Spaceflight Will Give You The Body Of An Elderly Alcoholic Shut In

Atlantis lifts off on the last launch of the shuttle program, STS-135, on July 8, 2011. Credit: NASA/Bill Ingalls

At least, that was what the results of a recent study conducted by the University of Colorado’s Anschutz Medical Campus suggest. After examining a group of test mice that spent two weeks in space aboard STS-135 – the final mission of NASA’s space shuttle program – they concluded that spending prolonged periods of time in space could in fact result liver damage.

For some time now, scientists have understood that exposure to zero-gravity or micro-gravity environments comes with its share of health effects. But so far, the research has been largely confined to other areas of the human body. Understanding the effects it has on internal organs and other aspects of one’s health are of extreme importance as NASA begins preparations for a crewed mission to Mars.

Continue reading “Spaceflight Will Give You The Body Of An Elderly Alcoholic Shut In”

Dawn Just Wants To Make All The Other Probes Look Bad

An artist's illustration of NASA's Dawn spacecraft approaching Ceres. Image: NASA/JPL-Caltech.
An artist's illustration of NASA's Dawn spacecraft with its ion propulsion system approaching Ceres. Image: NASA/JPL-Caltech.

The Dawn spacecraft, NASA’s asteroid hopping probe, may not be going gently into that good night as planned. Dawn has visited Vesta and Ceres, and for now remains in orbit around Ceres. The Dawn mission was supposed to end after its rendezvous with Ceres, but now, reports say that the Dawn team has asked NASA to extend the mission to visit a third asteroid.

Dawn was launched in 2007, and in 2011 and 2012 spent 14 months at Vesta. After Vesta, it reached Ceres in March 2015, and is still in orbit there. The mission was supposed to end, but according to a report at New Scientist, the team would like to extend that mission.

Dawn is still is fully operational, and still has some xenon propellant remaining for its ion drive, so why not see what else can be achieved? There’s only a small amount of propellant left, so there’s only a limited selection of possible destinations for Dawn at this point. A journey to a far-flung destination is out of the question.

Chris Russell, of the University of California, Los Angeles, is the principal investigator for the Dawn mission. He told New Scientist, “As long as the mission extension has not been approved by NASA, I’m not going to tell you which asteroid we plan to visit,” he says. “I hope a decision won’t take months.”

If the Dawn mission is not extended, then its end won’t be very fitting for a mission that has accomplished so much. It will share the fate of some other spacecraft at the end of their lives; forever parked in a harmless orbit in an out of the way place, forgotten and left to its fate. The only other option is to crash it into a planet or other body to destroy it, like the Messenger spacecraft was crashed into Mercury at the end of its mission.

The crash and burn option isn’t available to Dawn though. The spacecraft hasn’t been sterilized. If it hasn’t been sterilized of all possible Earthly microbial life, then it is strictly forbidden to crash it into Ceres, or another body like it. Planetary protection rules are in place to avoid the possible contamination of other worlds with Earthly microbial life. It’s not likely that any microbes that may have hitched a ride aboard Dawn would have survived Dawn’s journey so far, nor is it likely that they would survive on the surface of Ceres, but rules are rules.

The secret of Dawn’s long-life and success is not only due to the excellent work by the teams responsible for the mission, it’s also due to Dawn’s ion-drive propulsion system. Ion drives, long dreamed of in science and science fiction, are making longer voyages into deep space possible.

Ion drives start very slow, but gain speed incrementally, continuing to generate thrust over long distances and long periods of time. They do all this with minimal propellant, and are ideal for long space voyages like Dawn’s.

The success of the Dawn mission is key to NASA’s plans for further deep space exploration. NASA continues to work on improving ion drives, and their latest project is the Advanced Electric Propulsion System (AEPS.) This project is meant to further develop the Hall Thruster, a type of ion-drive that NASA hopes will extend spacecraft mission capabilities, allow longer and deeper space exploration, and benefit commercial space activities as well.

The AEPS has the potential to double the thrust of current ion-drives like the one on Dawn. It’s a key component of NASA’s Journey to Mars. NASA also has plans for a robotic asteroid capture mission called Asteroid Redirect Mission, which will use the AEPS. That mission will visit an asteroid, retrieve a boulder- sized asteroid from the surface, and place it in orbit around the Moon. Eventually, astronauts will visit it and return samples to Earth for study. Very ambitious.

As far as the Dawn mission goes, it’s unclear what its next destination might be. Vesta and Ceres were chosen because they are thought be surviving protoplanets, formed at the same time as the other planets. But they stopped growing, and they remain largely undisturbed, so in that sense they are kind of locked in time, and are intriguing objects of study. There are other objects in the vicinity, but it would be pure guesswork to name any.

We are prone to looking at the past nostalgically, and thinking of prior decades as the golden age of space exploration. But as Dawn, and dozens of other current missions and scientific endeavours in space show us, we may well be in a golden age right now.

Landslides and Bright Craters on Ceres Revealed in Marvelous New Images from Dawn

Ceres' Haulani Crater, with a diameter of 21 miles (34 kilometers), shows evidence of landslides from its crater rim. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Ceres' Haulani Crater, with a diameter of 21 miles (34 kilometers), shows evidence of landslides from its crater rim.  Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Ceres’ Haulani Crater, with a diameter of 21 miles (34 kilometers), shows evidence of landslides from its crater rim. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Now in orbit for just over a year at dwarf planet Ceres, NASA’s Dawn spacecraft continues to astound us with new discoveries gleaned from spectral and imagery data captured at ever decreasing orbits as well as since the probe arrived last December at the lowest altitude it will ever reach during the mission.

Mission scientists have just released marvelous new images of Haulani and Oxo craters revealing landslides and mysterious slumps at several of the mysterious bright craters on Ceres – the largest asteroid in the main Asteroid Belt between Mars and Jupiter.

The newly released image of oddly shaped Haulani crater above, shows the crater in enhanced color and reveals evidence of landslides emanating from its crater rim.

“Rays of bluish ejected material are prominent in this image. The color blue in such views has been associated with young features on Ceres,” according to the Dawn science team.

“Enhanced color allows scientists to gain insight into materials and how they relate to surface morphology.”

Look at the image closely and you’ll see its actually polygonal in nature – meaning it resembles a shape made of straight lines – unlike most craters in our solar system which are nearly circular.

”The straight edges of some Cerean craters, including Haulani, result from pre-existing stress patterns and faults beneath the surface,” says the science team.

Haulani Crater has a diameter of 21 miles (34 kilometers) and apparently was formed by an impacting object relatively recently in geologic time and is also one of the brightest areas on Ceres.

“Haulani perfectly displays the properties we would expect from a fresh impact into the surface of Ceres. The crater floor is largely free of impacts, and it contrasts sharply in color from older parts of the surface,” said Martin Hoffmann, co-investigator on the Dawn framing camera team, based at the Max Planck Institute for Solar System Research, Göttingen, Germany, in a statement.

The enhanced color image was created from data gathered at Dawn’s High Altitude Mapping Orbit (HAMO), while orbiting at an altitude of 915 miles (1,470 kilometers) from Ceres.

Data from Dawn’s VIR instrument shows that Haulani’s surface is comprised of different materials than its surroundings.

“False-color images of Haulani show that material excavated by an impact is different than the general surface composition of Ceres. The diversity of materials implies either that there is a mixed layer underneath, or that the impact itself changed the properties of the materials,” said Maria Cristina de Sanctis, the VIR instrument lead scientist, based at the National Institute of Astrophysics, Rome.

Since mid-December, Dawn has been orbiting Ceres in its Low Altitude Mapping Orbit (LAMO), at a distance of 240 miles (385 kilometers) from Ceres, resulting in the most stunning images ever of the dwarf planet.

By way of comparison the much higher resolution image of Haulani crater below, is a mosaic of views assembled from multiple images taken from LAMO at less than a third of the HAMO image distance – at only 240 miles (385 kilometers) above Ceres.

Haulani Crater at LAMO. NASA's Dawn spacecraft took this mosaic view of Haulani Crater at a distance of 240 miles (385 kilometers) from the surface of Ceres.  Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI
Haulani Crater at LAMO. NASA’s Dawn spacecraft took this mosaic view of Haulani Crater at a distance of 240 miles (385 kilometers) from the surface of Ceres. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI

Dawn has also been busy imaging Oxo Crater, which despite its small size of merely 6-mile-wide (10-kilometer-wide) actually counts as a “hidden treasure” on Ceres – because it’s the second-brightest feature on Ceres!

Only the mysterious bright region comprising a multitude of spots inside Occator Crater shine more brightly on Ceres.

Most importantly, Oxo Crater is the only place on Ceres where Dawn has detected water at the surface so far. Via VIR, Dawn data indicate that the water exists either in the form of ice or hydrated minerals. Scientists speculate that the water was exposed either during a landslide or an impact.

“Little Oxo may be poised to make a big contribution to understanding the upper crust of Ceres,” said Chris Russell, principal investigator of the mission, based at the University of California, Los Angeles.

The signatures of minerals detected on the floor of Oxo crater appears to be different from the rest of Ceres.

Furthermore Oxo is “also unique because of the relatively large “slump” in its crater rim, where a mass of material has dropped below the surface.”

Oxo Crater on Ceres is unique because of the relatively large "slump" in its crater rim.  The 6-mile-wide (10-kilometer-wide) Oxo crater is the second-brightest feature on Ceres.  Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI
Oxo Crater on Ceres is unique because of the relatively large “slump” in its crater rim. The 6-mile-wide (10-kilometer-wide) Oxo crater is the second-brightest feature on Ceres. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI

Dawn is Earth’s first probe in human history to explore any dwarf planet, the first to explore Ceres up close and the first to orbit two celestial bodies.

The asteroid Vesta was Dawn’s first orbital target where it conducted extensive observations of the bizarre world for over a year in 2011 and 2012.

The mission is expected to last until at least later into 2016, and possibly longer, depending upon fuel reserves.

Dawn will remain at its current altitude at LAMO for the rest of its mission, and indefinitely afterward, even when no further communications are possible.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Recovered SpaceX Falcon 9 Booster Moves Back to KSC for Eventual Reflight

Up close view of base of recovered SpaceX Falcon 9 first stage rocket powered by 9 Merlin 1 D engines being transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Credit: Julian Leek
Up close view of base of recovered SpaceX Falcon 9 first stage rocket powered by 9 Merlin 1 D engines being transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Credit: Julian Leek
Up close view of base of recovered SpaceX Falcon 9 first stage rocket powered by 9 Merlin 1 D engines being transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Note: landing legs were removed. Credit: Julian Leek

The recovered SpaceX Falcon 9 first stage booster that successfully carried out history’s first upright touchdown from a just flown rocket onto a droneship at sea, has just been moved back to the firms processing hanger at the Kennedy Space Center (KSC) for testing and eventual reflight.

Space photographers and some lucky tourists coincidentally touring through Cape Canaveral Air Force Station in the right place at the right time on a tour bus, managed to capture exquisite up close images and videos (shown above and below) of the rockets ground transport on Tuesday, April 19, along the route from its initial staging point at Port Canaveral to a secure area on KSC.

It was quite a sight to the delight of all who experienced this remarkable moment in space history – that could one day revolutionize space flight by radically slashing launch costs via recycled rockets.

The boosters nine first stage Merlin 1 D engines were wrapped in a protective sheath during the move as seen in the up close imagery.

Recovered SpaceX Falcon 9 first stage rocket was transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Credit: Julian Leek
Recovered SpaceX Falcon 9 first stage rocket was transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Credit: Julian Leek

The SpaceX Falcon 9 had successfully conducted a dramatic propulsive descent and soft landing on a barge some 200 miles offshore in the Atlantic Ocean on April 8, about 9 minutes after blasting off from Cape Canaveral Air Force Station at 4:43 p.m. EDT on the Dragon CRS-8 cargo mission for NASA to the International Space Station (ISS).

The used Falcon 9 booster then arrived back into Port Canaveral, Florida four days later, overnight April 12, after being towed atop the ocean going platform that SpaceX dubs an ‘Autonomous Spaceport Drone Ship’ or ASDS.

The spent 15 story tall Falcon 9 booster was transported to KSC by Beyel Bros. Crane and Rigging, starting around 9:30 a.m.

Recovered SpaceX Falcon 9 first stage rocket was transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Credit: Julian Leek
Recovered SpaceX Falcon 9 first stage rocket was transported horizontally back to SpaceX processing hanger at the Kennedy Space Center from Port Canaveral, Florida storage and processing facility on April 19, 2016. Credit: Julian Leek

After initial cleaning and clearing of hazards and processing to remove its four landing legs at the Port facility, the booster was carefully lowered by crane horizontally into a retention cradle on a multiwheel combination Goldhofer/KMAG vehicle and hauled by Beyel to KSC with a Peterbilt Prime Mover truck.

The Falcon 9 was moved to historic Launch Complex 39A at KSC for processing inside SpaceX’s newly built humongous hanger located at the pad perimeter.

Indeed this Falcon 9 first stage is now residing inside the pad 39A hanger side by side with the only other flown rocket to be recovered; the Falcon 9 first stage that accomplished a land landing back at the Cape in December 2015 – as shown in this image from SpaceX CEO Elon Musk titled “By land and sea”.

Side by side SpaceX Falcon 9 first stages recovered ‘by land and sea’ in Dec 2015 and Apr 2016. Credit: SpaceX/Elon Musk
Side by side SpaceX Falcon 9 first stages recovered ‘by land and sea’ in Dec 2015 and Apr 2016. Credit: SpaceX/Elon Musk

Watch this video of the move taken from a tour bus:

SpaceX engineers plan to conduct a series of some 12 test firings of the first stage Merlin 1 D engines to ensure all is well operationally in order to validate that the booster can be re-launched.

It may be moved back to Space Launch Complex-40 for the series of painstakingly inspections, tests and refurbishment.

The nine Merlin 1 D engines that power SpaceX Falcon 9 are positioned in an octoweb arrangement, as shown in this up close view of the base of recovered first stage during transport to Kennedy Space Center pad 39 A from Port Canaveral, Florida on April 19, 2016. Credit: Julian Leek
The nine Merlin 1 D engines that power SpaceX Falcon 9 are positioned in an octoweb arrangement, as shown in this up close view of the base of recovered first stage during transport to Kennedy Space Center pad 39 A from Port Canaveral, Florida on April 19, 2016. Credit: Julian Leek

SpaceX hopes to refly the recovered booster in a few months, perhaps as early as this summer.

The vision of SpaceX’s billionaire founder and CEO Elon Musk is to dramatically slash the cost of access to space by recovering the firms rockets and recycling them for reuse – so that launching rockets will one day be nearly as routine and cost effective as flying on an airplane.

The essential next step after recovery is recycling. Musk said he hopes to re-launch the booster this year.

Whenever it happens, it will count as the first relaunch of a used rocket in history.

SpaceX has leased Pad 39A from NASA and is renovating the facilities for future launches of the existing upgraded Falcon 9 as well as the Falcon Heavy currently under development.

SpaceX Crew Dragon will blast off atop a Falcon 9 rocket from Launch Pad 39A at NASA's Kennedy Space Center in Florida  for missions to the International Space Station. Pad 39A is  undergoing modifications by SpaceX to adapt it to the needs of the company's Falcon 9 and Falcon Heavy rockets, which are slated to lift off from the historic pad in the near future. A horizontal integration facility (right) has been constructed near the perimeter of the pad where rockets will be processed for launch prior of rolling out to the top of the pad structure for liftoff. Credit: Ken Kremer/Kenkremer.com
SpaceX Crew Dragon will blast off atop a Falcon 9 rocket from Launch Pad 39A at NASA’s Kennedy Space Center in Florida for missions to the International Space Station. Pad 39A is undergoing modifications by SpaceX to adapt it to the needs of the company’s Falcon 9 and Falcon Heavy rockets, which are slated to lift off from the historic pad in the near future. A horizontal integration facility (right) has been constructed near the perimeter of the pad where rockets will be processed for launch prior of rolling out to the top of the pad structure for liftoff. Credit: Ken Kremer/Kenkremer.com

Landing on the barge was a secondary goal of SpaceX and not part of the primary mission sending science experiments and cargo to the ISS crew under a resupply contract with for NASA.

Watch this SpaceX Falcon 9/Dragon CRS-8 launch video from my video camera placed at the pad:

Video Caption: Spectacular blastoff of SpaceX Falcon 9 rocket carrying Dragon CRS-8 cargo freighter bound for the International Space Station (ISS) from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL at 4:43 p.m. EST on April 8, 2016. Up close movie captured by Mobius remote video camera placed at launch pad. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Gravity Waves On Pluto?

The varying brightness in Pluto's atmosphere is caused by atmospheric gravity waves, or buoyancy waves. Image: NASA/New Horizons/Johns Hopkins APL/SWRI
The varying brightness in Pluto's atmosphere is caused by atmospheric gravity waves, or buoyancy waves. Image: NASA/New Horizons/Johns Hopkins APL/SWRI

New Horizons’ historic journey to Pluto and beyond continues to provide surprises. As data from the spacecraft’s close encounter with Pluto and its moons arrives at Earth, scientists are piecing together an increasingly intriguing picture of the dwarf planet. The latest discovery is centred around Pluto’s atmosphere, and what are called ‘atmospheric gravity waves.’

Atmospheric gravity waves are a different phenomenon than the gravity waves that were detected for the first time in February, 2016. Those gravity waves are ripples in the fabric of space time, first predicted by Albert Einstein back in 1916. After years of searching, the LIGO instrument detected gravity waves that resulted from two black holes colliding. The discovery of what you might call ‘Einsteinian Gravity Waves’ may end up revolutionizing astronomy.

New Horizons has revealed surprise after surprise in its study of Pluto. Its atmosphere has turned out to be much more complex than anybody expected. It’s composed of 90% nitrogen, with extensive haze layers. Scientists have discovered that Pluto’s atmosphere can vary in brightness depending on viewpoint and illumination, while the vertical structure of the layered haze remains unchanged.

Scientists studying the New Horizons’ data think that atmospheric gravity waves, also called buoyancy waves, are responsible. Atmospheric gravity waves are known to exist on only two other planets; Earth and Mars. They are typically caused by wind flowing over obstructions like mountain ranges.

The layers in Pluto’s atmosphere, and their varying brightness, are most easily seen when they are backlit by the Sun. This was the viewpoint New Horizons had when it captured these images on its departure from Pluto on July 14, 2015. The spacecraft’s Long Range Reconnaissance Imager (LORRI) captured them, using time intervals of 2 to 5 hours. What they show is the brightness of the layers changing by 30% without any change in their height above the surface of the planet.

LORRI, as its name suggests, is a long range image capture instrument. It also captures high resolution geologic data, and was used to map Pluto’s far side. The principal investigator for LORRI is Andy Cheng, from the Applied Physics Laboratory at Johns Hopkins University, in Maryland. “Pluto is simply amazing,” said Andy Cheng. “When I first saw these images and the haze structures that they reveal, I knew we had a new clue to the nature of Pluto’s hazes. The fact that we don’t see the haze layers moving up or down will be important to future modelling efforts.”

Overall, Pluto and its system of moons has turned out to be a much more dynamic place than previously thought. A geologically active landscape, possible ice volcanoes, eroding cliffs made of methane ice, and more, have woken us up to Pluto’s complexity. But its atmosphere has turned out to be just as complex and puzzling.

New Horizons has departed the Pluto system now, and is headed for the Kuiper Belt. The Kuiper Belt is considered a relic of the early Solar System. New Horizons will visit another icy world there, and hopefully continue on to the edge of the heliosphere, the same way the Voyage probes have. New Horizons has enough energy to last until approximately the mid-2030’s, if all goes well.

NASA Invests In Radical Game-Changing Concepts For Exploration

Artist's concept of some of the Phase I winners of the 2016 NIAC program. Credit: NASA

Every year, the NASA Innovative Advanced Concepts (NIAC) program puts out the call to the general public, hoping to find better or entirely new aerospace architectures, systems, or mission ideas. As part of the Space Technology Mission Directorate, this program has been in operation since 1998, serving as a high-level entry point to entrepreneurs, innovators and researchers who want to contribute to human space exploration.

This year, thirteen concepts were chosen for Phase I of the NIAC program, ranging from reprogrammed microorganisms for Mars, a two-dimensional spacecraft that could de-orbit space debris, an analog rover for extreme environments, a robot that turn asteroids into spacecraft, and a next-generation exoplanet hunter. These proposals were awarded $100,000 each for a nine month period to assess the feasibility of their concept.

Continue reading “NASA Invests In Radical Game-Changing Concepts For Exploration”

Antarctica Provides Plenty Of Mars Samples Right Now

Mars! Martian meteorites make their way to Earth after being ejected from Mars by a meteor impact on the Red Planet. Image: NASA/National Space Science Data Center.
Mars! Martian meteorites make their way to Earth after being ejected from Mars by a meteor impact on the Red Planet. Image: NASA/National Space Science Data Center.

Sometimes, the best way to study Mars is to stay home. There’s no substitute for actual missions to Mars, but pieces of Mars have made the journey to Earth, and saved us the trip. Case in point: the treasure trove of Martian meteorites that NASA is gathering from Antarctica.

NASA scientists aren’t the first ones to find meteorites in the Earth’s polar regions. As early as the 9th century, people in the northern polar regions made use of iron from meteorites for tools and hunting weapons. The meteorite iron was traded from group to group over long distances. But for NASA, the hunt for meteorites is focused on Antarctica.

In Antarctica, the frigid temperatures preserve meteorites for a long time, which makes them valuable artifacts in the quest to understand Mars. Meteorites tend to accumulate in places where creeping glacial ice moves them to. When the ice meets a rock obstacle, the meteorites are deposited there, making them easier to find. Recently arrived meteorites are also easily spotted on the surface of the Antarctica ice.

The US began collecting meteorites in Antarctica in 1976, and to date more than 21,000 meteorites and meteorite fragments have been found. In fact, more of them are found in Antarctica than in the rest of the world combined. These meteorites are then shared with scientists around the world.

Collecting meteorites in Antarctica is not a walk in the park. It’s physically gruelling and hazardous work. Antarctica is not an easy environment to live and work in, and just surviving there takes planning and teamwork. But the scientific payoff is huge, which keeps NASA going back.

Meteorites from the Moon and other bodies also arrive on Earth, and are collected in Antarctica. They can tell scientists important things about the evolution and formation of the Solar System, the origin of organic chemical compounds necessary for life, and the origin of the planets themselves.

How Do Martian Meteorites Get To Earth?

A few things have to go right for a Martian meteorite to make it to Earth. First, a meteorite has to collide with Mars. That meteorite has to be big enough, and hit the surface of Mars with enough force, that rock from Mars is propelled off the surface with enough speed to escape Mars’ gravity.

After that, the meteor has to travel through space and avoid a thousand other fates, like being drawn to one of the other planets, or the Sun, by the gravitational pull of those bodies. Or being flung off into the far reaches of empty space, lost forever. Then, if it manages to make it to Earth, and be pulled in by Earthly gravity, it must be large enough to survive entry into Earth’s atmosphere.

The Science

Part of the scientific value in meteorites lies not in their source, but in the time that they were formed. Some meteorites have travelled through space for so long, they’re like time travellers. These ancient meteorites can tell scientists a lot about conditions in the early Solar System.

This is the Hoba meteorite from Namibia. It is the largest known intact meteorite, at 60 tonnes. Image: Patrick Giraud, http://creativecommons.org/licenses/by/2.5
This the Hoba meteorite from Namibia. At 60 tonnes, it is the largest known intact meteorite. Image: Patrick Giraud, http://creativecommons.org/licenses/by/2.5

Meteorites from Mars tell scientists a few things. Since they’ve survived re-entry into Earth’s atmosphere, they can tell engineers about the dynamics of such a journey, and help inform spacecraft design. Since they contain chemical signatures and elements unique to Mars, they can also tell mission specialists things about surviving on Mars.

They can also provide clues to one of the greatest mysteries in space exploration: Did life exist on Mars? A Martian meteorite found in the Sahara desert in 2011 contained ten times the amount of water as other Martian meteorites, and added evidence to the idea that Mars was once a wet world, suitable for life.

NASA’s program to hunt for meteorites in Antarctica has been going strong for many years, and there’s really no reason to stop doing it, since this is the only way to get Martian samples into a laboratory. Each one they find is like a puzzle piece, and like a jigsaw puzzle, you never know which one will complete the big picture.

Is Alpha Centauri The Best Place To Look For Aliens?

Project Starshot, an initiative sponsored by the Breakthrough Foundation, is intended to be humanity's first interstellar voyage. Credit: breakthroughinitiatives.org

For generations, human beings have fantasized about the possibility of finding extra-terrestrial life. And with our ongoing research efforts to discover new and exciting extrasolar planets (aka. exoplanets) in distant star systems, the possibility of actually visiting one of these worlds has received a real shot in the arm. Unfortunately, given the astronomical distances involved, not to mention the cost of mounting an expedition, doing so presents numerous significant challenges.

However, Russian billionaire Yuri Milner and the Breakthrough Foundation – an international organization committed to exploration and scientific research –  is determined to mount an interstellar mission to Alpha Centauri, our closest stellar neighbor, in the coming years. With the backing of such big name sponsors as Mark Zuckerberg and Stephen Hawking, his latest initiative (named “Project Starshot“) aims to send a tiny spacecraft to the Alpha Centauri system to search for planets and signs of life.

Continue reading “Is Alpha Centauri The Best Place To Look For Aliens?”

Icy Hot: Europa’s Frozen Crust Could Be Warmer Than We Thought

NASA is looking for a new Planetary Protection Officer to protect Earth and the other bodies of the Solar System from harmful contamination. Credit: NASA/JPL-Caltech/SETI Institute.

All the worlds may be ours except Europa but that only makes the ice-covered moon of Jupiter all the more intriguing. Beneath Europa’s thin crust of ice lies a tantalizing global ocean of liquid water somewhere in the neighborhood of 100 kilometers deep—which adds up to more liquid water than is on the entire surface of the Earth. Liquid water plus a heat source(s) to keep it liquid plus the organic compounds necessary for life and…well, you know where the thought process naturally goes from there.

And now it turns out Europa may have even more of a heat source than we thought. Yes, a big component of Europa’s water-liquefying warmth comes from tidal stresses enacted by the massive gravity of Jupiter as well as from the other large Galilean moons. But exactly how much heat is created within the moon’s icy crust as it flexes has so far only been loosely estimated. Now, researchers from Brown University in Providence, RI and Columbia University in New York City have modeled how friction creates heat within ice under stress, and the results were surprising.

Continue reading “Icy Hot: Europa’s Frozen Crust Could Be Warmer Than We Thought”

SpaceX Dragon Carrying New Inflatable Room Captured and Mated to Space Station

SpaceX Dragon CRS-8 over Africa coming in for the approach to the ISS. Credit: NASA/Tim Kopra/@astro_tim
SpaceX Dragon CRS-8 over Africa coming in for the approach to the ISS.  Credit: NASA/Tim Kopra/@astro_tim
SpaceX Dragon CRS-8 over Africa coming in for the approach to the ISS. Credit: NASA/Tim Kopra/@astro_tim

A SpaceX commercial cargo freighter jam packed with more than three and a half tons of research experiments, essential crew supplies and a new experimental inflatable habitat reached the International Space Station (ISS) and the gleeful multinational crew of six astronauts and cosmonauts on Sunday, April 10.

The U.S. SpaceX Dragon cargo craft arrived at the ISS following a carefully choreographed orbital chase inaugurated by a spectacular launch atop an upgraded SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station, Florida, on Friday, April 8.

As the massive Earth orbiting outpost was soaring some 250 miles (400 kilometers) over the Pacific Ocean west of Hawaii, British astronaut Tim Peake of ESA (European Space Agency), with the able assistance of NASA’s Jeff Williams, successfully captured the SpaceX Dragon CRS-8 resupply ship with the station’s Canadian-built robotic arm.

Peake painstakingly maneuvered and deftly grappled Dragon with the snares at the terminus of the 57 foot long (19 meter long) Canadarm2 at 7:23 a.m. EDT for installation on the million pound orbital lab complex.

“Looks like we’ve caught a Dragon,” Peake radioed back to Mission Control. The orbital operational was webcast live on NASA TV.

“Awesome capture by crewmate Tim Peake,” said fellow NASA crewmate Tim Kopra who snapped a series of breathtaking images of the approach and capture.

Final Approach for @SpaceXDragon before an awesome capture by crewmate @Astro_TimPeake! Credit: NASA/Tim Kopra/@astro_tim
Final Approach for @SpaceXDragon before an awesome capture by crewmate @Astro_TimPeake! Credit: NASA/Tim Kopra/@astro_tim

Ground controllers at Mission Control in Houston then issued commands to carefully guide the robotic arm holding the Dragon freighter to the Earth-facing port on the bottom side of the Harmony module for its month long stay at the space station.

The ship was finally bolted into place at 9:57 a.m. EDT as the station flew 250 miles (400 km) over southern Algeria.

Watch this NASA video compiling all the highlights of the arrival and mating of the SpaceX Dragon on April 10, 2016 carrying the BEAM habitat module and 3.5 tons of science and supplies. Credit: NASA

Expedition 47 crew members Jeff Williams and Tim Kopra of NASA, Tim Peake of ESA (European Space Agency) and cosmonauts Yuri Malenchenko, Alexey Ovchinin and Oleg Skripochka of Roscosmos are currently living aboard the orbiting laboratory.

In a historic first, the arrival of the SpaceX Dragon cargo spacecraft marks the first time that two American cargo ships are simultaneously docked to the ISS. The Orbital ATK Cygnus CRS-6 cargo freighter only just arrived on March 26 and is now installed at a neighboring docking port on the Unity module.

The SpaceX Dragon is seen shortly after it was mated to the Harmony module. The Cygnus cargo craft with its circular solar arrays and the Soyuz TMA-19M spacecraft (bottom right) are also seen in this view. Credit: NASA TV
The SpaceX Dragon is seen shortly after it was mated to the Harmony module. The Cygnus cargo craft with its circular solar arrays and the Soyuz TMA-19M spacecraft (bottom right) are also seen in this view. Credit: NASA TV

Cygnus was launched to the ISS atop a ULA Atlas V barely two weeks earlier on March 22 – as I reported on and witnessed from the Kennedy Space Center press site.

“With the arrival of Dragon, the space station ties the record for most vehicles on station at one time – six,” say NASA officials.

The Dragon spacecraft is delivering almost 7,000 pounds of cargo, including the Bigelow Expandable Activity Module (BEAM), to the orbital laboratory which was carried to orbit inside the Dragon’s unpressurized truck section.

BEAM is a prototype inflatable habitat that the crew will soon pluck from the Dragon’s truck with the robotic arm for installation on a side port of the Harmony module.

The Bigelow Expandable Activity Module (BEAM) is an experimental expandable capsule that attaches to the space station.  Credits: Bigelow Aerospace, LLC
The Bigelow Expandable Activity Module (BEAM) is an experimental expandable capsule that attaches to the space station. Credits: Bigelow Aerospace, LLC

CRS-8 counts as the company’s eighth flight to deliver supplies, science experiments and technology demonstrations to the ISS for the crews of Expeditions 47 and 48 to support dozens of the approximately 250 science and research investigations in progress.

Friday’s launch marks the first for a Dragon since the catastrophic failure of the SpaceX Falcon 9 last June.

Dragon will remain at the station until it returns for Earth on May 11 for a parachute assisted splash down in the Pacific Ocean off the west coast of Baja California. It will be packed with almost 3,500 pounds off cargo and numerous science samples, including those biological samples collected by 1 year ISS crew member Scott Kelly, for return to investigators, hardware and spacewalking tools, some additional broken hardware for repair and some items of trash for disposal.

Video caption: 5 camera views of the SpaceX Falcon 9 launch of the CRS-8 mission to the ISS on 04/08/2016. Credit: Jeff Seibert/AmericaSpace

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:

Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/

Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html