Protecting Computers from Space Radiation

Radiation Tolerant Computer, or RadPC

Computers are an integral part of space exploration, keeping them functioning when away from Earth. The space environment however is a far from ideal environment for them to operate in. High energy particles can even flip memory bits effecting storage and damaging the computers. NASA are now testing a Radiation Tolerant Computer (RadPC) which has been designed to handle higher levels of radiation. It’s inaugural flight is booked on a trip to the Moon as part of the Firefly Aerospace Blue Ghost 1 Lunar Lander. 

Continue reading “Protecting Computers from Space Radiation”

NASA is Sending a Vacuum Cleaner to the Moon

The Lunar Planet Vac, or LPV, is one of 10 payloads set to be carried to the Moon by the Blue Ghost 1 lunar lander in 2025. Credit: Firefly Aerospace

By the end of this decade, NASA, the Chinese National Space Agency (CNSA), Roscosmos, and other space agencies plan to establish a sustained human presence on the Moon. A crucial aspect of these plans is using local resources (particularly water) to lessen dependence on Earth, a process known as in-situ resource utilization (ISRU). Hence why NASA plans to establish a base of operations around the lunar south pole, a heavily cratered region where water ice exists in abundance in permanently shadowed regions (PSRs).

To harvest water ice and other resources successfully, NASA is investing in technologies that will enable cost-effective sample collection, in-situ testing (with or without astronaut oversight), and real-time data transmission to Earth. One such technology is the Lunar PlanetVac (LPV), a sample acquisition and delivery system designed to collect and transfer lunar regolith to sample containers without reliance on gravity. The LPV is one of 10 payloads that will be flown to the lunar surface as part of NASA’s Commercial Lunar Payload Services (CLPS) program.

Continue reading “NASA is Sending a Vacuum Cleaner to the Moon”

The Cosmos is Waiting for us to Explore. But we Should Choose our Path Wisely.

Lunar gateway. Credit: NASA

If you were Captain of the first USS Enterprise, where would you go!? Humanity is on the cusp of reaching out among the stars, maybe not just yet, nor in our lifetimes but it is just around the corner cosmologically speaking. A new paper explores the new technology that could make it a reality but also carefully considers the ethical aspects. Before we make the first journeys we need to be clear about the ethical considerations too so that our exploration is sustainable and responsible.

Continue reading “The Cosmos is Waiting for us to Explore. But we Should Choose our Path Wisely.”

Roman’s Telescope and Instruments are Joined

Technicians recently integrated the payload – telescope, instrument carrier, and two instruments – for NASA’s Nancy Grace Roman Space Telescope in the big clean room at the agency’s Goddard Space Flight Center in Greenbelt, Md. NASA/Chris Gunn

Scheduled for launch in 2027, the Nancy Grace Roman Telescope is slowly being readied for operation. This week, NASA announced that they have started to joined the mission’s telescope, instrument carrier and instruments onto the spacecraft. Having completed the construction, they will now move to the testing phase where the instrument will be subjected to more tests. These will include exposure to electromagnetic radiation expected during launch along with vibration and thermal changes too. If it passes these tests, the new space telescope will be on the home straight. 

Continue reading “Roman’s Telescope and Instruments are Joined”

Here's How Pluto and Charon Became a Bizarre Double Planet

Artist's impression of New Horizons' close encounter with the Pluto–Charon system. Credit: NASA/JHU APL/SwRI/Steve Gribben

On July 14th, 2015, the New Horizons probe made history by accomplishing the first flyby of Pluto and its largest satellite, Charon. The stunning images this mission took of these icy worlds have helped scientists address some of the key questions about Pluto and its massive moon, which have been shrouded in mystery for decades (owing to their great distance from Earth). One of the biggest mysteries that scientists have contemplated since Charon was first discovered in 1978 is how it came together with Pluto in the first place.

For decades, astronomers suspected that Pluto and Charon formed through a process similar to Earth and the Moon. This theory, known as the Giant Impact Hypothesis, states that roughly 4.5 billion years ago, primordial Earth was struck by a Mars-sized body named Theia. In a new study, a team of researchers from the University of Arizona challenged this assumption and offered an alternate theory known as “kiss and capture.” Their findings could help scientists better understand how planetary bodies in the outer Solar System form and evolve.

Continue reading “Here's How Pluto and Charon Became a Bizarre Double Planet”

Venus is Important. We Should Take its Exploration Seriously.

Venus

When it comes to exploring our planetary neighbours, Mars tends to get a lot of the attention. For one thing its easier to explore as the environment is far less hostile than other planets but it also offers the tantalising possibility of finding evidence of primitive life, past or present! Venus however is still a fascinating world and perhaps one that gives us a glimpse into our future if we don’t do something to check global warming. A team of scientists are proposing an official Venus Exploration Program for NASA similar to the existing Mars program. 

Continue reading “Venus is Important. We Should Take its Exploration Seriously.”

This Superbacteria can Withstand Enough Radiation to Kill a Person

A new study reveals the secret to the antioxidant that allows the bacteria Deinococcus radiodurans to withstand radiation doses 28,000 times greater than what would kill a human. Credit: Northwestern University

Nature is filled with examples of extreme life (aka. extremophiles), which are so-called because they can withstand extreme conditions. These include organisms that can survive in extremely dry conditions, extreme temperatures, acidity, pressure, and even the vacuum of space. The study of these organisms not only helps scientists learn more about the kinds of environments life can survive (and even thrive) in. It also helps astrobiologists to speculate about possible life in the Universe. Perhaps the name “tardigrades” (aka. “water bears”) rings a bell, those little creatures that could survive in interstellar space?

Then you have Deinococcus radiodurans (D. radiodurans), which microbiologists call “Conan the Bacterium” due to its ability to tolerate the harshest conditions. This includes radiation doses thousands of times higher than what would kill a human, or any other organism on Earth, for that matter. In a new study, a team of researchers from Northwestern University and the Uniformed Services University (USU) characterized a synthetic organism inspired by Deinococcus radiodurans that could allow humans to withstand the elevated radiation levels in deep space, on the Moon, and Mars.

Continue reading “This Superbacteria can Withstand Enough Radiation to Kill a Person”

If We Want to Live on Other Worlds, We're Going to Need New Clocks

Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. How will they store power on the Moon? 3D printed batteries could help. Credit: NASA
Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. How will they store power on the Moon? 3D printed batteries could help. Credit: NASA

Between NASA, other space agencies, and the commercial space sector, there are some truly ambitious plans for humanity’s future in space. These plans envision the creation of permanent infrastructure on and around the Moon that will enable a permanent human presence there, complete with research, science, and commercial operations. They also call for the first crewed missions to Mars, followed by the creation of surface habitats that will allow for return visits. These plans present many challenges, ranging from logistical and technical issues to health and human safety.

Another challenge is coordinating operations across the lunar surface with those in orbit and back at Earth, which requires a system of standardized time. In a recent study, a team of NASA researchers developed a new system of lunar time for all lunar assets and those in cis-lunar space. They recommend that this system’s foundation be relativistic time transformations, known more generally as “time dilation.” Such a system will allow for coordination and effective timekeeping on the Moon by addressing discrepancies caused by gravitational potential differences and relative motion.

Continue reading “If We Want to Live on Other Worlds, We're Going to Need New Clocks”

There Were Over 260 Orbital Launches in 2024. A New Record

Breakdown of launches per year. Credit : SpaceStatsOnline.Com

The launch of a rocket into orbit should never become routine. There was a time, probably around the 50’s and 60’s that a rocket launch hit the headlines. Now its just another launch. Last year (2024) saw a record breaking 263 launches. The US launched 158, China launched 68 and other countries/regions like Europe, Russian and Japan. Last year just 224 launches were completed and two years ago in 2022, 168 launches were completed. Surprisingly perhaps, prior to 2020 the record was set at 141 back in 1967, the future of rocket flight still seems quite alive! 

Continue reading “There Were Over 260 Orbital Launches in 2024. A New Record”