NASA’s Daytime Dynamo Experiment Deploys Lithium to Study Global Ionospheric Communications Disruptions

On June 24, 2013 a pair of daytime sounding rockets will launch from NASA Wallops Flight Facility (WFF) and deploy a chemical trail like the one deployed here from a sounding rocket at night. The chemical trail will help researchers track wind movement to determine how it affects the movement of charged particles in the atmosphere. All the colors in the sky shown here, the white and blue streaks, and the larger red blob overhead, are from the chemical trails. Credit: NASA

On June 24, 2013 a pair of daytime sounding rockets will launch from NASA Wallops Flight Facility (WFF) and deploy a chemical trail like the one deployed here from a sounding rocket at night. The chemical trail will help researchers track wind movement to determine how it affects the movement of charged particles in the atmosphere. All the colors in the sky shown here, the white and blue streaks, and the larger red blob overhead, are from the chemical trails. Credit: NASA
See Rocket Visibility Maps below[/caption]

NASA WALLOPS, VA – Science and space aficionados are in for rare treat on June 24 when NASA launches a two-rocket salvo from the NASA Wallops Flight Facility, Va. on a mission to study how charged particles in the ionosphere can disrupt communication signals that impact our day to day lives.

It’s a joint project between NASA and the Japanese Space Agency, or Japan Aerospace Exploration Agency, or JAXA.

The suborbital sounding rockets will blast off merely 15 seconds apart from a beach-side launch complex directly on Virginia’s Eastern shore on a science mission named the Daytime Dynamo.

An electric current called the dynamo, illustrated here, sweeps through Earth’s upper atmosphere. A sounding rocket called Dynamo will launch in the summer of 2013 to study the current, which can disrupt Earth’s communication and navigation signals. Credit: USGS
An electric current called the dynamo, illustrated here, sweeps through Earth’s upper atmosphere.A pair of sounding rockets called Dynamo will launch on June 24, to study the current, which can disrupt Earth’s communication and navigation signals. Credit: USGS
Lithium gas will be deployed from one of the rockets to create a chemical trail that can be used to track upper atmospheric winds that drive the dynamo currents.

The goal is to study the global electrical current called the dynamo, which sweeps through the ionosphere, a layer of charged particles that extends from about 30 to 600 miles above Earth.

Why should you care?

Because disruptions in the ionosphere can scramble radio wave signals for communications and navigations transmissions from senders to receivers – and that can impact our every day lives.

The experiment involves launching a duo of suborbital rockets and also dispatching an airplane to collect airborne science measurements.

Mission control and the science team will have their hands full coordinating the near simultaneous liftoffs of two different rockets with two different payloads while watching the weather to make sure its optimal to collect the right kind of data that will answer the research proposal.

A single-stage Black Brant V will launch first. The 35 foot long rocket will carry a 600 pound payload to collect the baseline data to characterize the neutral and charged particles as it swiftly travels through the ionosphere.

Visibility map for Black Brant V rocket launch on June 24 at 9:30 a.m.  Credit: NASA Wallops
Visibility map for Black Brant V rocket launch on June 24 at 9:30 a.m. Credit: NASA Wallops

A two-stage Terrier-Improved Orion blasts off just 15 seconds later. The 33 foot long rocket carries a canister of lithium gas. It will shoot out a long trail of lithium gas that creates a chemical trail that will be tracked to determine how the upper atmospheric wind varies with altitude. These winds are believed to be the drivers of the dynamo currents.

Visibility map for Terrier-Improved Orion rocket launch on June 24 at 9:30 a.m.  Credit: NASA Wallops
Visibility map for Terrier-Improved Orion rocket launch on June 24 at 9:30 a.m. Credit: NASA Wallops

Both rockets will fly for about five minutes to an altitude of some 100 miles up in the ionosphere.

Since its daytime the lithium trails will be very hard to discern with the naked eye. That’s why NASA is also using a uniquely equipped NASA King Air airplane outfitted with cameras with special new filters optimized to detect the lithium gas and how it is moved by the winds that generate the global electrical current.

The new technology to make the daytime measurements was jointly developed by NASA, JAXA and scientists at Clemson University.

RockOn 2013 University student payload blasts off on June 20,2013 atop a NASA Terrier-Improved Orion suborbital rocket from NASA Wallops at Virginia’s eastern shore. Credit: NASA/Chris Perry
RockOn 2013 University student payload blasts off on June 20,2013 atop a NASA Terrier-Improved Orion suborbital rocket from NASA Wallops at Virginia’s eastern shore. Credit: NASA/Chris Perry

Sounding rockets are better suited to conduct these studies of the ionosphere compared to orbiting satellites which fly to high.

“The manner in which neutral and ionized gases interact is a fundamental part of nature,” said Robert Pfaff, the principle investigator for the Dynamo sounding rocket at NASA’s Goddard Space Flight Center in Greenbelt, Md.

“There could very well be a dynamo on other planets. Jupiter, Saturn, Uranus and Neptune are all huge planets with huge atmospheres and huge magnetic fields. They could be setting up dynamo currents galore.”

The launch window opens at 9:30 a.m. and extends until 11:30 a.m. Back up opportunities are available on June 25 and from June 28 to July 8.

The rockets will be visible to residents in the Wallops region – and also beyond to the US East Coast from parts of North Carolina to New Jersey.

The NASA Wallops Visitor Center will open at 8 a.m. on launch day for viewing the launches.

Live coverage of the June 24 launch is available via NASA Wallops UStream beginning at 8:30 a.m. at: http://www.ustream.tv/channel/nasa-tv-wallops

I will be onsite at Wallops for Universe Today.

And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013. Launch: Nov. 18, 2013

Ken Kremer

…………….
Learn more about Earth, Mars, Curiosity, Opportunity, MAVEN, LADEE, Sounding rockets and NASA missions at Ken’s upcoming presentation

June 23: “Send your Name to Mars on MAVEN” and “CIBER Astro Sat, LADEE Lunar & Antares Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM

Show here are the two types of sounding rockets that will launch on June 24, 2013 from NASA Wallops Island, VA., on the Daytime Dynamo mission. Black Brant V rocket is horizontal. Terrier-Improved Orion rocket is vertical. Credit: Ken Kremer
Show here are the two types of sounding rockets that will launch on June 24, 2013 from NASA Wallops Island, VA., on the Daytime Dynamo mission. Black Brant V rocket is horizontal. Terrier-Improved Orion rocket is vertical. Credit: Ken Kremer – kenkremer.com
Night time launch of NASA Black Brant XII suborbital rocket at 11:05 p.m. EDT on June 5, 2013 from the NASA Wallops Flight Facility carrying the CIBER astronomy payload. Credit: Ken Kremer- kenkremer.com
Night time launch of NASA Black Brant XII suborbital rocket at 11:05 p.m. EDT on June 5, 2013 from the NASA Wallops Flight Facility carrying the CIBER astronomy payload. Credit: Ken Kremer- kenkremer.com

Spectacular Night Launch from NASA Wallops Shines Bright Beacon on Star Formation in Early Universe

Night time blast off of 4 stage NASA Black Brant XII suborbital rocket at 11:05 p.m. EDT on June 5, 2013 from the NASA Wallops Flight Facility carrying the CIBER astronomy payload to study when the first stars and galaxies formed in the universe. The Black Brant soars above huge water tower at adjacent Antares rocket launch pad at NASA Wallops. Credit: Ken Kremer- kenkremer.com

Night time blast off of 4 stage NASA Black Brant XII suborbital rocket at 11:05 p.m. EDT on June 5, 2013 from the NASA Wallops Flight Facility carrying the CIBER astronomy payload to study when the first stars and galaxies formed in the universe. The Black Brant soars above huge water tower at adjacent Antares rocket launch pad at NASA Wallops. Credit: Ken Kremer- kenkremer.com
Updated with more photos[/caption]

WALLOPS ISLAND, VA – The spectacular night time launch of a powerful Black Brant XII suborbital rocket from NASA’s launch range at the Wallops Flight Facility on Virginia’s Eastern Shore at 11:05 p.m. June 5 turned darkness into day as the rocket swiftly streaked skyward with the Cosmic Infrared Background ExpeRiment (CIBER) on a NASA mission to shine a bright beacon for science on star and galaxy formation in the early Universe.

A very loud explosive boom shook the local launch area at ignition that was also heard by local residents and tourists at distances over 10 miles away, gleeful spectators told me.

“The data looks good so far,” Jamie Bock, CIBER principal investigator from the California Institute of Technology, told Universe Today in an exclusive post-launch interview inside Mission Control at NASA Wallops. “I’m very happy.”

Ignition of NASA Black Brant XII suborbital rocket following night time launch at 11:05 p.m. EDT on June 5, 2013 from the NASA Wallops Flight Facility at the eastern Virginia shoreline. The launch pad sits in front of the Antares rocket Launch Complex 0A dominated by the huge water tower.  The rocket carried the CIBER astronomy payload to an altitude of approximately 358 miles above the Atlantic Ocean to study when the first stars and galaxies formed in the universe and how brightly they burned their nuclear fuel.  Credit: Ken Kremer- kenkremer.com
Ignition of NASA Black Brant XII suborbital rocket following night time launch at 11:05 p.m. EDT on June 5, 2013 from the NASA Wallops Flight Facility at the eastern Virginia shoreline. The launch pad sits in front of the Antares rocket Launch Complex 0A dominated by the huge water tower. The rocket carried the CIBER astronomy payload to an altitude of approximately 358 miles above the Atlantic Ocean to study when the first stars and galaxies formed in the universe and how brightly they burned their nuclear fuel. Credit: Ken Kremer- kenkremer.com

The four stage Black Brant XII is the most powerful sounding rocket in America’s arsenal for scientific research.

“I’m absolutely thrilled with this launch and this is very important for Wallops,” William Wrobel, Director of NASA Wallops Flight Facility, told me in an exclusive interview moments after liftoff.

Wallops is rapidly ramping up launch activities this year with two types of powerful new medium class rockets – Antares and Minotaur V- that can loft heavy payloads to the International Space Station (ISS) and to interplanetary space from the newly built pad 0A and the upgraded, adjacent launch pad 0B.

“We have launched over 16,000 sounding rockets.”

“Soon we will be launching our first spacecraft to the moon, NASA’s LADEE orbiter. And we just launched the Antares test flight on April 21.”

I was delighted to witness the magnificent launch from less than half a mile away with a big group of cheering Wallops employees and Wallops Center Director Wrobel. See my launch photos and time lapse shot herein.

Everyone could hear piercing explosions as each stage of the Black Brant rocket ignited as it soared to the heavens to an altitude of some 358 miles above the Atlantic Ocean.

Seconds after liftoff we could see what looked like a rain of sparkling fireworks showing downward towards the launch pad. It was a fabulous shower of aluminum slag and spent ammonium perchlorate rocket fuel.

A powerful NASA Black Brant XII suborbital rocket streaks into the night sky following its launch at 11:05 p.m. EDT on June 5, 2013 from the NASA Wallops Flight Facility at the eastern Virginia shoreline. The launch pad sits in front of the Antares rocket Launch Complex 0A dominated by the huge water tower.  The rocket carried the Cosmic Infrared Background ExpeRiment (CIBER) to an altitude of approximately 358 miles above the Atlantic Ocean to study when the first stars and galaxies formed in the universe and how brightly they burned their nuclear fuel.  Credit: Ken Kremer - kenkremer.com
A powerful NASA Black Brant XII suborbital rocket streaks spectacularly into the night sky following its launch at 11:05 p.m. EDT on June 5, 2013 from the NASA Wallops Flight Facility at the eastern Virginia shoreline. The launch pad sits in front of the Antares rocket Launch Complex 0A dominated by the huge water tower. The rocket carried the Cosmic Infrared Background ExpeRiment (CIBER) to an altitude of approximately 358 miles above the Atlantic Ocean to study when the first stars and galaxies formed in the universe and how brightly they burned their nuclear fuel. Side firing thrusters have ignited to impart stabilizing spin as rocket ascends above launch rail. Credit: Ken Kremer- kenkremer.com

The awesome launch took place on a perfectly clear night drenched with brightly shining stars as the Atlantic Ocean waves relentlessly pounded the shore just a few hundred feet away.

The rocket zoomed past the prominent constellation Scorpius above the Atlantic Ocean.

In fact we were so close that we could hear the spent first stage as it was plummeting from the sky and smashed into the ocean, perhaps 10 miles away.

After completing its spectral collection to determine when did the first stars and galaxies form and how brightly did they shine burning their nuclear fuel, the CIBER payload splashed down in the Atlantic Ocean and was not recovered.

Time lapse view of night launch of NASA Black Brant XII suborbital rocket zooming past constellation Scorpius (left) at 11:05 p.m. EDT above Atlantic Ocean on June 5, 2013 from the NASA Wallops Flight Facility carrying the CIBER astronomy payload. Credit: Ken Kremer- kenkremer.com
Time lapse view of night launch of NASA Black Brant XII suborbital rocket zooming past constellation Scorpius (left) at 11:05 p.m. EDT above Atlantic Ocean on June 5, 2013 from the NASA Wallops Flight Facility carrying the CIBER astronomy payload. Credit: Ken Kremer- kenkremer.com
Night time launch of NASA Black Brant XII suborbital rocket at 11:05 p.m. EDT on June 5, 2013 from the NASA Wallops Flight Facility carrying the CIBER astronomy payload. Credit: Ken Kremer- kenkremer.com
Night time launch of NASA Black Brant XII suborbital rocket at 11:05 p.m. EDT on June 5, 2013 from the NASA Wallops Flight Facility carrying the CIBER astronomy payload. Credit: Ken Kremer- kenkremer.com

NASA said the launch was seen from as far away as central New Jersey, southwestern Pennsylvania and northeastern North Carolina.

One of my astronomy friends Joe Stieber, did see the launch from about 135 miles away in central New Jersey and captured beautiful time lapse shots (see below).

Time lapse view of June 5 launch of Blank Brant XII sounding rocket from Wallops Island as seen from Carranza Field in Wharton State Forest, NJ (about 135 miles north from Wallops). Scorpius is above the trees at the far left. Credit: Joe Stieber- sjastro.com
Time lapse view of June 5 launch of Blank Brant XII sounding rocket from Wallops Island as seen from Carranza Field in Wharton State Forest, NJ (about 135 miles north from Wallops). Scorpius is above the trees at the far left. Credit: Joe Stieber- sjastro.com

Everything with the rocket and payload went exactly as planned.

“This was our fourth and last flight of the CIBER payload,” Bock told me. “We are still analyzing data from the last 2 flights.”

“CIBER first flew in 2009 atop smaller sounding rockets launched from White Sands Missile Range, N.M. and was recovered.”

“On this flight we wanted to send the experiment higher than ever before to collect more measurements for a longer period of time to help determine the brightness of the early Universe.”

CIBER is instrumented with 2 cameras and 2 spectrometers.

“The payload had to be cooled to 84 Kelvin with liquid nitrogen before launch in order for us to make the measurements,” Bock told me.

“The launch was delayed a day from June 4 because of difficulty both in cooling the payload to the required temperature and in keeping the temperature fluctuations to less than 100 microkelvins,” Bock explained

The CIBER experiment involves scientists and funding from the US and NASA, Japan and South Korea.

Bock is already thinking about the next logical steps with a space based science satellite.

Space.com has now featured an album of my CIBER launch photos – here

Night  launch of NASA Black Brant XII suborbital rocket at 11:05 p.m. EDT on June 5, 2013 from NASA Wallops Flight Facility, VA carrying CIBER astronomy payload. Credit: Ken Kremer
Night launch of NASA Black Brant XII suborbital rocket at 11:05 p.m. EDT on June 5, 2013 from NASA Wallops Flight Facility, VA carrying CIBER astronomy payload. Credit: Ken Kremer

And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013

Ken Kremer

…………….
Learn more about Conjunctions, Mars, Curiosity, Opportunity, MAVEN, LADEE and NASA missions at Ken’s upcoming lecture presentations

June 11: “Send your Name to Mars on MAVEN” and “LADEE Lunar & Antares Rocket Launches from Virginia”; NJ State Museum Planetarium and Amateur Astronomers Association of Princeton (AAAP), Trenton, NJ, 730 PM.

June 12: “Send your Name to Mars on MAVEN” and “LADEE Lunar & Antares Rocket Launches from Virginia”; Franklin Institute and Rittenhouse Astronomical Society, Philadelphia, PA, 8 PM.

June 23: “Send your Name to Mars on MAVEN” and “CIBER Astro Sat, LADEE Lunar & Antares Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM

Aerial view of NASA Wallops launch site on Virginia shore shows launch pads for both suborbital and orbital rockets. This photo was snapped from on top of Pad 0B that will soon launch NASA‘s LADEE orbiter to the Moon. Credit: Ken Kremer- kenkremer.com
Aerial view of NASA Wallops launch site on Virginia shore shows launch pads for both suborbital and orbital rockets. CIBER’s Black Brant XII rocket blasted off just behind the Pad 0A water tower. This photo was snapped from on top of Pad 0B that will soon launch NASA‘s LADEE orbiter to the Moon. Credit: Ken Kremer- kenkremer.com
NASA’s CIBER experiment seeks clues to the formation of the first stars and galaxies. CIBER blasted off on June 5 from the NASA  Wallops Flight Facility, Virginia. It will study the total sky brightness, to probe the component from first stars and galaxies using spectral signatures, and searches for the distinctive spatial pattern seen in this image, produced by large-scale structures from dark matter. This shows a numerical simulation of the density of matter when the universe was one billion years old. Galaxies formation follows the gravitational wells produced by dark matter, where hydrogen gas coalesces, and the first stars ignite.  Credit: Volker Springel/Virgo Consortium.
NASA’s CIBER experiment seeks clues to the formation of the first stars and galaxies. CIBER blasted off on June 5 from the NASA Wallops Flight Facility, Virginia. It will study the total sky brightness, to probe the component from first stars and galaxies using spectral signatures, and searches for the distinctive spatial pattern seen in this image, produced by large-scale structures from dark matter. This shows a numerical simulation of the density of matter when the universe was one billion years old. Galaxies formation follows the gravitational wells produced by dark matter, where hydrogen gas coalesces, and the first stars ignite. Credit: Volker Springel/Virgo Consortium.
NASA Time lapse view shows multiple stages firing during night launch of NASA Black Brant XII suborbital rocket at 11:05 p.m. EDT above Atlantic Ocean on June 5, 2013 from the NASA Wallops Flight Facility carrying the CIBER astronomy payload. Credit: NASA/Jamie Adkins
NASA Time lapse view shows multiple stages firing during night launch of NASA Black Brant XII suborbital rocket at 11:05 p.m. EDT above Atlantic Ocean on June 5, 2013 from the NASA Wallops Flight Facility carrying the CIBER astronomy payload. Credit: NASA/Jamie Adkins
NASA Black Brant XII suborbital rocket streaks skyward after blastoff at 11:05 p.m. EDT on June 5, 2013 from NASA Wallops Flight Facility, VA carrying CIBER astronomy payload. Credit: Ken Kremer
NASA Black Brant XII suborbital rocket streaks skyward after blastoff at 11:05 p.m. EDT on June 5, 2013 from NASA Wallops Flight Facility, VA carrying CIBER astronomy payload. Credit: Ken Kremer

NASA Experiment Seeks Signatures of Formation of First Stars and Galaxies

NASA’s CIBER experiment seeks clues to the formation of the first stars and galaxies. It will study the total sky brightness, to probe the component from first stars and galaxies using spectral signatures, and searches for the distinctive spatial pattern seen in this image, produced by large-scale structures from dark matter. This shows a numerical simulation of the density of matter when the universe was one billion years old. Galaxies formation follows the gravitational wells produced by dark matter, where hydrogen gas coalesces, and the first stars ignite. Credit: Volker Springel/Virgo Consortium.

When did the first stars and galaxies form in the universe and how brightly did they burn?

Scientists are looking for tell-tale signs of galaxy formation with an experimental payload called CIBER.

NASA will briefly turn night into day near midnight along the mid-Atlantic coastline on June 4 – seeking answers to illuminate researchers theories about the beginnings of our Universe with the launch of the Cosmic Infrared Background ExpeRiment (CIBER) from NASA’s launch range at the Wallops Flight Facility along Virginia’s eastern shoreline. See viewing map below.

CIBER will blast off atop a powerful four stage Black Brant XII suborbital rocket at 11 PM EDT Tuesday night, June 4. The launch window extends until 11:59 PM EDT.

Currently the weather forecast is excellent.

The public is invited to observe the launch from an excellent viewing site at the NASA Visitor Center at Wallops which will open at 9:30 PM on launch day.

The night launch will be visible to spectators along a long swath of the US East coast from New Jersey to North Carolina; if the skies are clear as CIBER ascends to space to an altitude of over 350 miles and arcs over on a southeasterly trajectory.

Backup launch days are available from June 5 through 10.

Launch visibility map for the CIBER payload launch from NASA Wallops, Va, on June 4, 2013 at 11 PM EDT. Credit: NASA
Launch visibility map for the CIBER payload launch from NASA Wallops, Va, on June 4, 2013 at 11 PM EDT. Credit: NASA

“The objectives of the experiment are of fundamental importance for astrophysics: to probe the process of first galaxy formation. The measurement is extremely difficult technically,” said Jamie Bock, CIBER principal investigator from the California Institute of Technology

Over the past several decades more than 20,000 sounding rockets have blasted off from an array of launch pads at Wallops, which is NASA’s lead center for suborbital science.

The Black Brant XII sounding rocket is over 70 feet tall.

The launch pad sits adjacent to the newly constructed Pad 0A of the Virginia Spaceflight Authority from which the Orbital Sciences Antares rocket blasted off on its maiden flight on April 21, 2013.

“The first massive stars to form in the universe produced copious ultraviolet light that ionized gas from neutral hydrogen. CIBER observes in the near infrared, as the expansion of the universe stretched the original short ultraviolet wavelengths to long near-infrared wavelengths today.”

“CIBER investigates two telltale signatures of first star formation — the total brightness of the sky after subtracting all foregrounds, and a distinctive pattern of spatial variations,” according to Bock.

Preparing the CIBER instrument for flight. The optics and detectors are cooled by liquid nitrogen to -19C (77 K, -312F) during the flight to eliminate infrared emission from the instrument and to achieve the best detector sensitivity. Photo: NASA/Berit Bland
Preparing the CIBER instrument for flight. The optics and detectors are cooled by liquid nitrogen to -19C (77 K, -312F) during the flight to eliminate infrared emission from the instrument and to achieve the best detector sensitivity. Photo: NASA/Berit Bland

This will be the fourth launch of CIBER since 2009 but the first from Wallops. The three prior launches were all from the White Sands Missile Range, N.M. and in each case the payload was recovered and refurbished for reflight.

However the June 4 launch will also be the last hurrah for CIBER.

The scientists are using a more powerful Black Brant rocket to loft the payload far higher than ever before so that it can make measurements for more than twice as long as ever before.

The consequence of flying higher is that CIBER will splashdown in the Atlantic Ocean, about 400 miles off the Virgina shore and will not be recovered.

You can watch the launch live on NASA Ustream beginning at 10 p.m. on launch day at: http://www.ustream.com/channel/nasa-wallops

I will be onsite at Wallops for Universe Today.

And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013

Ken Kremer

…………….
Learn more about Conjunctions, Mars, Curiosity, Opportunity, MAVEN, LADEE and NASA missions at Ken’s upcoming lecture presentations

June 4: “Send your Name to Mars on MAVEN” and “CIBER Astro Sat, LADEE Lunar & Antares Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8:30 PM

June 11: “Send your Name to Mars on MAVEN” and “LADEE Lunar & Antares Rocket Launches from Virginia”; NJ State Museum Planetarium and Amateur Astronomers Association of Princeton (AAAP), Trenton, NJ, 730 PM.

June 12: “Send your Name to Mars on MAVEN” and “LADEE Lunar & Antares Rocket Launches from Virginia”; Franklin Institute and Rittenhouse Astronomical Society, Philadelphia, PA, 8 PM.

NASA’s CIBER payload will launch from a suborbital launch pad located directly behind this Antares rocket erected at Pad 0A at the NASA Wallops Flight Facility along the Eastern shore of Virginia. Only a few hundred feet of beach sand and a miniscule sea wall separate the Wallops Island pads from the Atlantic Ocean waves and Mother Nature. Credit: Ken Kremer (kenkremer.com)
NASA’s CIBER payload will launch from a suborbital launch pad located directly behind this Antares rocket erected at Pad 0A at the NASA Wallops Flight Facility along the Eastern shore of Virginia. Only a few hundred feet of beach sand and a miniscule sea wall separate the Wallops Island pads from the Atlantic Ocean waves and Mother Nature.
Credit: Ken Kremer (kenkremer.com)

Antares Launch Ignites Commercial Space Competition Race

Antares rocket erect at the Eastern shore of Virginia slated for maiden liftoff on April 17. Only a few hundred feet of beach sand and a miniscule sea wall separate the Wallops Island pad from the Atlantic Ocean waves and Mother Nature. Credit: Ken Kremer (kenkremer.com)

The commercial space competition race is about to begin, and with a big bang at a most unexpected locale; Virginia’s Eastern shore.

The new and privately developed Antares rocket will ignite a new space race in the commercial arena – if all goes well – when the engines fire for Antares maiden soar to space slated for Wednesday, April 17.

“This is the biggest, loudest and brightest rocket ever to launch from NASA’s Wallops Flight Facility,” said former station astronaut and now Orbital Sciences manager Frank Culbertson, at a media briefing held today (April 16), 1 day prior to liftoff.

The April 17 launch is a test flight of the Antares rocket, built by Orbital Sciences Corp and is due to liftoff at 5 p.m. EDT from Mid-Atlantic Regional Spaceport (MARS) Pad-0A at NASA Wallops.

The weather forecast shows a 45% chance of favorable weather.

The mission is dubbed the A-One Test Launch Mission.

The launch will be visible along portions of the US East Coast from South Carolina to Maine, depending on viewing conditions.

Antares is the most powerful rocket ever to ascend near major American East Coast population centers, unlike anything before – and critical to keeping the ISS fully functioning.

For the past year, SpaceX Corp founded by CEO Elon Musk has monopolized all the commercial space headlines – as the first and only private company to launch a spacecraft that successfully docked at the International Space Station (ISS).

1st fully integrated Antares rocket stands firmly erect at seaside Launch Pad 0-A at NASA’s Wallops Flight Facility on 16 April 2013.  Technicians were working at the pad during my photoshoot today. Maiden Antares test launch is scheduled for 17 April 2013. Later operational flights are critical to resupply the ISS. Credit: Ken Kremer (kenkremer.com)
1st fully integrated Antares rocket stands firmly erect at seaside Launch Pad 0-A at NASA’s Wallops Flight Facility on 16 April 2013. Maiden Antares test launch is scheduled for 17 April 2013. Later operational flights are critical to resupply the ISS. Credit: Ken Kremer (kenkremer.com)

Indeed SpaceX just concluded its 3rd flight to the ISS lofting thousands of pounds (kg) of critically needed supplies to the ISS to keep it functioning – and numerous science experiments to keep the 6 person crew of astronauts busy conducting over 200 active science investigations and fulfill the stations purpose.

Orbital Sciences aims to match and perhaps even exceed the SpaceX Falcon 9 /Dragon architecture with its own ambitious space station resupply system comprising the medium class Antares rocket and Cygnus cargo resupply vehicle.

“The Cygnus can remain docked to the ISS for 30 to 90 days,” said former station astronaut and now Orbital Sciences manager Frank Culbertson at the briefing.

“Cygnus could be upgraded to stay longer perhaps up to a year in orbit,” Culbertson told Universe Today.

“Cygnus is based on the proven MPLM design. It could possibly be converted to a permanent habitation module for the ISS with added shielding and plumbing, if funding is available and if NASA wants to pursue that possibility,” Culbertson told me.

Cygnus could even be sent beyond low Earth orbit on ambitious new missions.

“This is a big event for this area and our country,” said Culbertson.

During the test flight Antares will boost a simulated Cygnus – known as a mass simulator – into a target orbit of 250 x 300 kilometers and inclined 51.6 degrees.

Antares rocket configuration - privately developed by Orbital Sciences Corp.
Antares rocket configuration – privately developed by Orbital Sciences Corp.

The Antares first stage is powered by dual liquid fueled AJ26 first stage rocket engines that generate a combined total thrust of some 750,000 lbs. The upper stage features a Castor 30 solid rocket motor with thrust vectoring. Antares can loft payloads weighing over 5000 kg to LEO.

Antares stands 131 feet tall.

Dozens of technicians were working at the pad during my photoshoot today.

The Antares/Cygnus system was developed by Orbital Sciences Corp under NASA’s Commercial Orbital Transportation Services (COTS) program to replace the ISS cargo resupply capability previously tasked to NASA’s now retired Space Shuttle fleet.

Over the next 3 to 4 years, eight Cygnus carriers will loft 20,000 kg of supplies, food, water, clothing , replacement parts and science gear to the ISS under a NASA contract valued at $1.9 Billion.

“This represents a new way of doing business for NASA,” said NASA’s commercial crew program manager Alan Lindenmoyer.

NASA Wallops Director Jay Wrobel has granted the formal Authority to Proceed for Orbital Science Corporation’s test launch of its Antares rocket.

Following today’s Flight Readiness review, Orbital managers gave a “GO” to proceed toward launch.

NASA TV launch coverage begins at 4 p.m. EDT on April 17.

Watch for my continuing on-site reports through liftoff of the Antares A-One Test flight.

Ken Kremer

…………….

Learn more about Orion, Antares, SpaceX, Curiosity and NASA robotic and human spaceflight missions at Ken’s upcoming lecture presentations:

April 20/21 : “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus “The Space Shuttle Finale and the Future of NASA – Orion, SpaceX, Antares and more!” NEAF Astronomy Forum, Rockland Community College, Suffern, NY. 3-4 PM Sat & Sunday. Display table all day.

April 28: “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus the Space Shuttle, SpaceX, Antares, Orion and more. Washington Crossing State Park, Titusville, NJ, 130 PM

Antares Rocket Erected at Virginia Pad for Inaugural April 17 Launch – Photo Gallery

1st fully integrated Antares rocket stands firmly erect at seaside Launch Pad 0-A at NASA’s Wallops Flight Facility during exclusive launch complex tour by Universe Today. Maiden Antares test launch is scheduled for 17 April 2013. Later operational flights are critical to resupply the ISS. Credit: Ken Kremer (kenkremer.com) See Antares rollout and erection photo gallery below

1st fully integrated Antares rocket – decaled with huge American flag – stands firmly erect at seaside Launch Pad 0-A at NASA’s Wallops Flight Facility on 6 April 2013 following night time rollout. Maiden Antares test launch is scheduled for 17 April 2013. Later operational flights are critical to resupply the ISS. Credit: Ken Kremer (kenkremer.com).
See Antares rollout and erection photo gallery below[/caption]

For the first time ever, the new and fully integrated commercial Antares rocket built by Orbital Sciences was rolled out to its oceanside launch pad on a rather chilly Saturday morning (April 6) and erected at the very edge of the Eastern Virginia shoreline in anticipation of its maiden launch slated for April 17.

The inaugural liftoff of the privately developed two stage rocket is set for 5 p.m. from the newly constructed launch pad 0-A at the Mid-Atlantic Regional Spaceport (MARS) at NASA’s Wallops Flight Facility in Virginia.

And Universe Today was there! See my photo gallery herein.

Antares is the most powerful rocket ever to ascend near major American East Coast population centers, unlike anything before. The launch is open to the public and is generating buzz.

And this is one very cool looking rocket.

Antares rocket begins 1st ever rollout from processing hanger to NASA Wallops launch pad - beneath the Moon on 6 April 2013.  Credit: Ken Kremer (kenkremer.com)
Antares rocket begins 1st ever rollout from processing hanger to NASA Wallops launch pad – beneath the Moon on 6 April 2013. Credit: Ken Kremer (kenkremer.com)

The maiden April 17 launch is actually a test flight dubbed the A-One Test Launch Mission.

The goal of the A-One mission is to validate that Antares is ready to launch Orbital‘s Cygnus capsule on a crucial docking demonstration and resupply mission to the International Space Station (ISS) as soon as this summer.

The 1 mile horizontal rollout trek of the gleaming white rocket from the NASA integration hanger to the pad on a specially designed trailer began in the dead of a frosty, windy night at 4:30 a.m. – and beneath a picturesque moon.

“We are all very happy and proud to get Antares to the pad today for the test flight,” Orbital ground operations manager Mike Brainard told Universe Today in an interview at Launch Complex 0-A.

The rocket was beautifully decaled with a huge American flag as well as the Antares, Cygnus and Orbital logos.

Raising Antares at NASA Wallops. Credit: Ken Kremer (kenkremer.com)
Raising Antares at NASA Wallops. Credit: Ken Kremer (kenkremer.com)

Antares was transported aboard the Transporter/Erector/Launcher (TEL), a multifunctional, specialized vehicle that also slowly raised the rocket to a vertical position on the launch pad a few hours later, starting at about 1 p.m. under clear blue skies.

This first ever Antares erection took about 30 minutes. The lift was postponed for several hours after arriving at the pad as Orbital personal monitored the continually gusting winds approaching the 29 knot limit and checked all pad and rocket systems to insure safety.

The TEL vehicle also serves as a support interface between the 133-foot Antares and the range of launch complex systems.

Antares transported atop aboard the Transporter/Erector/Launcher (TEL) beneath the Moon on 6 April 2013.  Credit: Ken Kremer (kenkremer.com
Antares transported atop aboard the Transporter/Erector/Launcher (TEL) beneath the Moon on 6 April 2013. Credit: Ken Kremer (kenkremer.com

Now that Antares stands vertical, “We are on a clear path to a launch date of April 17, provided there are no significant weather disruptions or major vehicle check-out delays between now and then,” said Mr. Michael Pinkston, Orbitals Antares Program Manager.

Antares is a medium class rocket similar to the Delta II and SpaceX Falcon 9.

For this test flight Antares will boost a simulated version of the Cygnus carrier – known as a mass simulator – into a target orbit of 250 x 300 kilometers and inclined 51.6 degrees.

Antares rolls up the ramp to Launch Complex 0-A at NASA’s Wallops Flight Facility on 6 April 2013. Credit: Ken Kremer (kenkremer.com)
Antares rolls up the ramp to Launch Complex 0-A at NASA’s Wallops Flight Facility on 6 April 2013. Credit: Ken Kremer (kenkremer.com)

The Antares first stage is powered by dual liquid fueled AJ26 first stage rocket engines that generate a combined total thrust of some 680,000 lbs. The upper stage features a Castor 30 solid rocket motor with thrust vectoring. Antares can loft payloads weighing over 5000 kg to LEO.

The Antares/Cygnus system was developed by Orbital Sciences Corp under NASA’s Commercial Orbital Transportation Services (COTS) program to replace the ISS cargo resupply capability previously tasked to NASA’s now retired Space Shuttle fleet.

Up Close with Antares beautifully decaled nose NASA Wallops Pad 0-A. Credit: Ken Kremer (kenkremer.com)
Up Close with Antares beautifully decaled nose at NASA Wallops Pad 0-A. Credit: Ken Kremer (kenkremer.com)

Orbital’s Antares/Cygnus system is similar in scope to the SpaceX Falcon 9/Dragon system. Both firms won lucrative NASA contracts to deliver approximately 20,000 kilograms of supplies and equipment to the ISS.

The goal of NASA’s COTS initiative is to achieve safe, reliable and cost-effective transportation to and from the ISS and low-Earth orbit (LEO).

Orbital will launch at least eight Antares/Cygnus resupply missions to the ISS at a cost of $1.9 Billion

The maiden Antares launch has been postponed by about 2 years due to delays in laiunch pad construction and validating the rocket and engines for flight- similar in length to the start up delays experienced by SpaceX for Falcon 9 and Dragon.

Read my prior Antares story detailing my tour of the launch complex following the successful 29 sec hot-fire engine test that cleared the path for the April 17 liftoff – here & here.

Watch for my continuing reports through liftoff of the Antares A-One Test flight.

Ken Kremer

…………….

Learn more about Antares, SpaceX, Curiosity and NASA missions at Ken’s upcoming lecture presentations:

April 20/21 : “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus Orion, SpaceX, Antares, the Space Shuttle and more! NEAF Astronomy Forum, Suffern, NY

April 28: “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus the Space Shuttle, SpaceX, Antares, Orion and more. Washington Crossing State Park, Titusville, NJ, 130 PM

Only a few hundred feet of beach sand and a  low sea wall separate the pad from the Atlantic Ocean and Mother Nature and potential catastrophe. Credit: Ken Kremer (kenkremer.com
Only a few hundred feet of beach sand and a low sea wall separate the Wallops Island pad from the Atlantic Ocean and Mother Nature and potential catastrophe. Credit: Ken Kremer (kenkremer.com)
Thumbs Up for Antares ! - from NASA Wallops Media team and Space journalists.  Ken at right. Credit: Ken Kremer (kenkremer.com)
Thumbs Up for Antares ! – from NASA Wallops Media team and Space journalists. Ken at right. Credit: Ken Kremer (kenkremer.com)

NASA’s Operation IceBridge Surveys Greenland and Earth’s Polar Ice Sheets

NASA P-3B waits outside the hangar at Thule Air Base with the Greenland Ice sheet in the background. The aircraft is set to begin the 2013 season of NASA’s Operation IceBridge mission to survey Earth's polar ice sheets in unprecedented three-dimensional detail. The plane just arrived from NASA Wallops Flight Facility in Virginia - see my P-3B photos below. Credit: NASA/Goddard/Michael Studinger

NASA’s Operation IceBridge has begun the 2013 research season of Ice Science flights in Greenland and the Arctic to survey the regions ice sheets and land and sea ice using a specially equipped P-3B research aircraft from NASA’s Wallops Flight Facility in Wallops Island, Va.

Operation IceBridge began in 2009 as part of NASA’s six-year long effort to conduct the largest airborne survey of Earth’s polar ice ever flown.

The goal is to obtain an unprecedented three-dimensional, multi-instrument view of the behavior of Greenland, Arctic and Antarctic ice sheets, ice shelves and sea ice which have been undergoing rapid and dramatic changes and reductions.

“We’re starting to see how the whole ice sheet is changing,” said Michael Studinger, IceBridge project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md. “Thinning at the margins is now propagating to the interior.”

The P-3 exiting the hanger pre-flight in Thule. Credit: NASA
The P-3 exiting the hanger pre-flight in Thule. Credit: NASA

The airborne campaign was started in order to maintain a continuous record of measurements in changes in polar ice after NASA’s Earth orbiting ICESat (Ice, Cloud and Land Elevation Satellite) probe stopped collecting data in 2009.

ICESat-2 won’t be launched until 2016, so NASA’s IceBridge project and yearly P-3 airborne campaigns will fill in the science data gap in the interval.

The P-3B Orion just arrived from NASA’s Wallops Flight Facility in Virginia where I visited it before departure – see my P-3B photos herein.

NASA IceBridge P-3B research aircraft prepares for departure from runway at NASA Wallops Flight Facility in Virginia to Thule Air Base in Greenland.  Credit: Ken Kremer (kenkremer.com)
NASA IceBridge P-3B research aircraft prepares for departure from runway at NASA Wallops Flight Facility in Virginia to Thule Air Base in Greenland. Credit: Ken Kremer (kenkremer.com)

IceBridge is operating out of airfields in Thule and Kangerlussuaq, Greenland, and Fairbanks, Alaska.

The P-3B survey flights over Greenland and the Arctic will continue until May. They are conducted over Antarctica during October and November.

A sunny view of the ramp at Thule Air Base, Greenland, shortly after the NASA P-3B research aircraft arrived on Mar. 18, 2013. Credit: NASA / Jim Yungel
A sunny view of the ramp at Thule Air Base, Greenland, shortly after the NASA P-3B research aircraft arrived on Mar. 18, 2013. Credit: NASA / Jim Yungel

The measurements collected by IceBridge instruments will characterize the annual changes in thickness of sea ice, glaciers, and ice sheets. The data are used to help predict how climate change affects Earth’s polar ice and the resulting rise in sea-levels.

Researchers with the U.S. Army Corps of Engineers are collaborating with the IceBridge project to collect snow depth measurements near Barrow , Alaska. High school science teachers from the US, Denmark and Greenland will fly along on the P-3B survey flights to learn about polar science.

NASA Wallops has a wide ranging research and development mission and is home to the Virginia launch pad for the new Antares/Cygnus commercial ISS resupply rocket set for its maiden launch in mid April 2013; detailed in see my new story – here.

Ken Kremer

Sea ice in the southern Beaufort Sea. Credit: NASA
Sea ice in the southern Beaufort Sea. Credit: NASA
IceBridge departing to Fairbanks to start their sea ice flights that will cover the Beauford and Chukchi seas - via the Laxon sea ice route for the transit. Credit: NASA
IceBridge departing to Fairbanks to start their sea ice flights that will cover the Beauford and Chukchi seas – via the Laxon sea ice route for the transit. Credit: NASA

Powerful Private Rocket Crucial to ISS Set for Maiden April Blast Off from Virginia – Launch Pad Gallery

The first stage of the privately developed Antares rocket stands on the pad at NASA's Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)

The first stage of the privately developed Antares rocket stands erect at newly constructed Launch Pad 0-A at NASA’s Wallops Flight Facility during exclusive launch complex tour by Universe Today. Maiden Antares test launch is scheduled for mid-April 2013. Later operational flights are critical to resupply the ISS.
Credit: Ken Kremer (kenkremer.com)
See Antares photo gallery below[/caption]

The most powerful rocket ever to ascend near major American East Coast population centers is slated to blast off soon from the eastern Virginia shore on its inaugural test flight in mid April.

And Universe Today took an exclusive inspection tour around the privately developed Antares rocket and NASA Wallops Island launch complex just days ago.

NASA announced that the maiden flight of the commercial Antares rocket from Orbital Sciences is slated to soar to space between April 16 to 18 from the newly constructed seaside launch pad dubbed 0-A at the Mid-Atlantic Regional Spaceport (MARS) at NASA’s Wallops Flight Facility in Virginia.

The two stage Antares rocket is absolutely pivotal to NASA’s plans to ship essential cargo to the International Space Station (ISS) in the wake of the shutdown of the Space Shuttle program in July 2011.

No admittance to the Orbital Sciences Corp. Antares rocket without permission from the pad manager! Credit: Ken Kremer (kenkremer.com)
No admittance to the Orbital Sciences Corp. Antares rocket without permission from the pad manager. Credit: Ken Kremer (kenkremer.com)

Antares stands 131 feet tall and serves as the launcher for the unmanned commercial Cygnus cargo spacecraft.

Both Antares and Cygnus were developed by Orbital Sciences Corp under NASA’s Commercial Orbital Transportation Services (COTS) program to replace the ISS cargo resupply capability previously tasked to NASA’s now retired Space Shuttle’s. The goal is to achieve safe, reliable and cost-effective transportation to and from the ISS and low-Earth orbit (LEO).

I visited NASA Wallops for an up close personal tour of the impressive Antares 1st stage rocket erected at the launch pad following the successful 29 second hot fire engine test that cleared the last hurdle to approve the maiden flight of Antares. Umbilical lines were still connected to the rocket.

Antares rocket 1st stage and umbilicals at NASA Wallops Flight Facility.  Credit: Ken Kremer (kenkremer.com)
Antares rocket 1st stage and umbilical lines at NASA Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)

The pads protective seawall was rebuilt following significant damage from Hurricane Sandy, NASA Wallops spokesman Keith Koehler told me.

Launch Complex 0-A sits just a few hundred yards (meters) from Virginia’s eastern shore line on the Atlantic Ocean. It’s hard to believe just how close the low lying pad complex is to the beach and potentially destructive tidal surges.

Barely 400 meters (1300 feet) away lies the adjacent Launch Pad 0-B – from which Orbital’s new and unflown solid fueled Minotaur 5 rocket will boost NASA’s LADEE lunar science probe to the Moon in August 2013 – see my upcoming article.

The maiden Antares test flight is called the A-One Test Launch Mission. It will validate the medium class rocket for the actual follow-on flights to the ISS topped with the Cygnus cargo carrier starting later this year with a demonstration docking mission to the orbiting lab complex.

The first stage of the privately developed Antares rocket stands on the pad at NASA's Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)
1st stage of private Antares rocket erect at new Launch Pad 0-A at NASA’s Wallops Flight Facility. This rocket will be rolled back to the hanger to make way for the complete Antares booster due to blast off in mid-April 2013. Credit: Ken Kremer (kenkremer.com)

The Antares first stage is powered by dual liquid fueled AJ26 first stage rocket engines that generate a combined total thrust of some 680,000 lbs. The upper stage features a Castor 30 solid rocket motor with thrust vectoring. Antares can loft payloads weighing over 5000 kg to LEO.

The launch window opens at 3 p.m. and extends for a period of time since this initial test flight is not docking at the ISS, Orbital spokesman Barry Boneski told Universe Today.

Antares will boost a simulated version of the Cygnus carrier – known as a mass simulator – into a target orbit of 250 x 300 kilometers and inclined 51.6 degrees.

Antares A-One will fly on a southeast trajectory and the Cygnus dummy will be instrumented to collect flight and payload data.

The simulated Cygnus will separate from the upper stage 10 minutes after liftoff for orbital insertion.

“All launches are to the south away from population centers. Wildlife areas are nearby,” said Koehler.

The goal of the ambitious A-One mission is to fully demonstrate every aspect of the operational Antares rocket system starting from rollout of the rocket and all required functions of an operational pad from range operation to fueling to liftoff to payload delivery to orbit.

Orbital Sciences Antares rocket and Launch Complex 0-A at the edge of Virginia’s shore at NASA Wallops are crucial to resupply the International Space Station (ISS). Credit: Ken Kremer (kenkremer.com)
Orbital Sciences Antares rocket and Launch Complex 0-A at the edge of Virginia’s shore at NASA Wallops are crucial to resupply the International Space Station (ISS). . Credit: Ken Kremer (kenkremer.com)

Antares/Cygnus will provide a cargo up mass service similar to the Falcon 9/Dragon system developed by SpaceX Corporation – which has already docked three times to the ISS during historic linkups in 2012 and earlier this month following the tension filled March 1 liftoff of the SpaceX CRS-2 mission.

The Dragon is still docked to the ISS and is due to make a parachute assisted return to Earth on March 26.

The first stage of the privately developed Antares rocket stands on the pad at NASA's Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)
Antares rocket 1st stage and huge water tower at NASA’s Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)

Orbital has eight commercial resupply missions manifested under a $1.9 Billion contact with NASA to deliver approximately 20,000 kilograms of supplies and equipment to the ISS, Orbital spokesman Barry Boneski told me.

Tens of millions of American East Coast residents in the Mid-Atlantic and Northeast regions have never before had the opportunity to witness anything as powerful as an Antares rocket launch in their neighborhood.

Watch for my continuing reports through liftoff of the Antares A-One Test flight.

Ken Kremer

NASA Wallops Launch Control Center. Credit: Ken Kremer (kenkremer.com)
NASA Wallops Launch Control Center. Credit: Ken Kremer (kenkremer.com)
Ken Kremer & Antares rocket at NASA Wallops launch pad at the Virginia Eastern Shore.  Only a few hundred feet separate the pad from the Atlantic Ocean. Credit: Ken Kremer (kenkremer.com)
Ken Kremer & Antares rocket at NASA Wallops launch pad at the Virginia Eastern Shore. Only a few hundred feet of beach sand and a low sea wall separate the pad from the Atlantic Ocean and Mother Nature. Credit: Ken Kremer (kenkremer.com)

Antares Rocket Critical Hotfire Engine Test Set for Feb. 12

Orbital Antares rocket at Wallops Island Pad. Credit: Orbital Sciences

Orbital Sciences Corporation has at last scheduled a critical engine test for the firm’s new commercially developed Antares medium class rocket for Feb. 12 at the Mid-Atlantic Regional Spaceport’s (MARS) Pad-0A.

NASA’s Wallops Flight Facility will provide launch range support for the Antares rocket test which is a key milestone on the path to a flight that is crucial for eventual resupply of the International Space Station (ISS).

The window for the 29 second long engine test is 6-9 p.m EST. There will be no live broadcast or formal viewing of the test since it is only operational in nature.

For this hot fire test only the first stage of the Antares rocket will be rolled out to the launch pad – the first of its kind constructed in America in several decades.

The first stage of the Antares rocket stands on the pad at NASA's Wallops Flight Facility. Credit: Orbital Sciences
The first stage of the Antares rocket stands on the pad at NASA’s Wallops Flight Facility. Credit: Orbital Sciences

During the test, the Antares’ dual AJ26 first stage rocket engines will generate a combined total thrust of 680,000 lbs. In a unique capability for its duration, the rocket will be held down on the pad and accounts for the huge water tower built nearby.

The goal of the hot fire test is a complete checkout of the rocket’s first stage and all the support systems at Pad-0A being utilized for the first time.

Antares is the launcher for Orbital’s unmanned commercial Cygnus cargo spacecraft that NASA’s hopes will further reestablish American resupply missions to the International Space Station (ISS) lost with the shuttle’s shutdown.

If successful, a full up test flight of the 131 foot tall Antares with a Cygnus mass simulator bolted on top is planned for the maiden launch in roughly 4 to 6 weeks later, perhaps by late March 2013.

Antares/Cygnus will provide a similar service to the Falcon 9/Dragon system developed by SpaceX Corporation – which has already docked twice to the ISS during historic linkups in 2012.

Both the Orbital and SpaceX systems were developed under NASA’s Commercial Orbital Transportation Services (COTS) program to replace the ISS cargo capability previously tasked to NASA Space Shuttle’s.

A docking demonstration mission to the ISS would follow later in 2013 which would be nearly identical in scope to the SpaceX Falcon 9/Dragon demonstration flight successfully accomplished in May 2012.

SpaceX Falcon 9 rocket liftoff on May 22, 2012 from Space Launch Complex-40 at Cape Canaveral Air Force Station, Fla., on the first commercial mission to the International Space Station.  Orbital hopes to duplicate the SpaceX feat in 2013.  Credit: Ken Kremer
SpaceX Falcon 9 rocket liftoff on May 22, 2012 from Space Launch Complex-40 at Cape Canaveral Air Force Station, Fla., on the first commercial mission to the International Space Station. Orbital hopes to duplicate the SpaceX feat in 2013. Credit: Ken Kremer

The Antares first stage is powered by a pair of Soviet era NK-33 engines built during the 1960 and 1970’s as part of Russia’s ill-fated N-1 manned moon program. The engines have since been upgraded and requalified by Aerojet Corp. and integrated into the Ukrainian built first stage rocket as AJ-26 engines.

Tens of millions of US East Coast residents in the Mid-Atlantic and Northeast regions have never seen anything as powerful as an Antares rocket launch in their neighborhood.

“Antares is the biggest rocket ever launched from Wallops,” NASA Wallops spokesman Keith Koehler told me.

Ken Kremer