Earth’s atmosphere, in effect projecting the colors of all the world’s sunsets onto the Moon’s near face. The vibrancy and particular hue seen depends on the clarity of the Earth’s atmosphere at the time of the eclipse.

Joseph’s location in Cairns, Australia allowed for great viewing of the eclipse in totality, whereas many areas of North and South America and Europe missed the full eclipse event.

See more images by Joseph on Flickr.

Image © Joseph Brimacombe. All rights reserved. Used with permission.

Enceladus Gives Cassini Some Radar Love

New radar images from Encealdus' south pole show high amounts of surface texturing. NASA/JPL-Caltech/SSI.

[/caption]

Cassini’s done it again! Soaring over Saturn’s moon Enceladus back on November 6, the spacecraft obtained the highest-resolution images yet of the moon’s south polar terrain, revealing surface details with visible, infrared and radar imaging that have never been seen before.

Of particular interest are new image swaths acquired by the spacecraft’s synthetic-aperture radar (SAR) instrument, which has never before been used on Enceladus. The radar, which is highly sensitive to surface textures, reveals some extremely bright regions that have surprised scientists.

Detail of the radar-imaged area (enlarged). NASA/JPL-Caltech/SSI.

“It’s puzzling why this is some of the brightest stuff Cassini has seen,” said Steve Wall, deputy team lead of Cassini’s radar team based at NASA’s Jet Propulsion Laboratory in Pasadena. “One possibility is that the area is studded with rounded ice rocks. But we can’t yet explain how that would happen.”

The SAR images did not focus on the moon’s now-famous “tiger stripe” fractures (called sulci) which are the sources of its icy jets. Instead, Cassini scanned areas a few hundred miles around the stripes. These regions have not been extensively imaged before and this new data shows surface patterns and elevations that had been previously unknown.

Some of the steep grooves in the imaged areas were shown to be as deep as 2,100 feet (650 m), and 1.2 miles (2 km) wide.

Cassini passed by the 318-mile (511-km) -wide moon at 04:49 UTC on November 6, 2011. Cassini’s radar instrument was built by JPL and the Italian Space Agency, working with team members from the U.S. and several European countries. Previously used to image the surface of Titan, which is hidden from view by a thick atmosphere, this is the first time the instrument was used on Enceladus.

Here’s a video from the imaging team below:

See the news release on the NASA mission page here, or on the Cassini mission page maintained by JPL.

Life on Alien Planets May Not Require a Large Moon After All

Earth and Moon. Credit: NASA

[/caption]

Ever since a study conducted back in 1993, it has been proposed that in order for a planet to support more complex life, it would be most advantageous for that planet to have a large moon orbiting it, much like the Earth’s moon. Our moon helps to stabilize the Earth’s rotational axis against perturbations caused by the gravitational influence of Jupiter. Without that stabilizing force, there would be huge climate fluctuations caused by the tilt of Earth’s axis swinging between about 0 and 85 degrees.

But now that belief is being called into question thanks to newer research, which may mean that the number of planets capable of supporting complex life could be even higher than previously thought.

Since planets with relatively large moons are thought to be fairly rare, that would mean most terrestrial-type planets like Earth would have either smaller moons or no moons at all, limiting their potential to support life. But if the new research results are right, the dependence on a large moon might not be as important after all. “There could be a lot more habitable worlds out there,” according to Jack Lissauer of NASA’s Ames Research Center in Moffett Field, California, who leads the research team.

It seems that the 1993 study did not take into account how fast the changes in tilt would occur; the impression given was that the axis fluctuations would be wild and chaotic. Lissauer and his team conducted a new experiment simulating a moonless Earth over a time period of 4 billion years. The results were surprising – the axis tilt of the Earth varied only between about 10 and 50 degrees, much less than the original study suggested. There were also long periods of time, up to 500 million years, when the tilt was only between 17 and 32 degrees, a lot more stable than previously thought possible.

So what does this mean for planets in other solar systems? According to Darren Williams of Pennsylvania State University, “Large moons are not required for a stable tilt and climate. In some circumstances, large moons can even be detrimental, depending on the arrangement of planets in a given system. Every system is going to be different.”

Apparently the assumption that a planet needs a large moon in order to be capable of supporting life was a bit premature. The results so far from the Kepler mission and other telescopes have shown that there is a wide variety of planets orbiting other stars, and so probably also moons, which we are now also on the verge of being able to detect. It’s nice to think that more of the terrestrial-type rocky planets, with or without moons, might be habitable after all.

Consolation Prize for Phobos-Grunt? Experts Consider Possibilities for Sending Spacecraft to Moon or Asteroid

The Phobos-Grunt mission profile. Credit: Roscosmos

[/caption]

Editor’s note: Dr. David Warmflash, principal science lead for the US team from the LIFE experiment on board the Phobos-Grunt spacecraft, provides an update for Universe Today on the likelihood of saving the mission.

If communication with Russia’s troubled Phobos-Grunt is not established by November 21, the window for a trajectory to the Martian moon Phobos, will close, experts say. But this would not mean that the spacecraft could not travel to a different destination. In a statement published earlier today by the news and information agency Ria Novosti, Russian space expert Igor Lisov suggested that Phobos-Grunt could be sent to orbit the Moon – Earth’s Moon, that is – or may be even an asteroid, if communication is restored at any point before the 13-ton probe re-enters Earth’s atmosphere.

Evolution of Phobos-Grunt’s Orbit

Boosted into space by a Zenit 2 rocket last week, Phobos-Grunt entered into a low parking orbit, where she was supposed to wait only for 2.5 hours before the next booster stage, Fregat, would send her to a higher orbit and then on to Mars. Because the Fregat engine did not ignite, Grunt still orbits just above our heads. “Highly elliptical, with an initial altitude of 347 kilometers at apogee (the high point) and 207 kilometers at perigee (the low point), the orbit initially was predicted to decay by late November, causing the spacecraft to reenter the atmosphere and burn up. But while the apogee has been decreasing (down to 326 km today), the perigee actually has been increasing by about 0.5 kilometers per day (up to 210.2 km today), due to periodic maneuvering by way of the probe’s small thrusters. After it was realized that the first maneuvering episode had improved the orbit, the predicted reentry date was adjusted to mid January, and if the thrusting episodes continue we can expect the date of the probe’s demise to be moved back still more.

An artists concept of the Phobos-Grunt Mission. Credit: Roscosmos

Time for Trajectory to Phobos is Running Out

The improved orbit gives controllers at the Russian Space Agency, Roscosmos, several weeks –even more, if the perigee continues to get higher– to restore communication with Phobos-Grunt, allowing for the uploading of new commands. But, even if control is restored, a flight to Mars and Phobos will not be possible after Monday, November 21st, Lisov explained. Although the Fregat stage is loaded with fuel, to reach Mars, given Grunt’s orbit around Earth and the alignment between Earth and Mars after Monday, would require a higher change in velocity –what propulsion specialists call delta v – than the Fregat is capable of producing.

A Consolation Prize

While cautioning that the idea of sending Phobos-Grunt somewhere other than Phobos falls into the realm of wishful thinking, Lisov urged that efforts to reconnect with the spacecraft continue in full force as long as the craft is in space. Despite several failures of lunar missions, the former Soviet space program did succeed in returning samples from the lunar surface to Earth in the 1970s. Thus, re-purposing the current mission as “Luna-Grunt” or something of that nature is not likely to have the same appeal as Phobos-Grunt has among Russians. Nor could the Grunt landing craft, designed to scoop a surface sample into a capsule that would return to Earth, even set down on the lunar surface. But other components of the science payload might be useful. Though built to observe Mars,China’s Yinghuo-1 orbiter might be able to do something interesting from lunar orbit. Instruments that were to remain on the Phobosian surface might be useful as well.

Then, there is the issue of avoiding reentry. Experts at Roscosmos are confident that the many tons of nitrogen teroxide and hydrazine in Grunt’s fuel tanks will burn up high in the atmosphere if the probe reenters. But people around the planet are scared, and thus might prefer that the fuel be used, even for a one-way mission with undefined science objectives. More importantly, achieving in a partial victory by sending the spacecraft anywhere but back to Earth could give rise to an Apollo 13-like milieu that might reinvigorate the Russian planetary program.

Millions of Tiny Passengers

The Planetary Society’s Living Interplanetary Flight Experiment (LIFE) capsule, on board the Phobos-Grunt spacecraft. Credit:The Planetary Society

As I’ve discussed in a previous update, to be useful scientifically, the Planetary Society’s Living Interplanetary Flight Experiment (LIFE) rides inside the capsule that was designed to return the Phobosian sample to Earth. The point of the experiment is to test the effects of the space environment on several different types of organisms. Because the Moon orbits Earth far outside the Van Allen radiation belts, the radiation received per time by organisms on lunar flights is the same as that received during flights to Mars. If the capsule could be sent into lunar orbit, our millions of passengers would be like organisms traveling inside a meteoroid from Mars. Then perhaps some future mission could recover the capsule some day, and we could study the organisms, as we planned to do upon their return from Phobos.

A Possible Asteroid Mission

Lisov also speculated about sending the Grunt spacecraft to an asteroid instead of the Moon. Various asteroids travel fairly close to Earth, and it’s plausible that a Grunt probe revived after November 21 would have enough delta v to reach one of them. Unlike Earth’s Moon, whose gravity the Grunt lander was not designed to withstand, many asteroids are small. Theoretically, Grunt’s lander could set down on any celestial body with a gravitational force similar to that of Phobos. If any such asteroid candidate exists –and this is a big if– the ascent engine, designed to propel the Grunt return capsule back to Earth might be utilized to deliver a sample of the asteroid, along with the LIFE experiment.