What will the June 15th lunar eclipse look like from the Moon itself? Luckily, we’ve got the Lunar Reconnaissance Orbiter circling the Moon, and we can find out. However, most of the instruments on LRO will be powering down during the eclipse, but one instrument, called Diviner, will stay on. “It will be like a nap with one eye open!” the LRO spacecraft said on Facebook. The Diviner Lunar Radiometer instrument will record how quickly different areas on the moon’s day side cool off during the eclipse. Since large boulders cool more slowly than a fine-grained or dusty surface, Diviner will be able to see what areas are covered with boulders and what regions are blanketed by dust.
Continue reading “How LRO Plans to Watch the Lunar Eclipse from the Moon”
One Year of the Moon in 2.5 Minutes
We don’t always have the time or ability to see the Moon every night of the year, but this video, from the Goddard Space Flight Center Scientific Visualization Studio, uses data from the Lunar Reconnaissance Orbiter and compresses one month into 12 seconds and one year into 2.5 minutes. This is how the Moon will look to us on Earth during the entire year of 2011. While the Moon always keeps the same face to us, it’s not exactly the same face. Because of the tilt in its axis and shape of its orbit, we see the Moon from slightly different angles over the course of a month, and the year. Normally, we don’t see how the Moon “wobbles” in its orbit, but seeing the Moon’s year this quickly, we can see the changes in libration, and axis tilt — as well as the most noticeable changes, the Moon’s phases.
This animation is the most accurate to date, showing shadows and other features on the Moon in incredible detail. This is thanks to the Lunar Orbiter Laser Altimeter (LOLA) aboard LRO. The shadows are based on the global elevation map being developed from measurements by the LOLA, and the instrument has already taken more than 10 times as many elevation measurements as all previous missions combined.
If you want to know what the Moon looks like “right now” this page from the SVC is updated every hour showing the Moon’s geocentric phase, libration, position angle of the axis, and apparent diameter of the Moon. It also has images showing the different phases of the Moon, too.
[/caption]
Celestial north is up in these images, corresponding to the view from the northern hemisphere. The descriptions of the print resolution stills also assume a northern hemisphere orientation. To adjust for southern hemisphere views, rotate the images 180 degrees, and substitute “north” for “south” in the descriptions.
Source: Goddard Space Flight Center Science Visualization Studio
And The Moon Is Eclipsed By The Earth
[/caption]
On June 15 there will be a total lunar eclipse visible from Australia, Indonesia, southern Japan, India, a large area of Asia, Africa, Europe and the eastern part of South America. This is expected to be one of the darkest eclipses ever (with a magnitude of 1.7), second only to the July 2000 eclipse.
Sadly it won’t be visible to viewers in North America, but much of the rest of the world should be treated to a wonderful show as the Moon slips into Earth’s shadow. Gradually growing darker from its western limb inwards, the Moon then gains a bluish cast which transitions to orange then deep red as it moves into light passing through the edge of Earth’s atmosphere (the same as what makes the colors of a sunset) and then eventually going almost completely dark before the process then reverses itself from the opposite side.
The entire eclipse will last 5 hours and 39 minutes, with a totality duration of 1 hour and 40 minutes. It will begin at 17:23 UT.
Viewers in Australia and eastern Asia will see the eclipse begin as the Moon is setting while those in Europe and South America will see it as the Moon is rising. Only locations in India, eastern Africa, the Middle East and western Asia will experience the entire eclipse.
This is the first of two total lunar eclipses in 2011; the next will take place on December 10.
I saw my first total lunar eclipse last December, which took place on the night of the winter solstice (December 21). It really was an amazing event to watch… in totality the Moon was colored a deep coppery red and really just seemed to be suspended among the stars – it felt like you could just reach up and pluck it from the sky! If you are in any of the areas where this next one is visible I encourage you to check it out for yourself!
Read more about lunar eclipses on MrEclipse.com.
Image: Jason Major
Water, Water Everywhere… Lunar Samples Show More Water Than Previously Thought
[/caption]
A team of NASA-funded researchers led by Carnegie Institution’s Erik Hauri has recently announced the discovery of more water on the Moon, in the form of ancient magma that has been locked up in tiny crystals contained within soil samples collected by Apollo 17 astronauts. The amounts found indicate there may be 100 times more water within lunar magma than previously thought… truly a “watershed” discovery!
Orange-colored lunar soil sampled during Apollo 17 EVA missions was tested using a new ion microprobe instrument which measured the water contained within magma trapped inside lunar crystals, called “melt inclusions”. The inclusions are the result of volcanic eruptions on the Moon that occurred over 3.7 billion years ago.
Because these bits of magma are encased in crystals they were not subject to loss of water or “other volatiles” during the explosive eruption process.
“In contrast to most volcanic deposits, the melt inclusions are encased in crystals that prevent the escape of water and other volatiles during eruption. These samples provide the best window we have to the amount of water in the interior of the Moon.”
– James Van Orman of Case Western Reserve University, team member
While it was previously found that water is contained within lunar magma during a 2008 study led by Alberto Saal of Brown University in Providence, Rhode Island, this new announcement is based upon the work of Brown undergraduate student Thomas Weinreich, who located the melt inclusions. By measuring the water content of the inclusions, the team could then infer the amount of water present in the Moon’s interior.
The results also make correlations to the proposed origins of the Moon. Currently-accepted models say the Moon was created following a collision between the newly-formed Earth and a Mars-sized protoplanet 4.5 billion years ago. Material from the Earth’s outer layers was blasted out into space, forming a ring of molten material that encircled the Earth and eventually coalesced, cooled and became the Moon. This would also mean that the Moon should have similarities in composition to material that would have been found in the outer layers of the Earth at that time.
“The bottom line is that in 2008, we said the primitive water content in the lunar magmas should be similar to lavas coming from the Earth’s depleted upper mantle. Now, we have proven that is indeed the case.”
– Alberto Saal, Brown University, RI
The findings also suggest that the Moon’s water may not just be the result of comet or meteor impacts – as was suggested after the discovery of water ice in polar craters by the LCROSS mission in 2009 – but may also have come from within the Moon itself via ancient lunar eruptions.
The success of this study makes a strong case for finding and returning similar samples of ejected volcanic material from other worlds in our solar system.
“We can conceive of no sample type that would be more important to return to Earth than these volcanic glass samples ejected by explosive volcanism, which have been mapped not only on the Moon but throughout the inner solar system.”
– Erik Hauri, lead author, Carnegie’s Department of Terrestrial Magnetism
The results were published in the May 26 issue of Science Express.
Read the full NASA news release here.
Space Adventures Wants to Fly You to the Moon
[/caption]
Space Adventures – the company that brought the first space tourists to the International Space Station – has longer space tourist excursions planned for as early as 2015: a trip around the Moon. Company chairman Eric Anderson said during a teleconference they have sold the first of the two seats on their circumlunar flight program, and once the second seat is sold and finalized they could fly the first private mission to the Moon in 4 years.
How will the commercial lunar tour work?
The tourists would launch on a Soyuz to Earth orbit and dock to the ISS, where they would stay for 8-10 days. A separate rocket, likely a Proton, would launch an upper stage engine and an additional habitation for the Soyuz to add more volume for the 7 day round-trip translunar flight. Soyuz would undock from the ISS and docks with the upper stage and hab module. It would take 3 ½ days to reach the Moon, swing around the far side, with the Soyuz bringing passengers to within 100 km of the Moon’s surface. The tourists will see the Earth from a distance, just as the Apollo astronauts did.
It will take another 3 ½ days to return, with a direct entry into Earth’s atmosphere with the Soyuz.
“This is another watershed event for private spaceflight” Anderson said, “extraordinarily usual moment in history where next human mission to the Moon may be commercial and not government sponsored. A very exciting thing.”
The beauty of the plan, according to Anderson is that no new technology is required, and no new reprogramming of systems, or improvements to heat shield and other systems is required.
“We’ve planned a mission now that I think is quite suitable” said Richard Garriott, who went to the ISS with Space Adventures, “with a high degree of comfort and reliability.” Garriot added that the hab module will provide an extraordinary comfortable trip to the moon and back, with more room than Apollo.
The price? $100 to $150 million.
Anderson said there will be a test flight, either manned or unmanned before the first tourists go, adding that this mission will fulfill the destiny of humanity to explore the universe.
For more information see Space Adventures.
SDO: The Moon Gets in My Way
Early today, the Solar Dynamics Observatory was able to observe the Moon coming in between the spacecraft and the Sun. If you look closely, you can actually see mountains on the Moon subtly backlit by the Sun’s atmosphere.
Cool!
The SDO science team says that not only is this amazing to see, but it actually allows them to “sharpen-up” the SDO images. The sharp edge of the lunar limb allows our team to measure the in-orbit characteristics of the telescopes on board the spacecraft.
See a close-up image (processed by our own Jason Major) below.
[/caption]
Rare Green Flashes Captured From the Moon
[/caption]
Green flashes from the Sun at sunset are a rare phenomenon, but even rarer are green flashes from a setting Moon. With the unique atmospheric conditions at Cerro Paranal in Chile, a photographer from ESO’s Very Large Telescope managed to what are likely the best images ever taken of the Moon’s green flash. ESO Photo Ambassador Gerhard Hüdepohl took a series of images of the setting full Moon crossing the horizon, taken on a clear early morning from the Paranal Residencia.
What happens that makes the green flashes appear?
The Earth’s atmosphere bends, or refracts, light, like a giant prism. The effect is greater in the lower denser layers of the atmosphere, so rays of light from the Sun or Moon are curved slightly downwards. Shorter wavelengths of light are bent more than longer wavelengths, so that the green light from the Sun or Moon appears to be coming from a slightly higher position than the orange and red light, from the point of view of an observer. When the conditions are just right, with an additional mirage effect due to the temperature gradient in the atmosphere, the elusive green flash is briefly visible at the upper edge of the solar or lunar disc when it is close to the horizon.
Hüdepohl works as an Electronics Engineer at ESO’s Very Large Telescope. He said he was surprised and delighted to catch the stunning green flash from the Moon.
You can read an article we did about green flashes from the setting Sun here.
Source: ESO
Sideways Looks at the Moon Like You’ve Never Seen it Before
[/caption]
The Zooites working at the Moon Zoo citizen science project have uncovered some very unique oblique views of the Moon taken by the Lunar Reconnaissance Orbiter. Occasionally, LRO takes “sideways glances” at the Moon instead of looking straight down like the spacecraft normally does. The Moon doesn’t really look like this close up, because these images aren’t scaled correctly (the width and height pixel scales are different by five times, the Zooites say in the Moon Zoo Forum), but they provide a distinctive look at the lunar surface, and things like craters on the side of a hill, — or perhaps an entrance to a cave — show up better than in normal images. Have fun looking at some more of these images below, or on the Moon Zoo Forum.
And don’t forget, if you aren’t working on at least one of the Zooniverse citizen science projects, you are missing out on mountains of fun!
Is Titan Hiding an Ocean?
[/caption]
Saturn’s moon Titan just keeps throwing surprises at us. A multi-layered atmosphere thicker than our own? Check. A hydrologic cycle that relies on methane as the operating liquid? Check. Rivers, streams and lakes filled with this same liquid? Check, check and check. And now, scientists are suspecting that Titan may have yet another surprise: a subsurface ocean.
Observations of Titan’s rotation and orbit, carried out by researchers at the Royal Observatory of Belgium using Cassini data, point at an unusual rotational inertia; that is, its resistance to changes in its motion, also known as moment of inertia or angular mass. Basically Titan moves in a way that is not indicative of a solid body of its previously assumed density and mass. Rather, its motion – both around its own axis and in its tidally-locked orbit around Saturn – are more in line with an object that isn’t uniformly solid.
According to the math, Titan may very well be filled with liquid!
Or, at least, have a liquid layer of considerable depth beneath its surface. How far below the surface, how deep and exactly what kind of liquid are all speculative at this point…it’s suggested that it may be a subsurface ocean of yet more methane. This would help answer the question of where Titan gets all of its methane in the first place; methane, – a.k.a. natural gas – is a compound that breaks down quickly in sunlight. In fact, the high-level haze that surrounds the moon like a wispy blue shell is made up of this broken-down methane. So if this stuff is raining down onto the surface in giant, frigid drops and filling streams and lakes, but is still being broken down by ultraviolet light from the Sun to enshroud the entire moon (Titan is BIG, remember…at 5,150 km – 3,200 miles – wide, it’s over a third the size of Earth!) then there has to be somewhere that this methane is coming from.
If these calculations are right, it may be coming from underground.
We propose a new Cassini state model for Titan in which we assume the presence of a liquid water ocean beneath an ice shell… with the new model, we find a closer agreement between the moment of inertia and the rotation state than for the solid case, strengthening the possibility that Titan has a subsurface ocean.
– Rose-Marie Baland et al.
Of course in order for this hypothesis to be proven many more numbers are going to have to be crunched and more data reviewed. And more possibilities considered, too; Titan’s orbital irregularities may in fact be the result of external forces, such as a close pass by a comet or other large body. Still, there’s something to be investigated here and you can bet there’ll be no shortage of attention on a problem as intriguing as this!
Titan may soon be joining the short list of moons speculated to possess subsurface oceans, alongside Jupiter’s Europa and Ganymede and sister Saturnian satellite Enceladus…and who knows how many others?
Read the article on MIT’s Physics arXiv Blog, or you can download the full report here.
Top image credit: NASA / JPL / SSI. (Edited by J. Major.)
Look Inside a Lunar Crater
[/caption]
The crater shown above is located in the lunar highlands and is filled with and surrounded by boulders of all sizes and shapes. It is approximately 550 meters (1800 feet) wide yet is still considered a small crater, and could have been caused by either a direct impact by a meteorite or by an ejected bit of material from another impact. Scientists studying the Moon attempt to figure out how small craters like this were formed by their shapes and the material seen around them…although sometimes the same results can be achieved by different events.
For example, when an object from space strikes the Moon, it is typically traveling around 20 km per second (12 miles/sec). If the impact site happens to have a very hard subsurface, it can make a crater with scattered bouldery chunks composed of the hard material around it. But, if a large piece of ejected material from another impact were to strike the lunar surface at a much slower speed, as ejecta typically do (since they travel slower than incoming space debris and the Moon’s escape velocity is fairly low, meaning any ejecta that does fall back to the surface must be traveling slower than 2.38 km/s,) then the ejected chunk could break apart on impact and scatter boulders of itself around the crater…regardless of subsurface composition.
Really the only way to tell for sure which scenario has taken place around a given crater – such as the one above – is to collect and return samples from the site so they can be tested. (Of course that’s much easier said than done!)
You can read more about this image on Arizona State University’s Lunar Reconnaissance Orbiter Camera site here.
And as an added treat, take a look deep into the shadows of the crater’s interior below…I tweaked the image curves in Photoshop to wrestle some of the details out of there!
Image credit: NASA/GSFC/Arizona State University. (Edited by J. Major.)
P.S.: Want to see both image versions combined? Click here. (Thanks to Mike C. for the suggestion!)