NASA Approves First Commercial Airlock for Space Station Science and SmallSat Deployment

Artists concept of first commercially funded airlock on the space station being developed by NanoRacks that will launch on a commercial resupply mission in 2019. It will be installed on the station’s Tranquility module. Credits: NanoRacks
Artists concept of first commercially funded airlock on the space station being developed by NanoRacks that will launch on a commercial resupply mission in 2019. It will be installed on the station’s Tranquility module. Credits: NanoRacks

In a significant move towards further expansion of the International Space Station’s (ISS) burgeoning research and commercial space economy capabilities, NASA has approved the development of the first privately developed airlock and is targeting blastoff to the orbiting lab complex in two years.

Plans call for the commercial airlock to be launched on a commercial cargo vessel and installed on the U.S. segment of the ISS in 2019.

It enhances the US capability to place equipment and payloads outside and should triple the number of small satellites like CubeSats able to be deployed.

The privately funded commercial airlock is being developed by Nanoracks in partnership with Boeing, which is the prime contractor for the space station.

The airlock will be installed on an open port on the Tranquility module – that already is home to the seven windowed domed Cupola observation deck and the commercial BEAM expandable module built by Bigelow Aerospace.

“We want to utilize the space station to expose the commercial sector to new and novel uses of space, ultimately creating a new economy in low-Earth orbit for scientific research, technology development and human and cargo transportation,” said Sam Scimemi, director, ISS Division at NASA Headquarters in Washington, in a statement.

“We hope this new airlock will allow a diverse community to experiment and develop opportunities in space for the commercial sector.”

The airlock will launch aboard one of NASA’s commercial cargo suppliers in 2019. But the agency has not specified which contractor. The candidates include the SpaceX cargo Dragon, an enhanced ATK Cygnus or potentially the yet to fly SNC Dream Chaser.

Boeing will supply the airlock’s Passive Common Berthing Mechanism (CBM) hardware to connect it to the Tranquility module.

Artists concept of first commercially funded airlock on the space station being developed by NanoRacks that will launch on a commercial resupply mission in 2019. It will be installed on the station’s Tranquility module. Credits: NanoRacks

The airlock will beef up the capability of transferring equipment, payloads and deployable satellites from inside the ISS to outside, significantly increasing the utilization of ISS, says Boeing.

“The International Space Station allows NASA to conduct cutting-edge research and technology demonstrations for the next giant leap in human exploration and supports an emerging space economy in low-Earth orbit. Deployment of CubeSats and other small satellite payloads from the orbiting laboratory by commercial customers and NASA has increased in recent years. To support demand, NASA has accepted a proposal from NanoRacks to develop the first commercially funded airlock on the space station,” says NASA.

“The installation of NanoRacks’ commercial airlock will help us keep up with demand,” said Boeing International Space Station program manager Mark Mulqueen. “This is a big step in facilitating commercial business on the ISS.”

Right now the US uses the airlock on the Japanese Experiment Module (JEM) to place payloads on the stations exterior as well as for small satellite deployments. But the demand is outstripping the JEM’s availability.

The Nanoracks airlock will be larger and more robust to take up the slack.

NASA has stipulated that the Center for the Advancement of Science in Space (CASIS), NASA’s manager of the U.S. National Laboratory on the space station, will be responsible for coordinating all payload deployments from the commercial airlock – NASA and non NASA.

“We are entering a new chapter in the space station program where the private sector is taking on more responsibilities. We see this as only the beginning and are delighted to team with our friends at Boeing,” said Jeffrey Manber, CEO of NanoRacks.

The NanoRacks commercial airlock could potentially launch to the ISS in the trunk of a SpaceX cargo Dragon. This Up close view shows the SpaceX Dragon CRS-9 resupply ship and solar panels sitting atop a Falcon 9 rocket at pad 40 prior to blastoff to the ISS on July 18, 2016 from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Launch and Historic Landing Attempt Reset to Jan. 10

Bearing the CRS-5 Dragon cargo craft within its nose, the Falcon 9 v1.1 stands patiently to execute the United States’ first mission of 2015. Photo Credit: Mike Killian/AmericaSpace

The oft delayed launch of the SpaceX Falcon 9 rocket on the CRS-5 cargo resupply mission for NASA to the International Space Station (ISS) has been reset to Saturday, Jan. 10.

Liftoff is currently targeted for 4:47 a.m. EST Saturday, Jan. 10, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida following a postponement from Friday, Jan. 9.

The launch was unexpectedly scrubbed with one minute, 21 seconds left on the countdown clock for technical reasons earlier this week just prior to the targeted blastoff time of 6:20 a.m. EST on Tuesday, Jan. 6.

A thrust vector control actuator for the Falcon 9’s second stage failed to perform as expected, resulting in a launch abort, said NASA.

NASA and SpaceX decided to take another day to fully evaluate the issue and ensure a launch success.

The launch will be the first Falcon 9 liftoff for 2015.

The overnight launch should put on a spectacular sky show for spectators along the Florida space coast.

There is only an instantaneous launch window available, meaning that the blastoff must proceed at that exact instant. Any delays due to technical issues or weather would force a scrub until at least Tuesday, Jan. 13.

SpaceX drone ship sailing at sea to hold position awaiting Falcon 9 rocket landing.  Credit: Elon Musk/SpaceX
SpaceX drone ship sailing at sea to hold position awaiting Falcon 9 rocket landing. Credit: Elon Musk/SpaceX

Overall, CRS-5 is the company’s fifth commercial resupply services mission to the International Space Station.

In additional to being a critical cargo mission required to keep the space station stocked with provisions for the crew and research experiments, the mission features a history making attempt to recover the first stage of the Falcon 9 rocket.

The rocket recovery and landing attempt is a key step towards carrying out SpaceX CEO Elon Musk’s bold vision of rocket reusability.

Towards that end, SpaceX dispatched the “autonomous spaceport drone ship” sailing at sea towards a point where Musk hopes it will serve as an ocean going landing platform for the precision landing of his firm’s Falcon 9 rocket after it concludes its launch phase to the ISS.

Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5.   Credit: SpaceX/Elon Musk
Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5. Credit: SpaceX/Elon Musk

The “autonomous spaceport drone ship” departed the port of Jacksonville, FL, on Saturday, Jan. 3, heading to a point somewhere around 200 to 250 miles or so off the US East coast in a northeasterly direction coinciding with the flight path of the rocket.

However, the absolute overriding goal of the mission is to safely deliver NASA’s contracted cargo to the ISS, emphasized Hans Koenigsmann, VP of Mission Assurance, SpaceX, at a media briefing on Jan. 5 at the Kennedy Space Center.

Landing on the off-shore barge is just a secondary objective of SpaceX, not NASA, he repeated several times.

The Dragon CRS-5 spacecraft is loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing, and assorted research gear for the six person crew serving aboard the ISS.

Student Space Flight teams at NASA Wallops - Will Refly on SpaceX CRS 5.   Science experiments from these students representing 18 school communities across  America were selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS and which were lost when the rocket exploded uexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014, as part of the Student Spaceflight Experiments Program (SSEP).  The students pose here with SSEP program director Dr. Jeff Goldstein prior to Antares launch. The experiments will be re-flown aboard SpaceX CRS-5.  Credit: Ken Kremer - kenkremer.com
Student Space Flight teams at NASA Wallops – Experiments Will Refly on SpaceX CRS 5. Science experiments from these students, representing 18 school communities across America, were selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS and which were lost when the rocket exploded unexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014, as part of the Student Spaceflight Experiments Program (SSEP). The students pose here with SSEP program director Dr. Jeff Goldstein prior to Antares’ launch. The experiments will be re-flown aboard SpaceX CRS-5. Credit: Ken Kremer – kenkremer.com

Among the payloads is the Cloud-Aerosol Transport System (CATS), a remote-sensing laser instrument to measure clouds and the location and distribution of pollution, dust, smoke, and other particulates and aerosols in the atmosphere.

Also loaded onboard are 17 student experiments known collectively as the “Yankee Clipper” mission. The experiments are sponsored by the National Center for Earth and Space Science Education which oversees the Student Spaceflight Experiments Program (SSEP) in partnership with NanoRacks LLC.

They had been selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS, but were all lost when the rocket exploded unexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014.

The experiments have been reconstituted to fly on the CRS-5 mission.

The US supply train to the ISS is now wholly dependent on SpaceX until Cygnus flights are resumed hopefully by late 2015 on an alternate rocket, the Atlas V.

CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract.

The weather forecast stands at 80% GO for favorable conditions at launch time.

NASA Television live launch coverage begins at 3:30 a.m. EST on Jan. 10 at: http://www.nasa.gov/multimedia/nasatv/

SpaceX also will webcast the launch at: http://www.spacex.com/webcast/

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014.  Credit: Ken Kremer – kenkremer.com
New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014. Credit: Ken Kremer – kenkremer.com

Student Scientists Get Second Chance to Fly Experiments to ISS Aboard Falcon 9 After Antares Loss

Student Space Flight teams at NASA Wallops - Will Refly on SpaceX CRS 5. Science experiments from these students representing 18 school communities across America were selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS and which were lost when the rocket exploded uexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014, as part of the Student Spaceflight Experiments Program (SSEP). The students pose here with SSEP program director Dr. Jeff Goldstein prior to Antares launch. The experiments will be re-flown aboard SpaceX CRS-5. Credit: Ken Kremer - kenkremer.com

Student Space Flight teams at NASA Wallops – Will Refly on SpaceX CRS 5
Science experiments from these students representing 18 school communities across America were selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS and which were lost when the rocket exploded uexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014, as part of the Student Spaceflight Experiments Program (SSEP). The students pose here with SSEP program director Dr. Jeff Goldstein prior to Antares launch. The experiments will be re-flown aboard SpaceX CRS-5. Credit: Ken Kremer – kenkremer.com[/caption]

When it comes to science and space exploration, you have to get accustomed to a mix of success and failure.

If you’re wise you learn from failure and turn adversity around into a future success.

Such is the case for the resilient student scientists who learned a hard lesson of life at a young age when the space science experiments they poured their hearts and souls into for the chance of a lifetime to launch research investigations aboard the Antares rocket bound for the International Space Station (ISS) on the Orb-3 mission, incomprehensibly exploded in flames before their eyes on Oct. 28, 2014.

Those student researchers from across America are being given a second chance and will have their reconstituted experiments re-flown on the impending SpaceX CRS-5 mission launch, thanks to the tireless efforts of NASA, NanoRacks, CASIS, SpaceX and the Student Spaceflight Experiments Program (SSEP) which runs the program.

The SpaceX CRS-5 launch to the ISS on the Falcon 9 rocket planned for this morning, Jan. 6, was scrubbed with a minute to go for technical reasons and has been reset to no earlier than Jan. 9.

SSEP Director Dr. Jeff Goldstein shows a NanoRacks Mix-Stix tube used by the student investigations on the NanoRacks/Student Spaceflight Experiments Program -Yankee Clipper mission during presentation at NASA Wallops prior to Oct. 28 Antares launch failure.  17 of 18 experiments will re-fly on SpaceX CRS-5 launch.  Credit: Ken Kremer - kenkremer.com
SSEP Director Dr. Jeff Goldstein shows a NanoRacks Mix-Stix tube used by the student investigations on the NanoRacks/Student Spaceflight Experiments Program -Yankee Clipper mission during presentation at NASA Wallops prior to Oct. 28 Antares launch failure. 17 of 18 experiments will re-fly on SpaceX CRS-5 launch. Credit: Ken Kremer – kenkremer.com

The experiments are known collectively as the ‘Yankee Clipper’ mission.

Antares Orb-3 was destroyed shortly after the exhilarating blastoff from NASA’s Wallops Flight Facility on the Virginia shore.

Everything aboard the Orbital Sciences Antares rocket and ‘the SS Deke Slayton’ Cygnus cargo freighter was lost, including all the NASA supplies and research as well as the student investigations.

First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

“The student program represents 18 experiments flying as the Yankee Clipper,” said Dr. Jeff Goldstein, in an interview with Universe Today at NASA Wallops prior to the Antares launch. Goldstein is director of the National Center for Earth and Space Science Education, which oversees SSEP in partnership with NanoRacks LLC.

“Altogether 8 communities sent delegations. 41 student researchers were at NASA Wallops for the launch and SSEP media briefing.”

“The 18 experiments flying as the SSEP Yankee Clipper payload reflect the 18 communities participating in Mission 6 to ISS.”

“The communities represent grade 5 to 16 schools from all across America including Washington, DC; Kalamazoo, MI; Berkeley Heights and Ocean City, NJ; Colleton County and North Charleston, SC, and Knox County and Somerville, TN.”

Goldstein explains that within days of the launch failure, efforts were in progress to re-fly the experiments.

“Failure happens in science and what we do in the face of that failure defines who we are,” said Goldstein, “NASA and NanoRacks moved mountains to get us on the next launch, SpaceX CRS-5. We faced an insanely tight turnaround, but all the student teams stepped up to the plate.”

Even the NASA Administrator Charles Bolden lauded the students efforts and perseverance!

“I try to teach students, when I speak to them, not to be afraid of failure. An elementary school student once told me, when I asked for a definition of success, that ‘success is taking failure and turning it inside out.’ It is important that we rebound, learn from these events and try again — and that’s a great lesson for students,” said NASA Administrator Bolden.

“I am delighted that most of the students will get to see their investigations re-flown on the SpaceX mission. Perseverance is a critical skill in science and the space business.”

Virtually all of the experiments have been reconstituted to fly on the CRS-5 mission, also known as SpaceX-5.

“17 of the 18 student experiments lost on Orb-3 on October 28 are re-flying on SpaceX-5. These experiments comprise the reconstituted Student Spaceflight Experiments Program (SSEP) Yankee Clipper II payload for SSEP Mission 6 to ISS,” noted Goldstein.

“This shows the resilience of the federal-private partnership in commercial space, and of the commitment by our next generation of scientists and engineers.”

The wide range of experiments include microgravity investigations on how fluids act and form into crystals in the absence of gravity crystal growth, mosquito larvae development, milk expiration, baby bloodsuckers, development of Chrysanthemum and soybean seeds and Chia plants, effect of yeast cell division and implications for human cancer cells, and an examination of hydroponics.

Student experiments are aboard. Bearing the CRS-5 Dragon cargo craft within its nose, the Falcon 9 v1.1 stands patiently to execute the United States’ first mission of 2015. Photo Credit: Mike Killian/AmericaSpace
Student experiments are aboard. Bearing the CRS-5 Dragon cargo craft within its nose, the Falcon 9 v1.1 stands patiently to execute the United States’ first mission of 2015. Photo Credit: Mike Killian/AmericaSpace

That dark day in October witnessed by the students, Goldstein, myself as a fellow scientist, and others is something we will never forget. We all chose to learn from the failure and move forward to greater accomplishments.

Don’t surrender to failure. And don’t give in to the ‘Do Nothing – Can’t Do’ crowd so prevalent today.

Remember what President Kennedy said during his address at Rice University on September 12, 1962:

“We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard.”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NanoRacks Mix-Stix, which are used by the student investigations on the NanoRacks/National Center for Earth and Space Science Education -Yankee Clipper.   Credit: Credit: Ken Kremer - kenkremer.com
NanoRacks Mix-Stix, which are used by the student investigations on the NanoRacks/National Center for Earth and Space Science Education -Yankee Clipper. Credit: Ken Kremer – kenkremer.com

Antares Rocket Failure Pushes Tiny Satellite Company To Hitch Ride With SpaceX

Orbital Sciences Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

The various companies that had stuff sitting on the failed Orbital Sciences Antares rocket launch last month are busy looking for alternatives. One example is Planet Labs, which is best known for deploying dozens of tiny satellites from the International Space Station this year.

The company lost 26 satellites in the explosion. But within nine days of the Oct. 28 event, Planet Labs had a partial backup plan — send two replacements last-minute on an upcoming SpaceX Falcon 9 launch.

In what Planet Labs’ Robbie Schingler calls “the future of aerospace”, almost immediately after the explosion Planet Labs began working with NanoRacks, which launches its satellites from the space station, to find a replacement flight. Half of Planet Labs’ employees began building satellites, while the other half began working through the regulations and logistics. They managed to squeeze two satellites last-minute on to the next SpaceX manifest, which is scheduled to launch in December.

“In space, each element is very difficult to get right by itself, and it takes an ecosystem to deliver a capability this quickly,” wrote Schingler, a president and co-founder of the company, in a blog post last week.

NanoRacks CubeSats deployed from the International Space Station in February 2014, during Expedition 38. Credit: NASA
NanoRacks CubeSats deployed from the International Space Station in February 2014, during Expedition 38. Credit: NASA

“Central to making this possible was developing our own custom design of the satellite that is free from specialty suppliers (thus decreasing lead time) and having a spacecraft design optimized for manufacturing and automated testing. Moreover, we certainly couldn’t have done it without the collaboration from NanoRacks and support from NASA, and we thank them for their support. This is a great example for how to create a resilient aerospace ecosystem.”

There’s no word on how they will replace the other satellites, nor how this will affect Planet Labs’ vision (explained in this March TED talk) to have these small sentinels frequently circling Earth to provide near-realtime information on what is happening with our planet. But the company acknowledged that space is hard and satellites do get lost from time to time.

The company has been testing hardware in space, Silicon Valley-style, and starting to sign partnerships with various entities who want access to the imagery. Check out some of the free stuff below.

Writes Planet Labs of this image: "Water from reservoirs developed on the Tigris and Euphrates Rivers in the past 25 years enabled the expansion of cropland in the region, including these circular fields in the ?anliurfa Province of southeastern Turkey." Credit: Planet Labs
Writes Planet Labs of this image: “Water from reservoirs developed on the Tigris and Euphrates Rivers in the past 25 years enabled the expansion of cropland in the region, including these circular fields in the ?anliurfa Province of southeastern Turkey.” Credit: Planet Labs
Writes Planet Labs of this image: "Forty percent of the coal mined in the United States comes from the Powder River Basin in Wyoming. The North Antelope Rochelle Mine, pictured here, is both the largest in the basin, and the largest in the United States." Credit: Planet Labs
Writes Planet Labs of this image: “Forty percent of the coal mined in the United States comes from the Powder River Basin in Wyoming. The North Antelope Rochelle Mine, pictured here, is both the largest in the basin, and the largest in the United States.” Credit: Planet Labs
Writes Planet Labs of this image: "The deep valleys and sharp ridges of the Nan Shan range in central China are highlighted in this early-morning satellite image." Credit: Planet Labs
Writes Planet Labs of this image: “The deep valleys and sharp ridges of the Nan Shan range in central China are highlighted in this early-morning satellite image.” Credit: Planet Labs
Writes Planet Labs of this image: "Vivid red maples stand out against the dark green evergreen forest and brown scrub landscape of the Pleasantview Hills." Credit: Planet Labs
Writes Planet Labs of this image: “Vivid red maples stand out against the dark green evergreen forest and brown scrub landscape of the Pleasantview Hills.” Credit: Planet Labs
Writes Planet Labs of this image: "Filled in 1967, Lake Diefenbaker is a 140-mile-long reservoir along the South Saskatchewan and Qu’Appelle Rivers. Diefenbaker is renowned for harboring extremely large fish: the world record rainbow trout (48 pounds) and burbot (25 pounds) were both caught in the lake." Credit: Planet Labs
Writes Planet Labs of this image: “Filled in 1967, Lake Diefenbaker is a 140-mile-long reservoir along the South Saskatchewan and Qu’Appelle Rivers. Diefenbaker is renowned for harboring extremely large fish: the world record rainbow trout (48 pounds) and burbot (25 pounds) were both caught in the lake.” Credit: Planet Labs
Writes Planet Labs of this image: "The red, sediment-filled Colorado River contrasts with blue-green Havasu Creek in the heart of Grand Canyon National Park. The Colorado River is almost always red in spring and summer, since it collects silt from a huge watershed. Short tributaries, however, usually run clear—only picking up significant sediment during flash floods." Credit: Planet Labs
Writes Planet Labs of this image: “The red, sediment-filled Colorado River contrasts with blue-green Havasu Creek in the heart of Grand Canyon National Park. The Colorado River is almost always red in spring and summer, since it collects silt from a huge watershed. Short tributaries, however, usually run clear—only picking up significant sediment during flash floods.” Credit: Planet Labs
Writes Planet Labs of this image: "Dark green fields stand out against the pale desert floor in Pinal County, Arizona. The region’s farms rely on irrigation, since they receive less than 10 inches of rain a year. Irrigation water comes from two main sources: the Colorado River and aquifers." Credit: Planet Labs
Writes Planet Labs of this image: “Dark green fields stand out against the pale desert floor in Pinal County, Arizona. The region’s farms rely on irrigation, since they receive less than 10 inches of rain a year. Irrigation water comes from two main sources: the Colorado River and aquifers.” Credit: Planet Labs

How Private Space Companies Make Money Exploring The Final Frontier

Virgin Galactic's SpaceShipTwo soars in a powered flight test on Sept. 5, 2013. Credit: MarsScientific.com and Clay Center Observatory

TORONTO, CANADA – There’s a big difference in thinking between governments and the private companies that participate in space. While entities such as NASA can work on understanding basic human health or exploring the universe for the sake of a greater understanding, companies have a limitation: they need to eventually make a profit.

This was brought up in a human spaceflight discussion at the International Astronautical Congress today (Oct. 1), which included participants from agencies and companies alike. Below are some concepts for how private companies in the space world today are making their money.

“We have in space a movement towards more privatization … and also for more use of space activities in general and human space activity in the future by individual private persons,” said Johann Dietrich Worner, chairman of the executive board of DLR (Germany’s space agency), in the panel.

“You can imagine that even for the upcoming 10 to 20 to 30 years, the public funding is the basic funding for [space] activities while in other areas, we are already seeing that private money is doing its work if you look to communication and if you look to other activities, like for instance, research in space.”

But commercial spaceflight is already taking place, as some of these examples show.

Commercial crew

Would you ‘Enter the Dragon’? First look inside SpaceX Dragon V2 next generation astronaut spacecraft unveiled by CEO Elon Musk on May 29, 2014. Credit: Robert Fisher/AmericaSpace
Would you ‘Enter the Dragon’?
First look inside SpaceX Dragon V2 next generation astronaut spacecraft unveiled by CEO Elon Musk on May 29, 2014. Credit: Robert Fisher/AmericaSpace

The two successful companies in NASA’s latest round of commercial contracts — SpaceX (Dragon) and Boeing (CST-100) — are each receiving government money to develop their private space taxis. The companies are responsible for meeting certain milestones to receive funds. There is quite the element of risk involved because the commercial contracts are only given out in stages; you could be partway through developing the spacecraft and then discover you will not be awarded one for the next round. This is what happened to Sierra Nevada Corp., whose Dream Chaser concept did not receive more money in the announcement last month. The company has filed a legal challenge in response.

Private space travel

Sir Richard Branson hugs designer Burt Rutan as they are surrounded by employee's of Virgin Galactic, The SpaceShip Company and Scaled Composites watch as Virgin Galactic's SpaceShip2 streaks across the sky under rocket power, its first ever since the program began in 2005. Burt's wife Tonya Rutan is at right taking their photo. The spacecraft was dropped from its "mothership", WhiteKnight2 over the Mojave, CA area, April 29, 2013 at high altitude before firing its hybrid power motor. Virgin Galactic hopes to become the first commercial space venture to bring multiple passengers into space on a regular basis.
Sir Richard Branson hugs designer Burt Rutan, surrounded by employees of Virgin Galactic, The SpaceShip Company, and Scaled Composites, and watch as Virgin Galactic’s SpaceShip2 streaks across the sky under rocket power, its first ever since the program began in 2005. Burt’s wife Tonya Rutan is at right taking their photo. The spacecraft was dropped from its “mothership,” WhiteKnight2, over the Mojave CA area on April 29, 2013, at high altitude before firing its hybrid power motor. Virgin Galactic hopes to become the first commercial space venture to bring multiple passengers into space on a regular basis.

Virgin Galactic and its founder, Richard Branson, are perhaps the most visible of the companies that are looking to bring private citizens into space — as long as they can pay $250,000 for a ride. The first flight of Virgin into space is expected in the next year. Customers must pay a deposit upfront upon registering and then the balance before they head into suborbit. In the case of Virgin, Branson has a portfolio of companies that can take on the financial risk during the startup phase, but eventually the company will look to turn a profit through the customer payments.

Asteroid mining

Artist concept of the ARKYD spacecraft by an asteroid. Credit: Planetary Resources.
Artist concept of the ARKYD spacecraft by an asteroid. Credit: Planetary Resources.

The business case for Planetary Resources and Deep Space Industries, the two self-proclaimed asteroid mining companies, hasn’t fully been released yet. We assume that the companies would look to make a profit through selling whatever resources they manage to dig up on asteroids, but bear in mind it would cost quite a bit of money to get a spacecraft there and back. Meanwhile, Planetary Resources is diversifying its income somewhat by initiatives such as the Arkyd-100 telescope, which will look for asteroids from Earth orbit. They raised money for the project through crowdsourcing.

Space station research

The International Space Station in March 2009 as seen from the departing STS-119 space shuttle Discovery crew. Credit: NASA/ESA
The International Space Station in March 2009 as seen from the departing STS-119 space shuttle Discovery crew. Credit: NASA/ESA

NanoRacks is a company that has research slots available on the International Space Station that it sells to entities looking to do research in microgravity. The company has places inside the station and can also deploy small satellites through a Japanese system. While the company’s website makes it clear that they are focused on ISS utilization, officials also express an interest in doing research in geocentric orbit, the moon or even Mars.

Robot Arm Will Install New Earth-Facing Cameras On The Space Station

Canadarm2 is backdropped by Earth and the HTV-3 vehicle in this shot from the International Space Station. Credit: NASA

TORONTO, CANADA – Canada’s robotic Canadarm2 will install the next two Urthecast cameras on the International Space Station, removing the need for astronauts to go outside to do the work themselves, the company announced today (Sept. 30).

Urthecast plans to place two Earth-facing cameras on the United States side of the station (on Node 3) to add to the two they already have on the Russian Zvezda module. Technical problems with the cameras forced the Russians to do an extra spacewalk to complete the work earlier this year.

The company plans to make images and streaming video of its imagery available to the general public and interested paying customers. One of the Russian-side cameras is facing technical difficulties with pointing, but more equipment is scheduled to blast up to fix it on a Soyuz flight this fall. The camera should be ready by December, Urthecast said.

The International Space Station seen by a departing space shuttle in 2009. Credit: NASA
The International Space Station seen by a departing space shuttle in 2009. Credit: NASA

The U.S.-side cameras will be an improvement over the Russian-side ones, as they will be able to take imagery in radar and multiple other wavelengths simultaneously – a first in space, the company said.

The suite will include a medium-resolution camera perpetually pointing down, and a high-resolution video camera that can focus on a target ahead of the station and swivel for 60 to 90 seconds to keep it in the frame as the station moves.

Urthecast made the announcement at the International Astronautical Congress, which is being held in Toronto this week. The company is working in association with NanoRacks, which is shipping the payload to the station and handling the installation.

Once the cameras are working fully, the company expects revenues will flow from customers willing to pay for the imagery. So far they have been funded by private investment and also by a $57 million initial public offering on the Toronto Stock Exchange in 2013.

When Doves Fly: Swarm Of Tiny Satellites Shot From Space Station

NanoRacks CubeSats deployed from the International Space Station in February 2014, during Expedition 38. Credit: NASA

Astronauts fired up the International Space Station’s Yard-a-Pult (actually, we mean the Japanese Kibo arm’s satellite launcher) this week to send out a flock of Doves or tiny satellites that take pictures of the Earth below. An incredible 28 satellites from Planet Labs of San Francisco are expected to swarm into orbit — the largest fleet yet, NASA says — but there have been delays in launching some of them.

The aim? To provide Earth observation information for any purpose that is needed, whether it’s disaster relief or looking to learn more about the Earth’s environment. Planet Labs and NASA say that commercial applications could include real estate, mapping, construction and oil and gas monitoring.

Deployments of two satellites each began on Tuesday and Wednesday, but NASA noted there are “glitches” (which the agency didn’t specify) that are holding up the launch of other ones. There’s no estimated date yet for sending out the rest of the satellites.

“We believe that the democratization of information about a changing planet is the mission that we are focused on, and that, in and of itself, is going to be quite valuable for the planet,” stated Robbie Schingler, co-founder of Planet Labs.

The Japanese Kibo robotic arm on the International Space Station deploys CubeSats during February 2014. The arm was holding a Small Satellite Orbital Deployer to send out the small satellites during Expedition 38. Credit: NASA
The Japanese Kibo robotic arm on the International Space Station deploys CubeSats during February 2014. The arm was holding a Small Satellite Orbital Deployer to send out the small satellites during Expedition 38. Credit: NASA

Flock 1 is a customer of the NanoRacks CubeSats program. CubeSats are small satellites that heavily rely on computer miniaturization to do the job of Earth observation and telecommunication that previously was the province of much larger and more expensive satellites. NanoRacks provides space both inside and outside the station for research experiments.

Expedition 38’s Rick Mastracchio and Koichi Wakata both commented on the unusual launches. “Two small satellites are deployed from our launcher here on the space station. Each a little bigger than loaf of bread,” Mastracchio tweeted, while Wakata wrote, “Congratulations on the successful deploy of the satellites by the NanoRacks CubeSat Deployer and Kibo robotics!”

For more information on Flock 1, check out the Planet Labs website. You can also check out an animation of how NanoRacks CubeSats deploy in the animation below (which includes a clip from the song “We Are Young” by Fun.)

NanoRacks and CASIS Put Research on the Universe’s Front Porch

The International Space Station. Credit: NASA

[/caption]

The Center for the Advancement of Science in Space (CASIS) has opened part of the ISS exterior to research experiments via NanoRacks, a company providing plug-and-play platforms aboard the Station to third-party research organizations. For the first time, commercial experiments will have a dedicated external space aboard the ISS, putting them on “the front porch of the Universe.”

Since 2009 NanoRacks has been providing research institutions with shoebox-sized consoles that can house customized experiments for installation inside the U.S. National Laboratory on board the ISS.

On April 12 CASIS announced a $1.5 million deal with NanoRacks that will allow an external “NanoLabs” platform to be installed on the Japanese Kibo module. The structure will provide research spaces up to 8″ square that will be exposed to the environment of space. (Watch a video of the NanoLabs concept below.)

Through the CASIS investment, as many as four companies will be able to fly experiments for little or no cost.

A formal solicitation to research companies and private enterprises for payload proposals will be issued by CASIS in June. The NanoLabs platform is expected to be ready for flight by 2013 — a full year ahead of schedule.

“CASIS’ investment ensures that U.S. researchers will have access to the ISS External Platform far sooner than otherwise expected,” stated Jeffrey Manber, Managing Director of NanoRacks . “This program will enable faster innovation and spiral development for payloads — an opportunity that has not previously been made available to the commercial marketplace.”

Read the full press release here.

NanoRacks LLC was formed in 2009 to provide quality hardware and services for the U.S. National Laboratory onboard the International Space Station. The company operates the first commercial laboratory in low-earth orbit. The Center for the Advancement of Science in Space (CASIS) was selected by NASA in July 2011 to maximize use of the International Space Station U.S. National Laboratory through 2020. 

Image: S134-E-011413 — A backlit ISS photographed by the STS-134 crew of Endeavour on May 29, 2011, after undocking from the Station. (NASA)