NASA Estimates SpaceX 2018 Mars Mission Will Cost Only $300 Million

Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2020. Credit: SpaceX

Ever since Musk founded SpaceX is 2002, with the intention of eventually colonizing Mars, every move he has made has been the subject of attention. And for the past two years, a great deal of this attention has been focused specifically on the development of the Falcon Heavy rocket and the Dragon 2 capsule – the components with which Musk hopes to mount a lander mission to Mars in 2018.

Among other things, there is much speculation about how much this is going to cost. Given that one of SpaceX’s guiding principles is making space exploration cost-effective, just how much money is Musk hoping to spend on this important step towards a crewed mission? As it turns out, NASA produced some estimates at a recent meeting, which indicated that SpaceX is spending over $300 million on its proposed Mars mission.

These estimates were given during a NASA Advisory Council meeting, which took place in Cleveland on July 26th between members of the technology committee. During the course of the meeting, James L. Reuter – the Deputy Associate Administrator for Programs at NASA’s Space Technology Mission Directorate – provided an overview of NASA’s agreement with SpaceX, which was signed in December of 2014 and updated this past April.

Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2018. Credit: SpaceX
Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2018. Credit: SpaceX

In accordance with this agreement, NASA will be providing support for the company’s plan to send an uncrewed Dragon 2 capsule (named “Red Dragon”) to Mars by May of 2018. Intrinsic to this mission is the plan to conduct a propulsive landing on Mars, which would test the Dragon 2‘s SuperDraco Descent Landing capability. Another key feature of this mission will involve using the Falcon Heavy to deploy the capsule.

The terms of this agreement do not involve the transfer of funds, but entails active collaboration that would be to the benefit parties. As Reuters indicated in his presentation, which NASA’s Office of Communications shared with Universe Today via email (and will be available on the STMD’s NASA page soon):

“Building on an existing no-funds-exchanged collaboration with SpaceX, NASA is providing technical support for the firm’s plan to attempt to land an uncrewed Dragon 2 spacecraft on Mars. This collaboration could provide valuable entry, descent and landing (EDL) data to NASA for our journey to Mars, while providing support to American industry. We have similar agreements with dozens of U.S. commercial, government, and non-profit partners.”

Further to this agreement is NASA’s commitment to a budget of $32 million over the next four years, the timetable of which were partially-illustrated in the presentation: “NASA will contribute existing agency resources already dedicated to [Entry, Descent, Landing] work, with an estimated value of approximately $32M over four years with approximately $6M in [Fiscal Year] 2016.”

Diagram showing SpaceX's planned "Red Dragon" mission to Mars. Credit: NASA/SpaceX
Diagram showing SpaceX’s planned “Red Dragon” mission to Mars. Credit: NASA/SpaceX

According to Article 21 of the Space Act Agreement between NASA and SpaceX, this will include providing SpaceX with: “Deep space communications and telemetry; Deep space navigation and trajectory design; Entry, descent and landing system analysis and engineering support; Mars entry aerodynamic and aerothermal database development; General interplanetary mission advice and hardware consultation; and planetary protection consultation and advice.”

For their part, SpaceX has not yet disclosed how much their Martian mission plan will cost. But according to Jeff Foust of SpaceNews, Reuter provided a basic estimate of about $300 million based on a 10 to 1 assessment of NASA’s own financial commitment: “They did talk to us about a 10-to-1 arrangement in terms of cost: theirs 10, ours 1,” said Reuter. “I think that’s in the ballpark.”

As for why NASA has chosen to help SpaceX make this mission happen, this was also spelled out in the course of the meeting. According to Reuter’s presentation: “NASA conducted a fairly high-level technical feasibility assessment and determined there is a reasonable likelihood of mission success that would be enhanced with the addition of NASA’s technical expertise.”

Such a mission would provide NASA with valuable landing data, which would prove very useful when mounting its crewed mission in the 2030s. Other items discussed included NASA-SpaceX collaborative activities for the remainder of 2016 – which involved a “[f]ocus on system design, based heavily on Dragon 2 version used for ISS crew and cargo transportation”.

Artistic concepts of the Falcon Heavy rocket (left) and the Dragon capsule deployed on the surface of Mars (right). Credit: SpaceX
Artistic concepts of the Falcon Heavy rocket (left) and the Dragon capsule deployed on the surface of Mars (right). Credit: SpaceX

It was also made clear that the Falcon Heavy, which SpaceX is close to completing, will serve as the launch vehicle. SpaceX intends to conduct its first flight test (Falcon Heavy Demo Flight 1) of the heavy-lifter in December of 2016. Three more test flights are scheduled to take place between 2017 and the launch of the Mars lander mission, which is still scheduled for May of 2018.

In addition to helping NASA prepare for its mission to the Red Planet, SpaceX’s progress with both the Falcon Heavy and Dragon 2 are also crucial to Musk’s long-term plan for a crewed mission to Mars – the architecture of which has yet to be announced. They are also extremely important in the development of the Mars Colonial Transporter, which Musk plans to use to create a permanent settlement on Mars.

And while $300 million is just a ballpark estimate at this juncture, it is clear that SpaceX will have to commit considerable resources to the enterprise. What’s more, people must keep in mind that this would be merely the first in a series of major commitments that the company will have to make in order to mount a crewed mission by 2024, to say nothing of building a Martian colony!

In the meantime, be sure to check out this animation of the Crew Dragon in flight:

Further Reading: NASA STMD
TOTH: SpaceNews

The Photon Sieve Could Revolutionize Optics

Scientists at NASA"s Goddard Space Flight Center are developing small, inexpensive optics to study the Sun's corona. Credit: NASA's GSFC, SDO AIA Team

Ever since astronomers first began using telescopes to get a better look at the heavens, they have struggled with a basic conundrum. In addition to magnification, telescopes also need to be able to resolve the small details of an object in order to help us get a better understanding of them. Doing this requires building larger and larger light-collecting mirrors, which requires instruments of greater size, cost and complexity.

However, scientists working at NASA Goddard’s Space Flight Center are working on an inexpensive alternative. Instead of relying on big and impractical large-aperture telescopes, they have proposed a device that could resolve tiny details while being a fraction of the size. It’s known as the photon sieve, and it is being specifically developed to study the Sun’s corona in the ultraviolet.

Basically, the photon sieve is a variation on the Fresnel zone plate, a form of optics that consist of tightly spaced sets of rings that alternate between the transparent and the opaque. Unlike telescopes which focus light through refraction or reflection, these plates cause light to diffract through transparent openings. On the other side, the light overlaps and is then focused onto a specific point – creating an image that can be recorded.

This image shows how the photon sieve brings red laser light to a pinpoint focus on its optical axis, but produces exotic diffraction patterns when viewed from the side. Credits: NASA/W. Hrybyk
Image showing the photon sieve bringing red laser light to a pinpoint focus on its optical axis, and producing exotic diffraction patterns. Credits: NASA/W. Hrybyk

The photon sieve operates on the same basic principles, but with a slightly more sophisticated twist. Instead of thin openings (i.e. Fresnel zones), the sieve consists of a circular silicon lens that is dotted with millions of tiny holes. Although such a device would be potentially useful at all wavelengths, the Goddard team is specifically developing the photon sieve to answer a 50-year-old question about the Sun.

Essentially, they hope to study the Sun’s corona to see what mechanism is heating it. For some time, scientists have known that the corona and other layers of the Sun’s atmosphere (the chromosphere, the transition region, and the heliosphere) are significantly hotter than its surface. Why this is has remained a mystery. But perhaps, not for much longer.

As Doug Rabin, the leader of the Goddard team, said in a NASA press release:

“This is already a success… For more than 50 years, the central unanswered question in solar coronal science has been to understand how energy transported from below is able to heat the corona. Current instruments have spatial resolutions about 100 times larger than the features that must be observed to understand this process.”

With support from Goddard’s Research and Development program, the team has already fabricated three sieves, all of which measure 7.62 cm (3 inches) in diameter. Each device contains a silicon wafer with 16 million holes, the sizes and locations of which were determined using a fabrication technique called photolithography – where light is used to transfer a geometric pattern from a photomask to a surface.

Doug Rabin, Adrian Daw, John O’Neill, Anne-Marie Novo-Gradac, and Kevin Denis are developing an unconventional optic that could give scientists the resolution they need to see finer details of the physics powering the sun’s corona. Other team members include Joe Davila, Tom Widmyer, and Greg Woytko, who are not pictured. Credits: NASA/W. Hrybyk
The Goddard team led by Doug Rabin (left) is working on a new optic device that will drastically reduce the size of telescopes. Credits: NASA/W. Hrybyk

However, in the long-run, they hope to create a sieve that will measure 1 meter (3 feet) in diameter. With an instrument of this size, they believe they will be able to achieve up to 100 times better angular resolution in the ultraviolet than NASA’s high-resolution space telescope – the Solar Dynamics Observatory. This would be just enough to start getting some answers from the Sun’s corona.

In the meantime, the team plans to begin testing to see if the sieve can operate in space, a process which should take less than a year. This will include whether or not it can survive the intense g-forces of a space launch, as well as the extreme environment of space. Other plans include marrying the technology to a series of CubeSats so a two-spacecraft formation-flying mission could be mounted to study the Sun’s corona.

In addition to shedding light on the mysteries of the Sun, a successful photon sieve could revolution optics as we know it. Rather than being forced to send massive and expensive apparatus’ into space (like the Hubble Space Telescope or the James Webb Telescope), astronomers could get all the high-resolution images they need from devices small enough to stick aboard a satellite measuring no more than a few square meters.

This would open up new venues for space research, allowing private companies and research institutions the ability to take detailed photos of distant stars, planets, and other celestial objects. It would also constitute another crucial step towards making space exploration affordable and accessible.

Further Reading: NASA

Falcon Heavy Vs. Saturn V

The Saturn V (left) and the Falcon Heavy (right). Credit: NASA/SpaceX

Its an Epic Rocket Battle! Or a Clash of the Titans, if you will. Except that in this case, the titans are the two of the heaviest rockets the world has ever seen. And the contenders couldn’t be better matched. On one side, we have the heaviest rocket to come out of the US during the Space Race, and the one that delivered the Apollo astronauts to the Moon. On the other, we have the heaviest rocket created by the NewSpace industry, and which promises to deliver astronauts to Mars.

And in many respects, the Falcon Heavy is considered to be the successor of the Saturn V. Ever since the latter was retired in 1973, the United States has effectively been without a super-heavy lifter. And with the Space Launch System still in development, the Falcon Heavy is likely to become the workhorse of both private space corporations and space agencies in the coming years.

So let’s compare these two rockets, taking into account their capabilities, specifications, and the history of their development and see who comes out on top. BEGIN!

Launch of the modified Saturn V rocket carrying the Skylab space station. Credit: NASA
Launch of the modified Saturn V rocket carrying the Skylab space station. Credit: NASA

Development History:

The development of the Saturn V began in 1946 with Operation Paperclip, a US government program which led to the recruitment of Wernher von Braun and several other World War II-era German rocket scientists and technicians. The purpose of this program was to leverage the expertise of these scientists to give the US an edge in the Cold War through the development of intercontinental ballistic missiles (ICBMs).

Between 1945 and the mid-to-late 50s von Braun acted as an advisor to US armed forces for the sake of developing military rockets only. It was not until 1957, with the Soviet launch of Sputnik-1 using an R-7 rocket – a Soviet ICBM also capable of delivering thermonuclear warheads –  that the US government began to consider the use of rockets for space exploration.

Thereafter, von Braun and his team began developing the Jupiter series of rockets –  a modified Redstone ballistic missile with two solid-propellant upper stages. These proved to be a major step towards the Saturn V, hence why the Jupiter series was later nicknamed “an infant Saturn”. Between 1960 and 1962, the Marshall Space Flight Center began designing the rockets that would eventually be used by the Apollo Program.

After several iterations, the Saturn C-5 design (later named the Saturn V) was created. By 1964, it was selected for NASA’s Apollo Program as the rocket that would conduct a Lunar Orbit Rendezvous (LRO). This plan called for a large rocket to launch a single spacecraft to the Moon, but only a small part of that spacecraft (the Lunar Module) would actually land on the surface. That smaller module would then rendezvous with the main spacecraft – the Command/Service Module (CSM) – in lunar orbit and the crew would return home.

A Saturn IV launching the historic Apollo 11 mission. Image: NASA/Michael Vuijlsteke. Public Domain image.
A Saturn V launching the historic Apollo 11 mission. Credit: NASA/Michael Vuijlsteke. Public Domain image.

Development of the Falcon Heavy was first announced in 2011 at the National Press Club in Washington D.C. In a statement, Musk drew direct comparisons to the Saturn V, claiming that the Falcon Heavy would deliver “more payload to orbit or escape velocity than any vehicle in history, apart from the Saturn V moon rocket, which was decommissioned after the Apollo program.”

Consistent with this promise of a “super heavy-lift” vehicle, SpaceX’s original specifications indicated a projected payload of 53,000 kg (117,000 lbs) to Low-Earth Orbit (LEO), and 12,000 kgg (26,000 lbs) to Geosynchronous Transfer Orbit (GTO). In 2013, these estimates were revised to 54,400 kg (119,900 lb) to LEO and 22,200 kg (48,900 lb) to GTO, as well as 16,000 kilograms (35,000 lb) to translunar trajectory, and 13,600 kilograms (31,000 lb) on a trans-Martian orbit to Mars, and 2,900 kg (6,400 lb) to Pluto.

In 2015, the design was changed – alongside changes to the Falcon 9 v.1.1 – to take advantage of the new Merlin 1D engine and changes to the propellant tanks. The original timetable, proposed in 2011, put the rocket’s arrival at SpaceX’s west-coast launch location – Vandenberg Air Force Base in California – at before the end of 2012.

The first launch from Vandenberg was take place in 2013, while the first launch from Cape Canaveral was to take place in late 2013 or 2014. But by mid-2015, delays caused by failures with Falcon 9 test flights caused the first launch to be pushed to late 2016. The rocket has also been relocated to the Kennedy Space Center Launch Complex in Florida.

Artist's concept of the SpaceX Red Dragon spacecraft launching to Mars on SpaceX Falcon Heavy as soon as 2018. Credit: SpaceX
Artist’s concept of the SpaceX Red Dragon spacecraft launching to Mars on SpaceX Falcon Heavy as soon as 2018. Credit: SpaceX

SpaceX also announced in July 0f 2016 that it planned to expand its landing facility near Cape Canaveral to take advantage of the reusable technology. With three landing pads now planned (instead of one on land and a drone barge at sea), they hope to be able to recover all of the spent boosters that will be used for the launch of a Falcon Heavy.

Design:

Both the Saturn V and Falcon Heavy were created to do some serious heavy lifting. Little wonder, since both were created for the sole purpose of “slipping the surly bonds” of Earth and putting human beings and cargo onto other celestial bodies. For its part, the Saturn V‘s size and payload surpassed all other previous rockets, reflecting its purpose of sending astronauts to the Moon.

With the Apollo spacecraft on top, it stood 111 meters (363 feet) tall and was 10 meters (33 feet) in diameter, without fins. Fully fueled, the Saturn V weighed 2,950 metric tons (6.5 million pounds), and had a payload capacity estimated at 118,000 kg (261,000 lbs) to LEO, but was designed for the purpose of sending 41,000 kg (90,000 lbs) to Trans Lunar Insertion (TLI).

Later upgrades on the final three missions boosted that capacity to 140,000 kg (310,000 lbs) to LEO and 48,600 kg (107,100 lbs) to the Moon. The Saturn V was principally designed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, while numerous subsystems were developed by subcontractors. This included the engines, which were designed by Rocketdyne, a Los Angeles-based rocket company.

Diagram of Saturn V Launch Vehicle. Credit: NASA/MSFC
Diagram of Saturn V Launch Vehicle. Credit: NASA/MSFC

The first stage (aka. S-IC) measured 42 m (138 feet) tall and 10 m (33 feet) in diameter, and had a dry weight of 131 metric tons (289,000 lbs) and a total weight of over 2300 metric tons (5.1 million lbs) when fully fueled. It was powered by five Rocketdyne F-1 engines arrayed in a quincunx (four units arranged in a square, and the fifth in the center) which provided it with 34,000 kN (7.6 million pounds-force) of thrust.

The Saturn V consisted of three stages – the S-IC first stage, S-II second stage and the S-IVB third stage – and the instrument unit. The first stage used Rocket Propellant-1 (RP-1), a form of kerosene similar to jet fuel, while the second and third stages relied on liquid hydrogen for fuel. The second and third stage also used solid-propellant rockets to separate during launch.

The Falcon Heavy is based around a core that is a single Falcon 9 with two additional Falcon 9 first stages acting as boosters. While similar in concept to the Delta IV Heavy launcher and proposals for the Atlas V HLV and Russian Angara A5V, the Falcon Heavy was specifically designed to exceed all current designs in terms of operational flexibility and payload. As with other SpaceX rockets, it was also designed to incorporate reusability.

The rocket relies on two stages, with the possibility of more to come, that measure 70 m (229.6 ft) in height and 12.2 m (39.9 ft) in width. The first stage is powered by three Falcon 9 cores, each of which is equipped with nine Merlin 1D engines. These are arranged in a circular fashion with eight around the outside and one in th middle (what SpaceX refers to as the Octaweb) in order to streamline the manufacturing process. Each core also includes four extensible landing legs and grid fins to control descent and conduct landings.

Chart comparing SpaceX's Falcon 9 and Falcon Heavy. Credit: SpaceX
Chart comparing SpaceX’s Falcon 9 and Falcon Heavy rocket. Credit: SpaceX

The first stage of the Falcon Heavy relies on Subcooled LOX (liquid oxygen) and chilled RP-1 fuel; while the upper stage also uses them, but under normal conditions. The Falcon Heavy has a total sea-level thrust at liftoff of 22,819 kN (5,130,000 lbf) which rises to 24,681 kN (5,549,000 lbf) as the craft climbs out of the atmosphere. The upper stage is powered by a single Merlin 1D engine which has a thrust of 34 kN (210,000 lbf) and has been modified for use in a vacuum.

Although not a part of the initial Falcon Heavy design, SpaceX has been extending its work with reusable rocket systems to ensure that the boosters and core stage can be recovered. Currently, no work has been announced on making the upper stages recoverable as well, but recent successes recovering the first stages of the Falcon 9 may indicate a possible change down the road.

The consequence of adding reusable technology will mean that the Falcon Heavy will have a reduced payload to GTO. However, it will also mean that it will be able to fly at a much lower cost per launch. With full reusability on all three booster cores, the GTO payload will be approximately 7,000 kg (15,000 lb). If only the two outside cores are reusable while the center is expendable, the GTO payload would be approximately 14,000 kg (31,000 lb).

Cost:

The Saturn V rocket was by no means a small investment. In fact, one of the main reasons for the cancellation of the last three Apollo flights was the sheer cost of producing the rockets and financing the launches. Between 1964 and 1973, a grand total of $6.417 billion USD was appropriated for the sake of research, development, and flights.

Looking at the business end of the Saturn V as it gets moved towards the barge that will transport it to Mississippi. Image: Infinity Science Center.
A Saturn V rocket viewed from the rear, showing its five Rocketdyne F-1 engines. Credit: Infinity Science Center

Adjusted to 2016 dollars, that works out to $41.4 billion USD. In terms of individual launches, the Saturn V would cost between $185 and $189 million USD, of which $110 million was spent on production alone. Adjusted for inflation, this works out to approximately $1.23 billion per launch, of which $710 million went towards production.

By contrast, when Musk appeared before the US Senate Committee on Commerce, Science and Transportation in May 2004, he stated that his ultimate goal with the development of SpaceX was to bring the total cost per launch down to $1,100 per kg ($500/pound). As of April 2016, SpaceX has indicated that a Falcon Heavy could lift 2268 kg (8000 lbs) to GTO for a cost of $90 million a launch – which works out to $3968.25 per kg ($1125 per pound).

No estimates are available yet on how a fully-reusable Falcon Heavy will further reduce the cost of individual launches. And again, it will vary depending on whether or not the boosters and the core, or just the external boosters are recoverable. Making the upper stage recoverable as well will lead to a further drop in costs, but will also likely impact performance.

Specifications:

So having covered their backgrounds, designs and overall cost, let’s move on to a side-by-side comparison of these two bad boys. Let’s see how they stack up, pound for pound, when all things are considered – including height, weight, lift payload, and thrust.

Saturn V: Falcon Heavy:
Height: 110.6 m (363 ft) 70 m (230 ft)
Diameter: 10.1 m (33 ft) 12.2 m (40 ft)
Weight: 2,970,000 kg
(6,540,000 lbs)
1,420,788 kg
(3,132,301 lb)
Stages:  3  2+
Engines
(1st Stage):
5 Rocketdyne F-1 3 x 9 Merlin 1D
   2nd stage 5 Rocketdyne J-2 1 Merlin 1D
   3rd stage 1 Rocketdyne J-2
Thrust
(1st stage):
34,020 kN

22,918 kN (sea level);
24,681 kN (vacuum)

   2nd stage 4,400 kN 934 kN
   3rd stage 1,000 kN
Payload (LEO): 140,000 kg
(310,000 lbs)
54,400 kg
(119,900 lbs)
Payload (TLI):  48,600 kg
(107,100 lbs)

 16,000 kg
(35,000 lbs)

When put next to each other, you can see that the Saturn V has the advantage when it comes to muscle. It’s bigger, heavier, and can deliver a bigger payload to space. On the other hand, the Falcon Heavy is smaller, lighter, and a lot cheaper. Whereas the Saturn V can put a heavier payload into orbit, or send it on to another celestial body, the Falcon Heavy could perform several missions for every one mounted by its competitor.

But whereas the contributions of the venerable Saturn V cannot be denied, the Falcon Heavy has yet to demonstrate its true worth to space exploration. In many ways, its like comparing a retired champion to an up-and-comer who, despite showing lots of promise and getting all the headlines, has yet to win a single bout.

But should the Falcon Heavy prove successful, it will likely be recognized as the natural successor to the Saturn V. Ever since the latter was retired in 1973, NASA has been without a rocket with which to mount long-range crewed missions. And while heavy-lift options have been available – such as the Delta IV Heavy and Atlas V – none have had the performance, payload capacity, or the affordability that the new era of space exploration needs.

In truth, this battle will take several years to unfold. Only after the Falcon Heavy is rigorously tested and SpaceX manages to deliver on their promises of cheaper space launches, a return to the Moon and a mission to Mars (or fail to, for that matter) will we be able to say for sure which rocket was the true champion of human space exploration! But in the meantime, I’m sure there’s plenty of smack talk to be had by fans of both! Preferably in a format that rhymes!

Further Reading: NASA, SpaceX

And a tip of the hat to ERB!

NASA Welds Together 1st SLS Hydrogen Test Tank for America’s Moon/Mars Rocket – Flight Unit in Progress

The first liquid hydrogen tank, also called the qualification test article, for NASA's new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine on July 22, 2016 after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com
The first liquid hydrogen tank, also called the qualification test article, on NASA's new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine on July 22, 2016 after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans.  Credit: Ken Kremer/kenkremer.com
The first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine on July 22, 2016 after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

MICHOUD ASSEMBLY FACILITY, NEW ORLEANS, LA – NASA has just finished welding together the very first fuel tank for America’s humongous Space Launch System (SLS) deep space rocket currently under development – and Universe Today had an exclusive up close look at the liquid hydrogen (LH2) test tank shortly after its birth as well as the first flight tank, during a tour of NASA’s New Orleans rocket manufacturing facility on Friday, July 22, shortly after completion of the milestone assembly operation.

“We have just finished welding the first liquid hydrogen qualification tank article …. and are in the middle of production welding of the first liquid hydrogen flight hardware tank [for SLS-1] in the big Vertical Assembly Center welder!” explained Patrick Whipps, NASA SLS Stages Element Manager, in an exclusive hardware tour and interview with Universe Today on July 22, 2016 at NASA’s Michoud Assembly Facility (MAF) in New Orleans.

“We are literally putting the SLS rocket hardware together here at last. All five elements to put the SLS stages together [at Michoud].”

This first fully welded SLS liquid hydrogen tank is known as a ‘qualification test article’ and it was assembled using basically the same components and processing procedures as an actual flight tank, says Whipps.

“We just completed the liquid hydrogen qualification tank article and lifted it out of the welding machine and put it into some cradles. We will put it into a newly designed straddle carrier article next week to transport it around safely and reliably for further work.”

And welding of the liquid hydrogen flight tank is moving along well.

“We will be complete with all SLS core stage flight tank welding in the VAC by the end of September,” added Jackie Nesselroad, SLS Boeing manager at Michoud. “It’s coming up very quickly!”

“The welding of the forward dome to barrel 1 on the liquid hydrogen flight tank is complete. And we are doing phased array ultrasonic testing right now!”

SLS is the most powerful booster the world has even seen and one day soon will propel NASA astronauts in the agency’s Orion crew capsule on exciting missions of exploration to deep space destinations including the Moon, Asteroids and Mars – venturing further out than humans ever have before!

The LH2 ‘qualification test article’ was welded together using the world’s largest welder – known as the Vertical Assembly Center, or VAC, at Michoud.

And it’s a giant! – measuring approximately 130-feet in length and 27.6 feet (8.4 m) in diameter.

See my exclusive up close photos herein documenting the newly completed tank as the first media to visit the first SLS tank. I saw the big tank shortly after it was carefully lifted out of the welder and placed horizontally on a storage cradle on Michoud’s factory floor.

The newly assembled first liquid hydrogen tank, also called the qualification test article, for NASA's new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine (blue) on July 22, 2016. It was lifted out of the welder (top) after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans.  Credit: Ken Kremer/kenkremer.com
The newly assembled first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine (blue) on July 22, 2016. It was lifted out of the welder (top) after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

Finishing its assembly after years of meticulous planning and hard work paves the path to enabling the maiden test launch of the SLS heavy lifter in the fall of 2018 from the Kennedy Space Center (KSC) in Florida.

The qual test article is the immediate precursor to the actual first LH2 flight tank now being welded.

“We will finish welding the liquid hydrogen and liquid oxygen flight tanks by September,” Whipps told Universe Today.

Up close view of the dome of the newly assembled first ever liquid hydrogen test tank for NASA's new Space Launch System (SLS) heavy lift rocket on July 22, 2016  after it was welded together at NASA’s Michoud Assembly Facility in New Orleans.  Sensors will be attached to both ends for upcoming structural loads and proof testing.  Credit: Ken Kremer/kenkremer.com
Up close view of the dome of the newly assembled first ever liquid hydrogen test tank for NASA’s new Space Launch System (SLS) heavy lift rocket on July 22, 2016 after it was welded together at NASA’s Michoud Assembly Facility in New Orleans. Sensors will be attached to both ends for upcoming structural loads and proof testing. Credit: Ken Kremer/kenkremer.com

Technicians assembled the LH2 tank by feeding the individual metallic components into NASA’s gigantic “Welding Wonder” machine – as its affectionately known – at Michoud, thus creating a rigid 13 story tall structure.

The welding work was just completed this past week on the massive silver colored structure. It was removed from the VAC welder and placed horizontally on a cradle.

I watched along as the team was also already hard at work fabricating SLS’s first liquid hydrogen flight article tank in the VAC, right beside the qualification tank resting on the floor.

Welding of the other big fuel tank, the liquid oxygen (LOX) qualification and flight article tanks will follow quickly inside the impressive ‘Welding Wonder’ machine, Nesselroad explained.

The LH2 and LOX tanks sit on top of one another inside the SLS outer skin.

The SLS core stage – or first stage – is mostly comprised of the liquid hydrogen and liquid oxygen cryogenic fuel storage tanks which store the rocket propellants at super chilled temperatures. Boeing is the prime contractor for the SLS core stage.

To prove that the new welding machines would work as designed, NASA opted “for a 3 stage assembly philosophy,” Whipps explained.

Engineers first “welded confidence articles for each of the tank sections” to prove out the welding techniques “and establish a learning curve for the team and test out the software and new weld tools. We learned a lot from the weld confidence articles!”

“On the heels of that followed the qualification weld articles” for tank loads testing.

“The qualification articles are as ‘flight-like’ as we can get them! With the expectation that there are still some tweaks coming.”

“And finally that leads into our flight hardware production welding and manufacturing the actual flight unit tanks for launches.”

“All the confidence articles and the LH2 qualification article are complete!”

What’s the next step for the LH2 tank?

The test article tank will be outfitted with special sensors and simulators attached to each end to record reams of important engineering data, thereby extending it to about 185 feet in length.

Thereafter it will loaded onto the Pegasus barge and shipped to NASA’s Marshall Space Flight Center in Huntsville, Alabama, for structural loads testing on one of two new test stands currently under construction for the tanks. The tests are done to prove that the tanks can withstand the extreme stresses of spaceflight and safely carry our astronauts to space.

“We are manufacturing the simulators for each of the SLS elements now for destructive tests – for shipment to Marshall. It will test all the stress modes, and finally to failure to see the process margins.”

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration.   Credit: NASA/MSFC
NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

The SLS core stage builds on heritage from NASA’s Space Shuttle Program and is based on the shuttle’s External Tank (ET). All 135 ET flight units were built at Michoud during the thirty year long shuttle program by Lockheed Martin.

“We saved billions of dollars and years of development effort vs. starting from a clean sheet of paper design, by taking aspects of the shuttle … and created an External Tank type generic structure – with the forward avionics on top and the complex engine section with 4 engines (vs. 3 for shuttle) on the bottom,” Whipps elaborated.

“This is truly an engineering marvel like the External Tank was – with its strength that it had and carrying the weight that it did. If you made our ET the equivalent of a Coke can, our thickness was about 1/5 of a coke can.”

“It’s a tremendous engineering job. But the ullage pressures in the LOX and LH2 tanks are significantly more and the systems running down the side of the SLS tank are much more sophisticated. Its all significantly more complex with the feed lines than what we did for the ET. But we brought forward the aspects and designs that let us save time and money and we knew were effective and reliable.”

The Vertical Weld Center tool used to fabricate barrel segments for the SLS liquid hydrogen and oxygen core stage tanks via vertical friction stir welding operations at NASA’s Michoud Assembly Facility in New Orleans.  Credit: Ken Kremer/kenkremer.com
The Vertical Weld Center tool used to fabricate barrel segments for the SLS liquid hydrogen and oxygen core stage tanks via vertical friction stir welding operations at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

The SLS core stage is comprised of five major structures: the forward skirt, the liquid oxygen tank (LOX), the intertank, the liquid hydrogen tank (LH2) and the engine section.

The LH2 and LOX tanks feed the cryogenic propellants into the first stage engine propulsion section which is powered by a quartet of RS-25 engines – modified space shuttle main engines (SSMEs) – and a pair of enhanced five segment solid rocket boosters (SRBs) also derived from the shuttles four segment boosters.

The tanks are assembled by joining previously manufactured dome, ring and barrel components together in the Vertical Assembly Center by a process known as friction stir welding. The rings connect and provide stiffness between the domes and barrels.

The LH2 tank is the largest major part of the SLS core stage. It holds 537,000 gallons of super chilled liquid hydrogen. It is comprised of 5 barrels, 2 domes, and 2 rings.

The LOX tank holds 196,000 pounds of liquid oxygen. It is assembled from 2 barrels, 2 domes, and 2 rings and measures over 50 feet long.

The material of construction of the tanks has changed compared to the ET.

“The tanks are constructed of a material called the Aluminum 2219 alloy,” said Whipps. “It’s a ubiquosly used aerospace alloy with some copper but no lithium, unlike the shuttle superlightweight ET tanks that used Aluminum 2195. The 2219 has been a success story for the welding. This alloy is heavier but does not affect our payload potential.”

“The intertanks are the only non welded structure. They are bolted together and we are manufacturing them also. It’s much heavier and thicker.”

Overall, the SLS core stage towers over 212 feet (64.6 meters) tall and sports a diameter of 27.6 feet (8.4 m).

NASA’s Vehicle Assembly Center is the world’s largest robotic weld tool. The domes and barrels are assembled from smaller panels and piece parts using other dedicated robotic welding machines at Michoud.

The total weight of the whole core stage empty is 188,000 pounds and 2.3 million pounds when fully loaded with propellant. The empty ET weighed some 55,000 pounds.

Considering that the entire Shuttle ET was 154-feet long, the 130-foot long LH2 tank alone isn’t much smaller and gives perspective on just how big it really is as the largest rocket fuel tank ever built.

“So far all the parts of the SLS rocket are coming along well.”

“The Michoud SLS workforce totals about 1000 to 1500 people between NASA and the contractors.”

Every fuel tank welded together from now on after this series of confidence and qualification LOX and LH2 tanks will be actual flight article tanks for SLS launches.

“There are no plans to weld another qualification tank after this,” Nesselroad confirmed to me.

What’s ahead for the SLS-2 core stage?

“We start building the second SLS flight tanks in October of this year – 2016!” Nesselroad stated.

The world’s largest welder was specifically designed to manufacture the core stage of the world’s most powerful rocket – NASA’s SLS.

The Vertical Assembly Center welder was officially opened for business at NASA’s Michoud Assembly Facility in New Orleans on Friday, Sept. 12, 2014.

NASA Administrator Charles Bolden was personally on hand for the ribbon-cutting ceremony at the base of the huge VAC welder.

The state-of-the-art welding giant stands 170 feet tall and 78 feet wide. It complements the world-class welding toolkit being used to assemble various pieces of the SLS core stage including the domes, rings and barrels that have been previously manufactured.

The Gore Weld Tool (foreground) and  Circumferential Dome Weld Tool (background) Center tool used to fabricate dome segments for the SLS liquid hydrogen and oxygen core stage tanks via vertical friction stir welding operations at NASA’s Michoud Assembly Facility in New Orleans.  Credit: Ken Kremer/kenkremer.com
The Gore Weld Tool (foreground) and Circumferential Dome Weld Tool (background) used to fabricate dome segments for the SLS liquid hydrogen and oxygen core stage tanks via vertical friction stir welding operations at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

The maiden test flight of the SLS/Orion is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) Block 1 configuration with a liftoff thrust of 8.4 million pounds – more powerful than NASA’s Saturn V moon landing rocket.

Although the SLS-1 flight in 2018 will be uncrewed, NASA plans to launch astronauts on the SLS-2/EM-2 mission slated for the 2021 to 2023 timeframe.

The exact launch dates fully depend on the budget NASA receives from Congress and who is elected President in the November 2016 election – and whether they maintain or modify NASA’s objectives.

“If we can keep our focus and keep delivering, and deliver to the schedules, the budgets and the promise of what we’ve got, I think we’ve got a very capable vision that actually moves the nation very far forward in moving human presence into space,” said William Gerstenmaier, associate administrator for the Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington, during the post QM-2 SRB test media briefing in Utah last month.

“This is a very capable system. It’s not built for just one or two flights. It is actually built for multiple decades of use that will enable us to eventually allow humans to go to Mars in the 2030s.”

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket.  Credit: Ken Kremer/kenkremer.com
Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SLS and Orion crew vehicle, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Juno at Jupiter, Orbital ATK Antares & Cygnus, Boeing, Space Taxis, Mars rovers, NASA missions and more at Ken’s upcoming outreach events:

July 27-28: “ULA Atlas V NRO Spysat launch July 28, SpaceX launch to ISS on CRS-9, SLS, Orion, Juno at Jupiter, ULA Delta 4 Heavy NRO spy satellite, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Graphic shows all the dome, barrel, ring and engine components used to assemble the five major structures of the core stage of NASA’s Space Launch System (SLS) in Block 1 configuration. Credits: NASA/MSFC
Graphic shows all the dome, barrel, ring and engine components used to assemble the five major structures of the core stage of NASA’s Space Launch System (SLS) in Block 1 configuration. Credits: NASA/MSFC
At NASA’s Michoud Assembly Facility in New Orleans, Patrick Whipps/NASA SLS Stages Element Manager and Ken Kremer/Universe Today discuss details of SLS manufacture by the Circumferential Dome Weld Tool used to fabricate dome segments for the SLS liquid hydrogen and oxygen core stage tanks.   Credit: Ken Kremer/kenkremer.com
At NASA’s Michoud Assembly Facility in New Orleans, Patrick Whipps/NASA SLS Stages Element Manager and Ken Kremer/Universe Today discuss details of SLS manufacture by the Circumferential Dome Weld Tool used to fabricate dome segments for the SLS liquid hydrogen and oxygen core stage tanks. Credit: Ken Kremer/kenkremer.com
Graphic shows Block I configuration of NASA’s Space Launch System (SLS). Credits: NASA/MSFC
Graphic shows Block I configuration of NASA’s Space Launch System (SLS). Credits: NASA/MSFC

Looking for Canada’s Next Generation of Space Explorers

2007-08-11 - The Canadian Space Agency (CSA) Astronaut Dave Williams performs a spacewalk during Shuttle Mission STS-118. Credit: © Canadian Space Agency/NASA

For decades, Canada has made significant contributions to the field of space exploration. These include the development of sophisticated robotics, optics, participation in important research, and sending astronauts into space as part of NASA missions. And who can forget Chris Hadfield, Mr. “Space Oddity” himself? In addition to being the first Canadian to command the ISS, he is also known worldwide as the man who made space exploration fun and accessible through social media.

And in recent statement, the Canadian Space Agency (CSA) has announced that it is looking for new recruits to become the next generation of Canadian astronauts. With two positions available, they are looking for applicants who embody the best qualities of astronauts, which includes a background in science and technology, exceptional physical fitness, and a desire to advance the cause of space exploration.

Over the course of the past few decades, the Canadian Space Agency has established a reputation for the development of space-related technologies. In 1962, Canada deployed the Alouette satellite, which made it the third nation – after the US and USSR – to design and build its own artificial Earth satellite. And in 1972, Canada became the first country to deploy a domestic communications satellite, known as Anik 1 A1.

The "Canadarm", pictured here as part of Space Shuttle mission STS-2, Nov. 1981. Credit: NASA
The “Canadarm”, pictured here as part of Space Shuttle mission STS-2, it’s first deployment to space, in November of 1981. Credit: NASA

Perhaps the best-known example of Canada’s achievements comes in the field of robotics, and goes by the name of the Shuttle Remote Manipulator System (aka. “the Canadarm“). This robotic arm was introduced in 1981, and quickly became a regular feature within the Space Shuttle Program.

“Canadarm is the best-known example of the key role of Canada’s space exploration program,” said Maya Eyssen, a spokeperson for the CSA, via email. “Our robotic contribution to the shuttle program secured a mission spot for our nation’s first astronaut to fly to space –Marc Garneau. It also paved the way for Canada’s participation in the International Space Station.”

It’s successor, the Canadarm2, was mounted on the International Space Station in 2001, and has since been augmented with the addition of the Dextre robotic hand – also of Canadian design and manufacture. This arm, like its predecessor, has become a mainstay of operations aboard the ISS.

Over the past 15 years, Canadarm2 has played a critical role in assembling and maintaining the Station,” said Eyssen. “It was used on almost every Station assembly mission. Canadarm2  and Dextre are used to capture commercial space ships, unload their cargo and operate with millimeter precision in space. They are both featured on our $5 bank notes. The technology behind these robots also benefits those on earth through technological spin-offs used for neurosurgery, pediatric surgery and breast-cancer detection.”

Backdropped against a cloudy portion of Earth, Canada’s Dextre robotic "handyman" and Canadarm2 dig out the trunk of SpaceX’s Dragon cargo vessel docked to the ISS after completing a task 225 miles above the home planet. Credit: NASA
Canada’s Dextre robotic “handyman” and Canadarm2 pictured digging out the trunk of a SpaceX’s Dragon cargo vessel docked to the ISS. Credit: NASA

In terms of optics, the CSA is renowned for the creation of the Advanced Space Vision System (SVS) used aboard the ISS. This computer-vision system uses regular 2D cameras located in the Space Shuttle Bay, on the Canadarm, or on the hull of the ISS itself – along with cooperative targets – to calculate the 3D position of objects around of the station.

But arguably, Canada’s most enduring contribution to space exploration have come in the form of its astronauts. Long before Hadfield was garnering attention with his rousing rendition of David Bowie’s “Space Oddity“, or performing “Is Someone Singing (ISS)” with The Barenaked Ladies and The Wexford Gleeks choir (via a video connection from the ISS), Canadians were venturing into space as part of several NASA missions.

Consider Marc Garneau, a retired military officer and engineer who became the first Canadian astronaut to go into space, taking part in three flights aboard NASA Space shuttles in 1984, 1996 and 2000. Garneau also served as the president of the Canadian Space Agency from 2001 to 2006 before retiring for active service and beginning a career in politics.

And how about Roberta Bondar? As Canada’s first female astronaut, she had the additional honor of designated as the Payload Specialist for the first International Microgravity Laboratory Mission (IML-1) in 1992. Bondar also flew on the NASA Space Shuttle Discovery during Mission STS-42 in 1992, during which she performed experiments in the Spacelab.

The Soyuz TMA-15 crew (from left to right), showing Thirsk, Roman Romanenko, Frank De Winne. Credit: NASA/Victor Zelentsov
The Soyuz TMA-15 crew (from left to right), showing Robert Thirsk, Roman Romanenko, and Frank De Winne. Credit: NASA/Victor Zelentsov

And then there’s Robert Thirsk, an engineer and physician who holds the Canadian records for the longest space flight (187 days 20 hours) and the most time spent in space (204 days 18 hours). All three individuals embodied the unique combination of academic proficiency, advanced training, personal achievement, and dedication that make up an astronaut.

And just like Hadfield, Bonard, Garneau and Thirsk have all retired on gone on to have distinguished careers as chancellors of academic institutions, politicians, philanthropists, noted authors and keynote speakers. All told, eight Canadians astronauts have taken part in sixteen space missions and been deeply involved in research and experiments conducted aboard the ISS.

Alas, every generation has to retire sooner or later. And having made their contributions and moved onto other paths, the CSA is looking for two particularly bright, young, highly-motivated and highly-skilled people to step up and take their place.

The recruitment campaign was announced this past Sunday, July 17th, by the Honourable Navdeep Bains – the Minister of Innovation, Science and Economic Development. Those who are selected will be based at NASA’s Johnson Space Center in Houston, Texas, where they will provide support for space missions in progress, and prepare for future missions.

Canadian astronaut Chris Hadfield, the first Canadian to serve as commander of the ISS. Credit: CTV
Canadian astronaut Chris Hadfield, the first Canadian to serve as commander of the ISS. Credit: CTV

Canadian astronauts also periodically return to Canada to participate in various activities and encourage young Canadians to pursue an education in the STEM fields (science, technology, engineering and mathematics). As Eyssen explained, the goals of the recruitment drive is to maintain the best traditions of the Canadian space program as we move into the 21st century:

“The recruitment of new astronauts will allow Canada to maintain a robust astronaut corps and be ready to play a meaningful role in future human exploration initiatives. Canada is currently entitled to two long-duration astronaut flights to the ISS between now and 2024. The first one, scheduled for November 2018, will see David Saint-Jacques launch to space for a six-month mission aboard the ISS. The second flight will launch before 2024. As nations work together to chart the next major international space exploration missions, our continued role in the ISS will ensure that Canada is well-positioned to be a trusted partner in humanity’s next steps in space.

“Canada is seeking astronauts to advance critical science and research aboard the International Space Station and pave the way for human missions beyond the Station. Our international partners are exploring options beyond the ISS. This new generation of astronauts will be part of Canada’s next chapter of space exploration. That may include future deep-space exploration missions.”

The recruitment drive will be open from June 17th to August 15th, 2016, and the selected candidates are expected to be announced by next summer. This next class of Canadian astronaut candidates will start their training in August 2017 at the Johnson Space Center. The details can be found at the Canadian Space Agency‘s website, and all potential applicants are advised to read the campaign information kit before applying.

Alongside their efforts to find the next generation of astronauts, the Canadian government’s 2016 annual budget has also provided the CSA with up to $379 million dollars over the next eight years to extend Canada’s participation in the International Space Station on through to 2024. Gotta’ keep reaching for those stars, eh?

Further Reading: asc-csa.gc.ca

Flawless Capture and Berthing of SpaceX Dragon Supply Ship at ISS

The SpaceX Dragon is captured in the grips of the Canadarm2 robotic arm. Credit: NASA TV
The SpaceX Dragon is captured in the grips of the Canadarm2 robotic arm. Credit: NASA TV
The SpaceX Dragon is captured in the grips of the Canadarm2 robotic arm. Credit: NASA TV

KENNEDY SPACE CENTER, FL – Following a flawless post midnight blastoff two mornings ago, a pair of NASA astronauts executed a flawless capture of the newest SpaceX Dragon supply ship at the International Space Station early this morning, July 20, carrying 2.5 tons of priceless research equipment and gear for the resident astronauts and cosmonauts.

As the orbiting outpost was traveling 252 statute miles over the Great Lakes, NASA’s veteran Expedition 48 Commander Jeff Williams and newly arrived NASA Flight Engineer Kate Rubins used the station’s 57.7-foot (17.6-meter) Canadian-built robotic arm to reach out and capture the Dragon CRS-9 spacecraft at 6:56 a.m. EDT.

“Good capture confirmed after a two day rendezvous,” said Houston Mission Control at NASA’s Johnson Space Center, as Dragon was approximately 30 feet (10 meters) away from the station.

“We’ve captured us a Dragon,” radioed Williams.

“Congratulations to the entire team that put this thing together, launched it, and successfully rendezvoused it to the International Space Station. We look forward to the work that it brings.”

The SpaceX Dragon is seen attached to the International Space Station’s Harmony module just before orbital sunrise. Credit: NASA TV
The SpaceX Dragon is seen attached to the International Space Station’s Harmony module just before orbital sunrise. Credit: NASA TV

The events unfolded live on a NASA TV webcast for all to follow along.

Furthermore, today’s dramatic Dragon arrival coincides with a renowned day in the annuls of space history. Today coincides with the 40th anniversary of humanity’s first successful touchdown on the surface of Mars by NASA’s Viking 1 lander on July 20, 1976. It paved the way for many future missions.

And Neil Armstrong and Buzz Aldrin were the first humans to land on another celestial body – the Moon – on July 20, 1969 during NASA’s Apollo 11 lunar landing mission.

Williams was working from a robotics work station in the station’s domed cupola. Rubins was Williams backup. She just arrived at the station on July 9 for a minimum 4 month stay, after launching to orbit on a Russian Soyuz on July 6 with two additional crew mates.

Ground controllers then used the robotic arm to maneuver the Dragon cargo spacecraft closer to its berthing port on the Earth facing side of the Harmony module, located at the front of the station.

Some three hours after the successful grappling, Dragon was joined to the station and bolted into place for initial berthing on the Harmony module at 10:03 a.m. EDT as the station flew about 252 statute miles over the California and Oregon border.

Controllers then activated four gangs of four bolts in the common berthing mechanism (CBM) to complete the second stage capture of the latching and berthing of Dragon to the station with a total of 16 bolts to ensure a snug connection, safety and no pressure leaks.

Crew members Williams and Rubins along with Japanese astronaut Takuya Onishi are now working to install power and data cables from the station to Dragon. They plan to open the hatch tomorrow after pressurizing the vestibule in the forward bulkhead between the station and Dragon.

Dragon reached the station after a carefully choreographed orbital chase and series of multiple thruster firings to propel the cargo ship from its preliminary post launch orbit up to the massive million pound science outpost with six resident crew members from the US, Russia and Japan.

Among the 5000 pounds of equipment on board is the first of two identical docking adapters essential for enabling station dockings next year by NASA’s new commercial astronaut taxis. This mission is all about supporting NASA’s ‘Journey to Mars’ by humans in the 2030s.

Liftoff of the SpaceX Falcon 9 rocket in its upgraded, full thrust version and the Dragon CRS-9 resupply ship took place barely 48 hours ago at 12:45 a.m. EDT Monday, July 18, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing  rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com

Dragon reached its preliminary orbit about 10 minutes after launch and then deployed a pair of solar arrays.

SpaceX also successfully executed a spellbinding ground landing of the Falcon 9 first stage back at Cape Canaveral Air Force Station’s Landing Zone 1, located a few miles south of launch pad 40.

The dramatic ground landing of the 156 foot tall Falcon 9 first stage at LZ -1 took place about 9 minutes after liftoff. It marks only the second time a spent orbit class booster has touched down intact and upright on land.

Moments before dramatic touchdown of SpaceX Falcon 9 1st stage at Landing Zone-1 (LX-1) accompanied by sonic booms after launching Dragon CRS-9 supply ship to orbit from Cape Canaveral Air Force Station, Florida at 12:45 a.m., bound for the International Space Station (ISS).   Credit: Ken Kremer/kenkremer.com
Moments before dramatic touchdown of SpaceX Falcon 9 1st stage at Landing Zone-1 (LX-1) accompanied by sonic booms after launching Dragon CRS-9 supply ship to orbit from Cape Canaveral Air Force Station, Florida at 12:45 a.m., bound for the International Space Station (ISS). Credit: Ken Kremer/kenkremer.com

Among the wealth of over 3900 pounds (1790 kg) of research investigations loaded on board Dragon is an off the shelf instrument designed to perform the first-ever DNA sequencing in space and the first international docking adapter (IDA) that is absolutely essential for docking of the SpaceX and Boeing built human spaceflight taxis that will ferry our astronauts to the International Space Station (ISS) in some 18 months.

Other science experiments on board include OsteoOmics to test if magnetic levitation can accurately simulate microgravity to study different types of bone cells and contribute to treatments for diseases like osteoporosis, a Phase Change Heat Exchanger to test temperature control technology in space, the Heart Cells experiments that will culture heart cells on the station to study how microgravity changes the human heart, new and more efficient three-dimensional solar cells, and new marine vessel tracking hardware known as the Automatic Identification System (AIS) that will aid in locating and identifying commercial ships across the globe.

The ring shaped IDA-2 unit is stowed in the Dragon’s unpressurized truck section. It weighs 1029 lbs (467 kg), measures about 42 inches tall and sports an inside diameter of 63 inches in diameter – so astronauts and cargo can easily float through. The outer diameter measures about 94 inches.

“Outfitted with a host of sensors and systems, the adapter is built so spacecraft systems can automatically perform all the steps of rendezvous and dock with the station without input from the astronauts. Manual backup systems will be in place on the spacecraft to allow the crew to take over steering duties, if needed,” says NASA.

View of International Docking Adapter 2 (IDA-2) being processed inside the Space Station Processing Facility (SSPF) at NASA Kennedy Space Center for eventual launch to the ISS in the trunk of a SpaceX Dragon on the CRS-9 mission. It will be connected to the station to provide a port for Commercial Crew spacecraft carrying astronauts to dock to the orbiting laboratory as soon as 2017.  The identical IDA-1 was destroyed during SpaceX CRS-7 launch failure on June 28, 2015.  Credit: Ken Kremer/kenkremer.com
View of International Docking Adapter 2 (IDA-2) being processed inside the Space Station Processing Facility (SSPF) at NASA Kennedy Space Center for eventual launch to the ISS in the trunk of a SpaceX Dragon on the CRS-9 mission. It will be connected to the station to provide a port for Commercial Crew spacecraft carrying astronauts to dock to the orbiting laboratory as soon as 2017. The identical IDA-1 was destroyed during SpaceX CRS-7 launch failure on June 28, 2015. Credit: Ken Kremer/kenkremer.com

“It’s a passive system which means it doesn’t take any action by the crew to allow docking to happen and I think that’s really the key,” said David Clemen Boeing’s director of Development/Modifications for the space station.

“Spacecraft flying to the station will use the sensors on the IDA to track to and help the spacecraft’s navigation system steer the spacecraft to a safe docking without astronaut involvement.”

CRS-9 counts as the company’s ninth scheduled flight to deliver supplies, science experiments and technology demonstrations to the International Space Station (ISS).

The CRS-9 mission is for the crews of Expeditions 48 and 49 to support dozens of the approximately 250 science and research investigations in progress under NASA’s Commercial Resupply Services (CRS) contract.

Up close view of SpaceX Dragon CRS-9 resupply ship and solar panels atop Falcon 9 rocket at pad 40 prior to blastoff to ISS on July 18, 2016 from Cape Canaveral Air Force Station, Florida.   Credit: Ken Kremer/kenkremer.com
Up close view of SpaceX Dragon CRS-9 resupply ship and solar panels atop Falcon 9 rocket at pad 40 prior to blastoff to ISS on July 18, 2016 from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer/kenkremer.com

Dragon will remain at the station until its scheduled departure on Aug. 29 when it will return critical science research back to Earth via a parachute assisted splashdown in the Pacific Ocean off the California coast.

Watch for Ken’s continuing CRS-9 mission coverage where he reported onsite direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Nails Mesmerizing Midnight Launch and Land Landing of Falcon 9 Carrying Critical ISS Science and Docking Port

A team of engineers from the University of Glasgow and the Ukraine have created an engine that could cut costs by "eating itself". Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing  rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – In a breathtaking feat mesmerizing hordes of thrilled spectators, SpaceX nailed today’s (July 18) back to back post midnight launch and landing of the firms Falcon 9 first stage tasked to carry a cargo Dragon loaded with over two tons of critical science, supplies and a crew docking port to the space station for NASA.

Liftoff of the SpaceX Falcon 9 rocket in its upgraded, full thrust version and the Dragon CRS-9 resupply ship took place right on time at 12:45 a.m. EDT Monday, July 18, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

SpaceX simultaneously successfully delivered over 5000 pounds (2200 kg) of research supplies to orbit for NASA in a commercial cargo Dragon ship, as the primary mission goal – and soft landed the approximately 60,000 pound Falcon 9 first stage on land, as the experimental secondary mission goal.

“The Falcon 9 first stage we landed is in excellent shape,” Hans Koenigsmann, SpaceX vice president of Flight Reliability, told Universe Today at the 2 a.m. EDT post launch and landing media briefing early this morning.

See my launch and landing streak shot and photos herein, including deployment of the four landing legs in the final seconds before propulsive touchdown.

The twin accomplishments will have far reaching implications for the exploration and exploitation of space for all humanity.

“Each commercial resupply flight to the space station is a significant event. Everything, from the science to the spare hardware and crew supplies, is vital for sustaining our mission,” said Kirk Shireman, NASA’s International Space Station Program manager.

“With equipment to enable novel experiments never attempted before in space, and an international docking adapter vital to the future of U.S. commercial crew spacecraft, we’re thrilled this Dragon has successfully taken flight.”

The CRS-9 mission is to support the resident six-person crew of men and women currently working on the station from the US, Russia and Japan.

The propulsive soft landing of the 156 foot tall Falcon 9 first stage of the Falcon 9 rocket on land at Cape Canaveral Air Force Station’s Landing Zone 1, located a few miles south of launch pad 40.

The dramatic ground landing at LZ -1 took place about 9 minutes after liftoff.

Moments before dramatic touchdown of SpaceX Falcon 9 1st stage at Landing Zone-1 (LX-1) accompanied by sonic booms after launching Dragon CRS-9 supply ship to orbit from Cape Canaveral Air Force Station, Florida at 12:45 a.m., bound for the International Space Station (ISS).   Credit: Ken Kremer/kenkremer.com
Moments before dramatic touchdown of SpaceX Falcon 9 1st stage at Landing Zone-1 (LX-1) accompanied by sonic booms after launching Dragon CRS-9 supply ship to orbit from Cape Canaveral Air Force Station, Florida at 12:45 a.m., bound for the International Space Station (ISS). Credit: Ken Kremer/kenkremer.com

The first and second stages separated about two and a half minutes after liftoff and were easily visible to any eyewitness watching – backdropped by the sunshine states dark skies.

As the second stage soared to orbit, the first stage reignited a first stage engine for a series of burns targeting a return to the Cape.

We spotted the first engine firing about two mintues before landing, as it descended directly overhead of myself and everyone in the Cape Canaveral region.

For a few moments it looked like it was headed right towards us, but then steered away as planned with engines blazing to slow the boosters descent to make a gentle landing at LZ-1.

Finally the Falcon landed, obscured by a big vapor cloud and sonic booms roaring around the space coast – and waking many local residents. Several folks told me they were suddenly woken by the shocking booms reverberating inside their homes.

Some area residents even called 911 not knowing the true nature of the noises.

Streak shot of launch and landing of SpaceX Falcon CRS-9 mission from Cape Canaveral Air Force Station, Florida to the ISS on July 18, 2016 at 12:45 a.m. EDT. View from Satellite Beach, FL.  Credit: John Krauss/johnkraussphotos.com
Streak shot of launch and landing of SpaceX Falcon CRS-9 mission from Cape Canaveral Air Force Station, Florida to the ISS on July 18, 2016 at 12:45 a.m. EDT. View from Satellite Beach, FL. Credit: John Krauss/johnkraussphotos.com

Among the wealth of over 3900 pounds (1790 kg) of research investigations loaded on board Dragon is an off the shelf instrument designed to perform the first-ever DNA sequencing in space, and the first international docking adapter (IDA) that is absolutely essential for docking of the SpaceX and Boeing built human spaceflight taxis that will ferry our astronauts to the International Space Station (ISS) in some 18 months.

Blastoff of SpaceX Falcon 9 on Dragon CRS-9 resupply mission to the  International Space Station (ISS) at 12:45 a.m. EDT on July 18, 2016.   Credit: Ken Kremer/kenkremer.com
Blastoff of SpaceX Falcon 9 on Dragon CRS-9 resupply mission to the International Space Station (ISS) at 12:45 a.m. EDT on July 18, 2016. Credit: Ken Kremer/kenkremer.com

CRS-9 counts as the company’s ninth scheduled flight to deliver supplies, science experiments and technology demonstrations to the International Space Station (ISS).

The CRS-9 mission is for the crews of Expeditions 48 and 49 to support dozens of the approximately 250 science and research investigations in progress under NASA’s Commercial Resupply Services (CRS) contract.

Dragon reached its preliminary orbit about 10 minutes after launch. Then it deployed a pair of solar arrays and began a carefully choreographed series of thruster firings to reach the space station.

If all goes well, Dragon is scheduled to arrive at the orbiting outpost on Wednesday, July 20, after a 2 day orbital chase.

NASA astronaut Jeff Williams will then reach out with the station’s 57.7-foot-long Canadian-built robotic arm to grapple and capture the private Dragon cargo ship working from a robotics work station in the station’s cupola. NASA astronaut Kate Rubins will serve as Williams backup. She just arrived at the station last week on July 9 for a minimum 4 month stay, after launching to orbit on a Russian Soyuz on July 6 with two additional crew mates.

Ground commands will be sent from Houston to the station’s arm to install Dragon on the Earth-facing bottom side of the Harmony module for its stay at the space station. The crew expects to open the hatch a day later after pressurizing the vestibule in the forward bulkhead between the station and Dragon.

Live coverage of the rendezvous and capture July 20 will begin at 5:30 a.m. on NASA TV, with installation coverage set to begin at 9:45 a.m.

CRS-9 marks only the second time SpaceX has attempted a land landing of the 15 story tall first stage booster.

The history making first time successfully took place at Landing Zone 1 (LZ 1) on Dec. 22, 2015 as part of the ORBCOMM-2 mission. Landing Zone 1 is built on the former site of Space Launch Complex 13, a U.S. Air Force rocket and missile testing range.

SpaceX also successfully recovered first stages three times in a row at sea this year on an ocean going drone ship barge using the company’s OCISLY Autonomous Spaceport Drone Ship (ASDS) on April 8, May 6 and May 27.

Altogether SpaceX has successfully landed and recovered 5 first stage booster intact and upright.

The International Docking Adapter-2 was tested in the Space Station Processing Facility prior to being loaded for launch into space on the SpaceX CRS-9 mission set for July 18, 2016 from Cape Canaveral, Fl.  Credits: NASA
The International Docking Adapter-2 was tested in the Space Station Processing Facility prior to being loaded for launch into space on the SpaceX CRS-9 mission [set for July 18, 2016 from Cape Canaveral, Fl. Credits: NASA

Watch for Ken’s onsite CRS-9 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Here’s my launch pad video of the blastoff:

Video caption: SpaceX Falcon 9 lifts off with Dragon CRS-9 resupply ship bound for the International Space Station on July 18, 2016 at 12:45 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl, as seen in this up close video from Mobius remote camera positioned at the pad. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about Juno at Jupiter, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

July 18, 26-28: “SpaceX launches to ISS on CRS-9, Juno at Jupiter, ULA Delta 4 Heavy and Atlas V spy satellite launches, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

An illustration of how the IDA will look when attached to the International Space Station. Credits: NASA
An illustration of how the IDA will look when attached to the International Space Station.
Credits: NASA
Up close view of SpaceX Dragon CRS-9 resupply ship and solar panels atop Falcon 9 rocket at pad 40 prior to blastoff to the ISS on July 18, 2016 from Cape Canaveral Air Force Station, Florida.   Credit: Ken Kremer/kenkremer.com
Up close view of SpaceX Dragon CRS-9 resupply ship and solar panels atop Falcon 9 rocket at pad 40 prior to blastoff to the ISS on July 18, 2016 from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer/kenkremer.com

ROCKY Exercise Device Will Help Keep Deep Space A Fit Place

NASA has unveiled a new exercise device that will be used by Orion crews to stay healthy on their mission to Mars. Credit: NASA

Going into space comes with its share of risks. In addition to the possibility of a catastrophic failure happening during take-off or landing, and having your craft pinholed by a micrometeorite, there are also the dangers of spending extended periods in space. Beyond that, there are also the slow, degenerative effects that spending an extended amount of time in a weightless environment can have on your body.

While astronauts on the ISS have enough space for the work-out equipment they need to help reduce these effects (i.e. muscle degeneration and loss of bone density), long-range missions are another matter. Luckily, NASA has plans for how astronauts can stay healthy during their upcoming “Journey to Mars“. It’s known as the Resistive Overload Combined with Kinetic Yo-Yo (ROCKY) device, which will be used aboard the Orion spacecraft.

For years, engineers at NASA and in the private sector have been working to create the components that will take astronauts to the Red Planet in the 2030s. These include the Space Launch System (SLS) and the Orion Multi Purpose Crew Capsule. At the same time, scientists and engineers at the Ohio-based Zin Technologies company – with the support of the NASA Human Research Program’s Exploration Exercise Equipment project – were busy developing the equipment needed to keep the Martian crews healthy and fit in space.

In this cutaway of the Orion crew module, the ROCKY exercise device in blue sits below the side hatch astronauts will use to get in and out of the spacecraft. Credit: NASA
Cutaway of the Orion crew module, showing the ROCKY exercise device in blue, below the side hatch that astronauts will use to get in and out of the spacecraft. Credit: NASA

One of the biggest challenges was making a device that is robust enough to provide a solid work-out, but still be compact and light-weight enough to fit inside the space capsule. What they came up with was ROCKY, a rowing machine-like tool that can accommodate both aerobic activity and strength training. Using loads that simulate up to 180 kg (400 pounds) of resistance, astronauts will be able to perform excises like squats, deadlifts and heel raises, as well as upper body exercises like bicep curls and upright rows.

In the past, astronauts aboard the ISS have relied on equipment like the Mini Exercise Device-2 or the Treadmill Vibration Isolation System (TVIS) to reduce the risks of bone-density loss and muscle degeneration. But as Gail Perusek – the deputy project manager for NASA’s Exploration Exercise Equipment project – explained, developing exercise equipment for the Journey to Mars required something new:

“ROCKY is an ultra-compact, lightweight exercise device that meets the exercise and medical requirements that we have for Orion missions. The International Space Station’s exercise devices are effective but are too big for Orion, so we had to find a way to make exercising in Orion feasible.”

The device can also be customized, and incorporates the best features from a second device known as the Device for Aerobic and Resistive Training (DART). These include a servo-motor programmed to deliver a load profile that feels very similar to free weights. The DART was developed by TDA Research, a Denver-based R&D company, with the support of NASA’s Small Business Innovation Research Program. It was evaluated alongside the ROCKY during the equipment selection process.

The ROCKY device in action. Credit: NASA
The ROCKY device in action. Credit: NASA

In addition to being used for the crewed mission to Mars, the ROCKY device is likely to become a permanent feature aboard the Orion capsule, which will make it a mainstay for all of NASA’s proposed long-duration missions.

As Cindy Haven, the project manager for the Exploration Exercise Equipment Project, explained: “Our long-term goal is to develop a device that’s going to work for us for exploration. Between now and the mission, we’ll have different phases where we’re going to evaluate it for functionality, usability and durability to refine its design.”

The ROCKY device will be tested for the first time on Exploration Mission-2 (EM-2), the first mission where the spacecraft will be launched with a crew aboard. Th ROCKY will be located near the side hatch of the spacecraft, which astronauts will use to get in and out of the capsule. After the Orion is launched, the crew’s seats will be collapsed to provide more interior space for the astronauts as they work out.

And while the early missions using the Orion capsule will span only a few weeks at a time, staying fit will be important in the unlikely event that the astronauts need to get out of the crew module unassisted after splashdown. In the meantime, NASA will be spending the next few years refining the device to optimize it not only for near-term crewed Orion missions, but for potential uses on future long-duration missions.

NASA has unveiled a new exercise device that will be used by Orion crews to stay healthy on their mission to Mars. Credit: NASA
The ROCKY is likely to become a mainstay for future long-term missions using the Orion space capsule. Credit: NASA

These will include the all-important launch where the Orion will dock with a habitat in the area of space around the moon. These missions are part of Phase II of NASA’s Mars mission, which is known as the “Proving Ground” phase. Scheduled to begin in 2030, this phase will involve the last elements of the mission being launched to cis-lunar orbit, and then all the equipment being sent to near-Mars space for pre-deployment.

The development team that will oversee future refinements will include engineers and scientists from Glenn Research Center in Cleveland, Ohio, and Johnson Space Center in Houston. In addition to building the hardware and ensuring that it is certified for flight, they will also be responsible for incorporating lessons learned from the development of equipment built for the ISS.

If all goes well in the coming years, the team even plans to include ROCKY into the International Space Station’s already impressive array of workout machines. Just another way for the astronauts to beat the slow, degenerative effects of floating freely in space!

Further Reading: NASA

SpaceX Midnight Launch Carrying Crucial Docking Port and Science to ISS Set for July 18, Plus Loud Land Landing – Watch Live

SpaceX conducts Falcon 9 Dragon CRS-9 mission static fire test ahead of planned 18 July 2016 liftoff from Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT. View from atop Launch Complex 39B at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com
SpaceX conducts Falcon 9 Dragon CRS-9 mission static fire test ahead of planned 18 July 2016 liftoff from Cape Canaveral Air Force Station in Florida on 18 July 2016 at 12:45 a.m. EDT.  Credit: Ken Kremer/kenkremer.com
SpaceX conducts Falcon 9 Dragon CRS-9 mission static fire test ahead of planned 18 July 2016 liftoff from Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT. View from atop Launch Complex 39B at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – The outlook is outstanding for a dramatic midnight blastoff of the next SpaceX commercial cargo Dragon jam packed with some 5000 pounds of critical payloads and research supplies for NASA and heading to the space station on Monday, July 18 – that also simultaneously features an experimental land landing that promises to rock loudly across the Florida space coast and one day slash launch costs.

Dragon is carrying a crucial crew docking port absolutely essential for conducting future human space missions to the orbiting outpost as well as a host of wide ranging science experiments essential for NASA exploiting the space environment for research in low earth orbit and deep space exploration.

Liftoff of the SpaceX Falcon 9 rocket in its upgraded, full thrust version and the Dragon CRS-9 resupply ship is targeted for 12:45 a.m. EDT Monday, July 18, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

The International Docking Adapter-2 was tested in the Space Station Processing Facility prior to being loaded for launch into space on the SpaceX CRS-9 mission set for July 18, 2016 from Cape Canaveral, Fl.  Credits: NASA
The International Docking Adapter-2 was tested in the Space Station Processing Facility prior to being loaded for launch into space on the SpaceX CRS-9 mission set for July 18, 2016 from Cape Canaveral, Fl. Credits: NASA

The CRS-9 mission is to support the resident six-person crew of men and women currently working on the station from the US, Russia and Japan.

Spectators are filling local area hotels in anticipation of a spectacular double whammy sky show comprising a thunderous nighttime launch streaking to orbit – followed minutes later by a brilliant rocket flash and night landing back at the Cape of the Falcon first stage that will send sonic booms roaring all around the coast and surrounding inland areas.

SpaceX has confirmed they are attempting the secondary mission of landing the 156 foot tall first stage of the Falcon 9 rocket on land at Cape Canaveral Air Force Station’s Landing Zone 1, located a few miles south of launch pad 40.

The weather and technical outlook for the 229 foot-tall (70 meter) Falcon 9 looks fantastic at this time, a day before liftoff.

The official weather forecast from Air Force meteorologists with the 45th Space Wing calls for a 90 percent chance of “GO” with extremely favorable conditions at launch time for liftoff of this upgraded, SpaceX Falcon 9.

The only concerns are for Cumulus clouds building up and a chance of precipitation.

And for added stargazers delight the night sky features a full moon.

The SpaceX/Dragon CRS-9 launch coverage will be broadcast on NASA TV beginning at 11:30 p.m. EDT Sunday, July 17, with additional commentary on the NASA launch blog.

SpaceX will also feature their own live webcast beginning approximately 20 minutes before launch at 12:25 a.m. EDT Monday, July 18

You can watch the launch live at NASA TV at – http://www.nasa.gov/nasatv

You can watch the launch live at SpaceX Webcast at – spacex.com/webcast

The launch window is instantaneous, meaning that any delays due to weather or technical issues will results in a minimum 2 day postponement.

If the launch does not occur Monday, a backup launch opportunity exists on 12 a.m. Wednesday, July 20, just seconds after midnight, with NASA TV coverage starting at 10:45 p.m. EDT Tuesday, July 19.

View of International Docking Adapter 2 (IDA-2) being processed inside the Space Station Processing Facility (SSPF) at NASA Kennedy Space Center for eventual launch to the ISS in the trunk of a SpaceX Dragon on the CRS-9 mission. It will be connected to the station to provide a port for Commercial Crew spacecraft carrying astronauts to dock to the orbiting laboratory as soon as 2017.  The identical IDA-1 was destroyed during SpaceX CRS-7 launch failure on June 28, 2015.  Credit: Ken Kremer/kenkremer.com
View of International Docking Adapter 2 (IDA-2) being processed inside the Space Station Processing Facility (SSPF) at NASA Kennedy Space Center for eventual launch to the ISS in the trunk of a SpaceX Dragon on the CRS-9 mission. It will be connected to the station to provide a port for Commercial Crew spacecraft carrying astronauts to dock to the orbiting laboratory as soon as 2017. The identical IDA-1 was destroyed during SpaceX CRS-7 launch failure on June 28, 2015. Credit: Ken Kremer/kenkremer.com

CRS-9 marks only the second time SpaceX has attempted a land landing of the 15 story tall first stage booster.

The history making first time took place at Landing Zone 1 (LZ 1) on Dec. 22, 2015 as part of the ORBCOMM-2 mission. Landing Zone 1 is built on the former site of Space Launch Complex 13, a U.S. Air Force rocket and missile testing range.

SpaceX also successfully recovered first stages three times in a row at sea this year on an ocean going drone ship barge using the company’s OCISLY Autonomous Spaceport Drone Ship (ASDS) on April 8, May 6 and May 27.

SpaceX issued a statement describing how local area residents could hear sonic booms – similar to those heard during landings of NASA’s space shuttles.

“There is the possibility that residents of northern and central Brevard County, Fla. may hear one or more sonic booms during landing. A sonic boom is a brief thunder-like noise a person on the ground hears when an aircraft or other vehicle flies overhead faster than the speed of sound,” said SpaceX.

Who could be affected?

“Residents of the communities of Cape Canaveral, Cocoa, Cocoa Beach, Courtenay, Merritt Island, Mims, Port Canaveral, Port St. John, Rockledge, Scottsmoor, Sharpes, and Titusville in Brevard County, Fla. are most likely to hear a sonic boom, although what residents experience will depend on weather conditions and other factors.”

The sights and sound are certain to be thrilling- so catch it if you can!

CRS-9 counts as the company’s ninth scheduled flight to deliver supplies, science experiments and technology demonstrations to the International Space Station (ISS).

The CRS-9 mission is for the crews of Expeditions 48 and 49 to support dozens of the approximately 250 science and research investigations in progress under NASA’s Commercial Resupply Services (CRS) contract.

SpaceX engineers conducted their standard static fire hold down test of the first stages Merlin 1D engines with the rocket erect at pad 40, this morning Saturday, July 16.

The customary test lasts a few seconds and was conducted with the Dragon bolted on top at about 9:30 a.m. I saw the test while visiting atop neighboring Launch Complex 39B at the Kennedy Space Center – see photo.

“All looks good,” reported Hans Koenigsmann, SpaceX vice president of Flight Reliability, at a media briefing this afternoon.

“We expect a GO for launch.”

Dragon will reach its preliminary orbit about 10 minutes after launch. Then it will deploy its solar arrays and begin a carefully choreographed series of thruster firings to reach the space station.

If all goes well, Dragon will arrive at the orbiting outpost on Wednesday, July 20, after a 2 day orbital chase.

NASA astronaut Jeff Williams will then reach out with the station’s 57.7-foot-long Canadian-built robotic arm to grapple and capture the private Dragon cargo ship working from a robotics work station in the station’s cupola. NASA astronaut Kate Rubins will serve as Williams backup. She just arrived at the station last week on July 9 for a minimum 4 month stay, after launching to orbit on a Russian Soyuz on July 6 with two additional crew mates.

Ground commands will be sent from Houston to the station’s arm to install Dragon on the Earth-facing bottom side of the Harmony module for its stay at the space station. The crew expects to open the hatch a day later after pressurizing the vestibule in the forward bulkhead between the station and Dragon.

Live coverage of the rendezvous and capture July 20 will begin at 5:30 a.m. on NASA TV, with installation coverage set to begin at 9:45 a.m.

An illustration of how the IDA will look when attached to the International Space Station. Credits: NASA
An illustration of how the IDA will look when attached to the International Space Station.
Credits: NASA

Perhaps the most critical payload relating to the future of humans in space is the 1,020-pound international docking adapter known as IDA-2 or International Docking Adapter-2.

Here’s an early morning video view of Falcon 9 on the pad today.

Video Caption: Early morning shots of CRS-9 ready for flight on Monday July 18 at 12:45 AM. Credit: USLaunchReport

Watch for Ken’s onsite CRS-9 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about Juno at Jupiter, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

July 15-18: “SpaceX launches to ISS on CRS-9, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, surveys the IDA-2 inside the Space Station Processing Facility.  Credits: NASA
Former astronaut Bob Cabana, director of NASA’s Kennedy Space Center in Florida, surveys the IDA-2 inside the Space Station Processing Facility. Credits: NASA
SpaceX Dragon CRS-9 mission logo. Credit: SpaceX
SpaceX Dragon CRS-9 mission logo. Credit: SpaceX

A Dark Region Is Growing Eerily On The Sun’s Surface

NASA's Solar Dynamics Observatory has captured images of a growing dark region on the surface of the Sun. Called a coronal hole, it produces high-speed solar winds that can disrupt satellite communications. Image: Solar Dynamics Observatory / NASA
NASA's Solar Dynamics Observatory has captured images of a growing dark region on the surface of the Sun. Called a coronal hole, it produces high-speed solar winds that can disrupt satellite communications. Image: Solar Dynamics Observatory / NASA

NASA has spotted an enormous black blotch growing on the surface of the Sun. It looks eerie, but this dark region is nothing to fear, though it does signal potential disruption to satellite communications.

The dark region is called a coronal hole, an area on the surface of the Sun that is cooler and less dense than the surrounding areas. The magnetic fields in these holes are open to space, which allows high density plasma to flow out into space. The lack of plasma in these holes is what makes them appear dark. Coronal holes are the origin of high-speed solar winds, which can cause problems for satellite communications.

The images were captured by the Solar Dynamics Observatory (SDO) on July 11th. Tom Yulsman at Discover’s ImaGeo blog created a gif from several of NASA’s images.

High-speed solar winds are made up of solar particles which are travelling up to three times faster than the solar wind normally does. Though satellites are protected from the solar wind, extremes like this can still cause problems.

Coronal holes may look like a doomsday warning; an enormous black hole on the surface of our otherwise placid looking Sun is strange looking. But these holes are a part of the natural life of the Sun. And anyway, they only appear in extreme ultraviolet and x-ray wavelengths.

The holes tend to appear at the poles, due to the structure of the Sun’s magnetosphere. But when they appear in more equatorial regions of the Sun, they can cause intermittent problems, as the high-speed solar wind they generate is pointed at the Earth as the Sun rotates.

In June 2012, a coronal hole appeared that looked Big Bird from Sesame Street.

The "Big Bird" coronal hole appeared on the Sun in June 2012. It caused a powerful storm that was considered a near miss for Earth. Image: NASA/AIA
The “Big Bird” coronal hole appeared on the Sun in June 2012. It was the precursor to a powerful storm that was considered a near miss for Earth. Image: NASA/AIA

The Big Bird hole was the precursor to an extremely powerful solar storm, the most powerful one in 150 years. Daniel Baker, of the University of Colorado’s Laboratory of Atmospheric and Space Physics, said of that storm, “If it had hit, we would still be picking up the pieces.” We were fortunate that it missed us, as these enormous storms have the potential to damage power grids on the surface of the Earth.

It seems unlikely that any solar wind that reaches Earth as a result of this current coronal hole will cause any disruption to us here on Earth. But it’s not out of the question. In 1989 a solar storm struck Earth and knocked out power in the province of Quebec in Canada.

It may be that the only result of this coronal hole, and any geomagnetic storms it creates, are more vivid auroras.

Those are something everyone can appreciate and marvel at. And you don’t need an x-ray satellite to see them.