Did You Know: Russian Lunokhod Rovers Created Memorials on the Moon Honoring Women

Annotated graphic of Lunokhod 2's travels from Phil Stooke's International Atlas of Lunar Exploration.

[/caption]

The saga of the Soviet Union’s Lunokhod moon rovers keeps getting more interesting! If you missed the update on our article about finding the “missing” Russian landers and rovers among the newly released Lunar Reconnaissance Orbiter images, the Lunokhod 2 rover was not exactly where one researcher initially thought – so there’s now an updated image, which you can see at this link. But among all the research and poring over images that has been done since NASA released six month’s worth of LRO data to the public earlier this week, Emily Lakdawalla from the Planetary Society uncovered an interesting tidbit about the Lunokhods which she generously passed on to me. After a little research, I found out more about an “extracurricular activity” the two Lunokhod rovers were commanded to do along their traverses on the lunar surface. They each created “memorials” to women on the Moon.

Since the early 1900’s, International Women’s Day has been observed each year by several countries around the world on March 8. The day marks the economic, political and social achievements of women. Russia has been celebrating this holiday since 1913, and in the 1970’s the crews who “drove” the Lunokhod rovers decided to honor women by commanding the rovers to create figure 8’s in the lunar regolith — 8 as in March 8.

Lunokhod 1. Credit: Goddard Spaceflight Center

Lunokhod 1 landed on the Moon November 17, 1970 and roved the surface for nearly a year (322 days.) Lunokhod 2 landed on January 15, 1973 and operated four months.

Apparently both rovers made a figure 8 in the regolith, although the documentation is a little fuzzy. A Russian scientist recalls that Lunokhod 1 made the figure 8, and one of the newly released LRO images shows a faint figure 8 in the regolith (see image left), which could only have been made by Lunokhod 1, but there is better documentation for Lunokhod 2’s memorial.

“To the extent I know, that was Lunokhod 1 which the crew made an 8 by Lunokhod tracks to congratulate our women on March 8 1973,” said Alexander “Sasha” Basilevsky, a veteran Russian planetary scientist, who responded to my queries about the significance of the figures 8’s. “Even in that Soviet time March 8 practically lost its political significance and we men just congratulated our women with little gifts. We continue to do this even now when our political system is far from communistic. For us it is just Women’s Day.”

Also, after scanning through all of Lunokhod 1’s panoramic images, I found this possible image of the figure 8, but I have not yet confirmed this is it:

Possible figure 8 in a Lunokhod 1 panoramic image. Credit: Laboratory of Comparative Planetology. Click image to see all the panoramas from Lunokhod 1.

See all the panoramas from Lunokhod 1.

Dr. Phil Stooke from the University of Western Ontario compiled “The International Atlas of Lunar Exploration.” “In my atlas I show a feature like this at Lunokhod 2’s site,” he said in response to my questions. “I didn’t know about this one at Lunokhod 1, but apparently it’s there as well.”

Here’s what Stooke wrote about the Lunokhod 2’s figure 8:

“On 18 January Lunokhod 2 was driven to a point on the north rim of the 25 m crater where it photographed the landing stage and the hill Le Monnier Alpha in the distance to the southwest. Here it was turned in place to create a circular mark with its wheels, and then moved a few meters where it made a second circle. The resulting figure 8 marking was later described as a memorial to commemorate International Women’s Day, 8 March, which was a holiday in the Soviet Union and is in Russia today.”

Addendum: Stooke told me that after seeing the new images from LRO, he will likely have to re-do the map of Lunokhod’ 2’s travels (top image). “Lunokhod images were often printed mirror-imaged left to right, and it’s often hard to know which is which,” he said. “In this case that map was constructed using at least one image the wrong way round, so it has to be corrected.”

So, it is unclear whether the decision to create these two memorials was in any way political, or simply a kind gesture by the Soviet space agency, or a unique choice made by the rover drivers, or – as was suggested to me by a couple of people – a visual play on an anatomical feature unique to women.

But more importantly, the accomplishments of the Lunokhod rovers are amazing considering the era in which they operated. While the Soviet Union’s exploration of the Moon was not well publicized outside of Russia — and now is often downplayed when compared to the Apollo missions – the ground-breaking technological achievements should be lauded for the innovative sample return missions and rovers that to this day hold the distance record that any vehicle has traveled on another celestial body. Together, they roved further than even the long-lasting Mars Exploration Rovers.

Lunokhod 1 Rover in its final parking spot, as seen by LRO. Credit: NASA/GSFC/Arizona State University. Click for larger version

Lunokhod 1 traveled 10.5 km (6.5 miles) and returned more than 20,000 TV images and 206 high-resolution panoramas. In addition, it performed twenty-five soil analyses with its x-ray fluorescence spectrometer and used its penetrometer at 500 different locations.

Lunokhod 2 covered a whopping 37 km (23 miles) of terrain, including hilly upland areas and rilles. It sent back 86 panoramic images and over 80,000 TV pictures. Many mechanical tests of the surface, laser ranging measurements, and other experiments were completed during this time.

Many thanks to Emily Lakdawalla, Phil Stooke and Alexander Basilevsky for helping me learn more about this interesting piece of space exploration history!

In case you are wondering, International Womans Day is an official holiday in Angola, Azerbaijan, Belarus, Burkina Faso, Cambodia, Equatorial Guinea, Eritrea, Georgia, Guinea Bissau, Kazakhstan, Kyrgyzstan, Laos, Moldova, Mongolia, Nepal, Russia, Tajikistan, Turkmenistan, Uganda, Ukraine, Uzbekistan.

See more about LRO images of Soviet lunar rovers.

More info on Lunokhod 1 and Lunokhod 2.

It’s Not Just The Astronauts That Are Getting Older

Representing what may be the first long term lunar environmental impact study, recent laser ranging data from the Apache Point Observatory in New Mexico suggests the Lunar Ranging Retro Reflectors (LRRRs) left on the Moon by Apollo missions 11, 14 and 15 are beginning to shows signs of age.

Apache Point Observatory’s Lunar Laser-ranging Operation (the acronym says it all) has been collecting ranging data from the LRRRs since 2006, using a 3.5 metre telescope and a 532 nm laser.

A typical APOLLO observing session involves shooting the laser at the largest of the LRRRs (Apollo 15’s) over a ‘run’ of four to eight minutes. Each shot sends about 1017 photons to the Moon, from which only one returned photon per shot may be detected. This is why the laser is shot thousands of times at a 20 Hz repetition rate during each run.

If the return signal from the Apollo 15 LRRR is good, the laser is then directed to fire at the Apollo 11 and 14 reflectors. The laser can even be directed to the Russian Lunokhod 2 reflector, landed on the Moon in 1973, although this reflector does not return a reliable signal if it is in sunlight, probably because heating affects the reflectors’ refractive index and distorts the return signal.

Lunokhod 2 (moon walker in Russian), an 840 kg rover that landed on the Moon on January 15, 1973 and undertook scientific investigations on the lunar surface until May 1973.

The Apollo LRRRs were designed to remain isothermal, even in direct sunlight, to avoid the problem apparently suffered by Lunokhod 2. But a review of current and historical data has revealed a noticeable decline in their performance at each Full Moon. Since the reflectors are directed straight at Earth, they experience the most direct sunlight at a Full Moon.

Recent Apache Point Observatory data has been compared to historical data collected by earlier observatories involved in lunar laser ranging. For the period 1973 to 1976, no Full Moon deficit was apparent in data records, but it began to emerge clearly in a 1979 to 1984 data set. The research team estimate that return signal efficiency at Full Moon has degraded by a factor of 15 over the approximately forty years since the Apollo reflectors were placed on the Moon.

While heating effects may play a part in the performance degradation of the LRRRs, lunar dust is suggested to be the more likely candidate, as this would be consistent with the very gradual performance degradation – and where the most substantial performance loss occurs right on Full Moon. These findings may require careful consideration when designing future optical devices that are intended to remain on the lunar surface for long periods.

On the bright side – all the reflectors, including Lunokhod 2’s, are still functioning on some level. Hopefully, decades before their slow and steady decline progresses to complete failure, even more efficient replacement devices will be landed on the lunar surface – perhaps carefully positioned by a gloved hand or otherwise by robotic means.

This article was developed from this very readable scientific paper.

Look for “Flood” of News This Week About Water on the Moon

LCROSS Mission
Artist impression of LCROSS approaching the Moon. Credit: NASA

[/caption]

Almost five months ago, the LCROSS spacecraft had an abrupt end to its flight when it impacted a crater on the Moon’s south pole. But that was only the beginning of the work of principal investigator Tony Colaprete and the rest of the science teams, who have since been working non-stop to get their initial results out to the public. Look for a flood of ‘water on the Moon’ news to be announced at the Lunar and Planetary Science Conference this week.

“The data set from LCROSS is a lot more interesting that we thought it would be,” said Colaprete, speaking on a “My Moon” webcast, sponsored by the Lunar and Planetary Institute. “A big part of our time has been making sure the data is properly calibrated. That takes a lot of time and effort, but the other side of the equation is understanding all the stuff you don’t understand in the data, and there was a lot we didn’t initially understand.”

The LCROSS team will present six papers, 11 posters and several oral sessions at the LPSC.
While the results are still under embargo, Colaprete was able to discuss the basics of what the science teams have found.

LCROSS impact site. Credit: NASA

One surprise for the teams was the low “flash” produced by the impact of the spacecraft. “We didn’t see a visible flash, even with sensitive instruments,” Colaprete said. “There was a delayed and muted flash and the impactor was essentially buried, with all the energy apparently deposited at a depth. So it is very likely that there were volatiles in the vicinity.”

The second surprise was the morphology of the impact plume. “We had reason to believe there would be high angle plume,” said Colaprete. “But we had a lower angle plume. We had a signal of a debris curtain in the spectrometers in LCROSS all the way down in the four minutes following the impact of the Centaur stage. That was corroborated with DIVINER measurements with LRO (a radiometer on the Lunar Reconnaissance Orbiter.) They were able to make some great observations of the ejecta cloud with DIVINER, and we had good signals with our instruments all the way down to impact.”

Most surprising, Colaprete said, was all the “stuff” that came up from the impact. “Everyone was really excited and surprised about all the stuff that we threw up with the impact.”

The LRO spacecraft was able to be tilted in orbit so the LAMP (Lyman-Alpha Mapping Project) instrument could observe impact plume. It observed a plume about 20 km tall, and observed a “footprint” of a plume up to 40 km above the Moon’s surface.
“They saw vapor cloud fill the ‘slit’ of the spectrometer’s observations at about 23 seconds after impact and it remained there through the entire flyby,” Colaprete said. “What that corresponds to is a hot vapor cloud of about 1000 degrees that was observed.”

A closer view of the moon as the LCROSS spacecraft approaches impact. Credit: NASA

Two exciting species found in the cloud were molecular hydrogen and mercury. “What is fantastic about that, is that there was an article written a couple of decades ago, regarding the possibility of mercury and water at the poles, and they said don’t drink the water!”

Colaprete said observing molecular hydrogen is spectacular because normally it doesn’t stay stable even at 40 Kelvin. The teams are still speculating how it was trapped and what form it was in. They found about 150 kg of molecular hydrogen in the plume.

All the elements found in the plume must be coming from cometary and asteroidal sources, Colaprete said. They also found water ice, sulfur dioxide, methane, ammonia, methanol, carbon dioxide, sodium and potassium. “We haven’t identified everything yet, but what we’re seeing is similar to what you would see in an impact of a comet, like what happened with the Deep Impact probe, which is exciting and surprising. The mineralogy in the dust itself that we kicked up corresponds to what was seen by M Cubed instrument, and also what we see in chondrite asteroids.”

One of the most pleasing aspects of this scientific process, Colaprete said, was the different teams being able to verify what other teams were finding.

“The concentration of hydrogen we saw in the regolith was higher than expected,” Colaprete said. “We ran the numbers again, and we said, ‘Oh, we can’t wiggle out of this answer.’ Then the PI for the LEND (Lunar Exploration Neutron Detector on LRO, which can acquire high-resolution neutron datasets) instrument confirmed that their numbers were entirely consistent with what we got. It was surprising because it wasn’t what we expected. But that is why you make measurements.”

“This should be a fun year as we pull this all together, and get it released to the public so we can get a lot more neurons looking at this,” Colaprete said. “I think this will really change our understanding of the Moon and how we think about it.”

Will NASA Send Robots to the Moon with “Project M?”

This video surfaced today on NASA Watch, but there’s not a lot of details about Project M. According to the America Space website, Project M is a program being developed out of the Johnson Space Center Engineering Directorate to put a lander on the moon with a robot. Supposedly, the mission could be done within a 1,000 days once the project got the go-ahead.
Continue reading “Will NASA Send Robots to the Moon with “Project M?””

No Moon Missions, That’s a Relief

Ares V rocket
Ares V rocket

[/caption]
The rumors were true, Constellation is cancelled. No Ares 1 crew vehicle, no Ares V heavy lifter, no Altair lander. No bases on the Moon, and no human exploration of Mars. NASA is canceling the human return to the Moon.

Good.

Obviously I’m a huge fan of human space exploration. I’ve dedicated my life to it. I’ve raised my children in the certainty that they’re going to be the first humans to set foot on the surface of Mars, and I mourn the end of the Apollo program. Where’s my flying car? But I’ve also felt deeply unsettled about the Constellation program. Maybe it was the best way to reach the Moon 40 years ago, but things are different now.

As some of you know, my background is in software, where the competition is fierce. And half of this is a mental game; you win the information war in the minds of customers through FUD – Fear, Uncertainty and Doubt. Make your nervous customers wait, and hope that your next great solution is going to solve all their problems. Although we’re talking space exploration here, I see a parallel. Why work our tails off to go to the Moon or Mars if NASA is going to just make it happen for us?

Well they aren’t, and I’d argue that they never were. It was just a matter of time before the political parties changed, budgets tightened, and priorities shifted. It was inevitable that this would happen, and if it didn’t happen this time around, it would happen with the next shift in government. No long term goal could ever survive. And time spent waiting for NASA to make it happen was wasted time.

As the guy watching stats at Universe Today (2 million readers in January, 2009), I can guarantee that interest in space and astronomy is continuing to rise. The demand and interest is there, and thanks to the Internet, thousands of flowers are blooming as space advocacy groups are coming together to get things done – like the Mars Society, and the Planetary Society. Private companies are making human space tourism a reality, with Virgin Galactic, Space Adventures, and Bigelow Aerospace. There are privately funded prizes available for the completion of technical accomplishments, like the Google Lunar X Prize.

But with NASA handling that “back to the Moon” thing, space advocates probably thought they could relax a little.

I think that NASA has an enormous role to play in human space exploration. They have the ability to solve problems that private enterprise just doesn’t have the funds for. Sure, NASA put a man on the Moon, but it’s the trickle down technologies that we appreciate every day. Like velcro! NASA needs create the tools and technology that will enable a vibrant and healthy private space industry.

What’s the best way to extract fuel from an asteroid? How can ion engines cut down flight times? Is there a better way to make a spacesuit? What are some good materials for space elevators? What are some safer rocket fuels? How can we make rocket launches better for the environment? Is there a way to make velcro better?

They can do this through pure research, competitions, university grants, prizes, and private/government partnerships. They can team up with other governments to cut costs on the really big challenges.

And you know what’s strange? They already do this with science. NASA listens to scientists to hear their greatest challenges. “We need to see through gas and dust to see star formation and protoplanetary disks” – here’s Spitzer. “We need to see high energy regions around supermassive black holes” – that’s Fermi. “We need to know if there’s evidence of water on the surface of Mars” – that’s Spirit and Opportunity. NASA does this so well with science? Why don’t they answer questions and solve problems in the same way for space exploration? There are so many questions, and NASA can help point us in the right directions.

NASA can help me build my flying car, but I still want to choose the destination.

Don’t worry, the Moon is still there, and Mars isn’t going anywhere. And my daughter is still going to be first person to squish the sands of Mars between her toes (thanks to remote toe-sensing technology developed by NASA).

Here’s an article about the 1st man on the Moon.

Sea of Tranquility

Apollo 11 landed on the Moon on July 20, 1969.

The Sea of Tranquility is the landing site of Apollo 11, the mission that gave mankind its first ever walk on the Moon.

Walk? Yes, that’s right. The Sea of Tranquility is not actually a sea, so Neil Armstrong didn’t have to walk on water. In fact, there isn’t a single sea on the lunar surface. The Sea of Tranquility is actually a lunar mare. Now, although the plural of ‘mare’, ‘maria’, is a Latin word that means ‘seas’, these maria don’t have water in them.

Lunar maria were named as such because early astronomers mistook these areas as seas. You see, when you look at the Moon, particularly its near side (well, we don’t actually get to see the far side), i.e., the side which practically constantly stares at us at night, you’ll notice certain features that are darker than others.

Compare the Moon to a grey-scale model of the Earth, and you’ll easily mistake those dark patches for seas. By the way, in case you’ve been reading article titles (not the entire article) on this site lately, you might recall us mentioning water on the Moon. There’s water alright … underneath the surface, so even assuming that they’re plentiful, they don’t qualify as seas.

Let’s go back to our main topic. Called Mare Tranquillitatis in Latin, the Sea of Tranquility is found in the Tranquillitatis basin of the Moon and is composed of basalt. Maria are seen from Earth as relatively dark because the lighter colored areas are much elevated than them and hence are better illuminated by light coming from the Sun.

Whenever color is processed and extracted from multiple photographs, the Sea of Tranquility gives off a slightly bluish shade. This is believed to be caused by the relatively higher metal content in the area.

The actual landing site of Apollo 11’s lunar module is now named Statio Tranquillitatis or Tranquility Base. To the north of that specific area you’ll find three small craters aptly named Aldrin, Collins, and Armstrong, the privileged crew of Apollo 11.

The lunar module of Apollo 11 was not the only spacecraft to have landed on the Sea of Tranquility. There was also the Ranger 8 spacecraft … although “crash landed” is a more appropriate term. It wasn’t a failed mission though, since it was really meant to impact the lunar surface after taking pictures throughout its flight before striking the Moon.

Some people actually think the Apollo missions, particularly the lunar landings, were part of an elaborate hoax. Click on this link to read what the Japanese SELENE Lunar Mission discovered.

NASA has a huge collection of reliable links related to the Apollo missions.

Episodes about the moon from Astronomy Cast. Lend us your ears!

Shooting Lasers at the Moon and Losing Contact with Rovers
The Moon Part I

Measuring the Moon’s Eccentricity at Home

View of the moon at perigee and apogee

Caption: View of the moon at perigee and apogee

As a teacher, I’m always on the lookout for labs with simple setups appropriate for students. My current favorite is finding the speed of light with chocolate.

In a new paper recently uploaded to arXiv, Kevin Krisciunas from Texas A&M describes a method for determining the orbital eccentricity of the moon with a surprisingly low error using nothing more than a meter stick, a piece of cardboard and a program meant for fitting curves to variable stars.

This method makes use of the fact that the eccentricity can be determined from the ratio of the mean angular size of an object and one half of its amplitude. Thus, the main objective is to measure these two quantities.

Kevin’s strategy for doing this is to make use of a cardboard sighting hole which can slide along a meter stick. By peering through the hole at the moon, and sliding the card back and forth until the angular size of the hole just overlaps the moon. From there, the diameter of the hole divided by the distance down the meter stick gives the angular size thanks to the small angle formula (? = d/D in radians if D >> d).

To prevent systematic errors in misjudging as the card is slid forward until the size of the hole matches the moon, it is best to also approach it from the other direction; Coming from in from the far end of the meter stick. This should help reduce errors and in Kevin’s attempt, he found that he had a typical spread of ± 4 mm when doing so.

At this point, there is still another systematic error that must be taken into account: The pupil has a finite size comparable to the sighting hole. This will cause the actual angular size to be underestimated. As such, a correction factor is necessary.

To derive this correction factor, Kevin placed a 91 mm disk at a distance of 10 meters (this should produce a disk with the same angular size as the moon when viewed from that distance). To produce the best match, the slip of cardboard with the sighting hole should need to be placed at 681.3 mm on the meter stick, but due to the systematic error of the pupil, Kevin found it needed to be placed at 821 mm. The ratio of the observed placement to the proper placement provided the correction factor Kevin used (1.205). This would need to be calibrated for each individual person and would also depend on the amount of light during the time of observation since this also affects the diameter of the pupil. However, adopting a single correction factor produces satisfactory results.

This allows for properly taken data which can then be used to determine the necessary quantities (the mean angular size and 1/2 the amplitude). To determine these, Kevin used a program known as PERDET which is designed for fitting sinusoid curves to oscillations in variable stars. Any program that could fit such curves to data points using a ?2 fit or a Fourier analysis would be suitable to this end.

From such programs once the mean angular size and half amplitude are determined, their ratio provides the eccentricity. For Kevin’s experiment, he found a value of 0.039 ± 0.006. Additionally, the period he determined from perigee to perigee was 27.24 ± 0.29 days which is in excellent agreement with the accepted value of 27.55 days.

Where To Next for NASA’s Solar System Exploration?

From top to bottom, pictured are the moon, Venus, and an asteroid.From top to bottom, pictured (not to scale) are the moon, Venus, and an asteroid. These three celestial bodies from our solar system are possible candidates for NASA's next space venture.

[/caption]
Where is NASA going next to probe our solar system? The space agency announced today they have selected three proposals as candidates for the agency’s next space venture to another celestial body in our solar system. The proposed missions would probe the atmosphere composition and crust of Venus; return a piece of a near-Earth asteroid for analysis; or drop a robotic lander into a basin at the moon’s south pole to return lunar rocks back to Earth for study. All three sound exciting!

Here are the finalists:

Surface and Atmosphere Geochemical Explorer, or SAGE, mission to Venus would release a probe to descend through the planet’s atmosphere. During descent, instruments would conduct extensive measurements of the atmosphere’s composition and obtain meteorological data. The probe then would land on the surface of Venus, where its abrading tool would expose both a weathered and a pristine surface area to measure its composition and mineralogy. Scientists hope to understand the origin of Venus and why it is so different from Earth. Larry Esposito of the University of Colorado in Boulder, is the principal investigator.

Origins Spectral Interpretation Resource Identification Security Regolith Explorer spacecraft, called Osiris-Rex, would rendezvous and orbit a primitive asteroid. After extensive measurements, instruments would collect more than two ounces of material from the asteriod’s surface for return to Earth. The returned samples would help scientists better undertand and answer long-held questions about the formation of our solar system and the origin of complex molecules necessary for life. Michael Drake, of the University of Arizona in Tucson, is the principal investigator.

MoonRise: Lunar South Pole-Aitken Basin Sample Return Mission would place a lander in a broad basin near the moon’s south pole and return approximately two pounds of lunar materials for study. This region of the lunar surface is believed to harbor rocks excavated from the moon’s mantle. The samples would provide new insight into the early history of the Earth-moon system. Bradley Jolliff, of Washington University in St. Louis, is the principal investigator.

The final project will be selected in mid-2011, and for now, the three finalists will receive approximately $3.3 million in 2010 to conduct a 12-month mission concept study that focuses on implementation feasibility, cost, management and technical plans. Studies also will include plans for educational outreach and small business opportunities.

The selected mission must be ready for launch no later than Dec. 30, 2018. Mission cost, excluding the launch vehicle, is limited to $650 million.

“These are projects that inspire and excite young scientists, engineers and the public,” said Ed Weiler, associate administrator for the Science Mission Directorate at NASA Headquarters in Washington. “These three proposals provide the best science value among eight submitted to NASA this year.”

The final selection will become the third mission in the program. New Horizons, launched in 2006, will fly by the Pluto-Charon system in 2015 then target another Kuiper Belt object for study. The second mission, called Juno, is designed to orbit Jupiter from pole to pole for the first time, conducting an in-depth study of the giant planet’s atmosphere and interior. It is slated for launch in August 2011.

Visit the New Frontiers program site for more information.

Moon Rotation

Moon Rotation

The rotation of the Moon is a strange situation. It takes the same amount of time for the Moon to complete a full orbit around the Earth as it takes for it to complete one rotation on its axis. In other words, the Moon rotation time is 27.3 days, just the same as its orbital time: 27.3 days.

What this means to us here on Earth is that the Moon always presents the same face to the Earth. We only see one side of the Moon, and not the other. And if you could stand on the surface of the Moon, the Earth would appear to just hang in the sky, not moving anywhere.

Astronomers say that the Moon is tidally locked to the Earth. At some point in the past, it did have a different rotation rate from its orbital period. But slight differences in the shape of the Moon caused the Moon to experience different amounts of gravity depending on its position. These differences acted as a brake, slowing the Moon rotation speed down until it matched its orbital period. There are other tidally locked moons in the Solar System. Pluto and its moon Charon are tidally locked to each other, so they always present the same face to one another.

We’ve written many articles about rotation for Universe Today. Here’s an article about the rotation of the Earth, and here’s an article about the rotation of Saturn.

If you’d like more info on the Moon, check out NASA’s Solar System Exploration Guide on the Moon, and here’s a link to NASA’s Lunar and Planetary Science page.

We’ve also recorded an episode of Astronomy Cast all about the Moon. Listen here, Episode 113: The Moon, Part 1.

Signs of Life Detected on the Moon?

Image from the Moon Impact Probe of the lunar surface. Credit: ISRO

A website based in India has reported researchers with the Chandrayaan-1 mission may have found “signs of life in some form or the other on the Moon.” DNAIndia.com quoted Surendra Pal, associate director of the Indian Space Research Organization (ISRO) Satellite Centre as saying that Chandrayaan-1 picked up signatures of organic matter on parts of the Moon’s surface. “The findings are being analyzed and scrutinized for validation by ISRO scientists and peer reviewers,” Pal said.

Sources in India say Chandrayaan project director M. Annadurai later commented that the story was broken very prematurely. However, he did not dismiss the idea.

At a press conference Tuesday at the American Geophysical Union fall conference, scientists from NASA’s Lunar Reconnaissance Orbiter also hinted at possible organics locked away in the lunar regolith. When asked directly about the Chandrayaan-1 claim of finding life on the Moon, NASA’s chief lunar scientist, Mike Wargo, certainly did not dismiss the idea either but said, “It is an intriguing suggestion, and we are certainly very interested in learning more of their results.”

Chandrayaan-1’s Moon Impact Probe, or MIP impacted the within the Shackleton Crater on the Moon’s south pole on Nov. 14, 2008. An anonymous Chandrayaan-1 scientist said MIP’s mass spectrometer detected chemical signatures of organic matter in the soil kicked up by the impact.

“Certain atomic numbers were observed that indicated the presence of carbon components. This indicates the possibility of the presence of organic matter (on the Moon),” a senior scientist told DNAIndia.

The scientist added the source of the organics could be comets or meteorites which have deposited the matter on the Moon’s surface but the recent discovery by another impact probe — the LCROSS mission — of ice in the polar regions of the Moon also “lend credence to the possibility of organic matter there.”

Undoubtedly, getting from carbon compounds directly to organics is a bit of a stretch, but amino acids have been detected in comets and were also found in pieces of the asteroid 2008 TC3 that landed in Africa over a year ago. Over the millennia, the Moon has been bombarded by comet and asteroid hits.

We’ll keep you posted on any official announcements by ISRO.

Sources: BAUT Forum, DNA India, AGU press conference