Full Moon Offers Spectacular Nighttime Launch Outlook for Orbital ATK Cygnus Resupply to ISS on Atlas V on March 22 – Watch Live

The Orbital ATK CRS-6 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com
The Orbital ATK CRS-6 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com
The Orbital ATK CRS-6 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Clear skies and a nearly full Moon offer the distinct possibility to witness an astronomical launch spectacular for all those who have traveled near and far to witness the nighttime liftoff of an Orbital ATK Cygnus commercial cargo mission for NASA to the space station on Tuesday night, March 22.

With the heaviest Cygnus ever bolted atop and packed to the gills with science and supplies for the six person crew living and working aboard the International Space Station (ISS), a venerable United Launch Alliance Atlas V rocket is due to blastoff on March 22, at 11:05 p.m. EDT from Cape Canaveral Air Force Station in Florida.

The nighttime liftoff is targeted for 11:05 PM EDT March 22, at the opening of a 30 minute launch window from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.

The ULA Atlas V rocket will liftoff on the CRS-6 resupply mission with the private Orbital ATK Cygnus spacecraft under a commercial resupply services (CRS) contract to NASA.

The Atlas V/Cygnus CRS-6 launch coverage will be broadcast on NASA TV and the NASA launch blog beginning at 10 PM, Tuesday night.

You can watch the launch live at – http://www.nasa.gov/multimedia/nasatv/index.html

NASA will also provide additional live coverage overnight of the critical solar array deployment at 12:45 a.m. March 23 followed be a post-launch briefing will be approximately two hours after launch.

The weather forecast has been upgraded and currently calls for an unusually favorable 90 percent chance of acceptable conditions at launch time.

Up close view of umbilical’s connecting to Atlas V rocket carrying Orbital ATK CRS-6 launch vehicle to the ISS at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com
Up close view of umbilical’s connecting to Atlas V rocket carrying Orbital ATK CRS-6 launch vehicle to the ISS at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com

In case of a delay for any reason due to weather or technical issues the back up launch opportunity is slight earlier at 10:40 p.m. Wednesday, March 23. NASA TV coverage would start at 9:45 p.m.

The spacecraft will arrive at the station on Saturday, March 26, at which time Expedition 47 Commander Tim Kopra of NASA and Flight Engineer Tim Peake of ESA (European Space Agency) will grapple Cygnus, using the space station’s robotic arm, at approximately 6:40 a.m. NASA TV coverage of rendezvous and grapple will begin at 5:30 a.m.

Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a Cygnus cargo spacecraft is being prepared for the upcoming Orbital ATK Commercial Resupply Services-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus was named SS Rick Husband in honor of the commander of the STS-107 mission. On that flight, the crew of the space shuttle Columbia was lost during re-entry on Feb. 1, 2003. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22.  Credit: Ken Kremer/kenkremer.com
Inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, a Cygnus cargo spacecraft is being prepared for the upcoming Orbital ATK Commercial Resupply Services-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus was named SS Rick Husband in honor of the commander of the STS-107 mission. On that flight, the crew of the space shuttle Columbia was lost during re-entry on Feb. 1, 2003. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22. Credit: Ken Kremer/kenkremer.com

The commercial Cygnus cargo freighter was built by Orbital ATK, based in Dulles, Virginia.

The Cygnus has been named the S.S. Rick Husband in honor of Col. Rick Husband, the late commander of Space Shuttle Columbia, which was tragically lost with its crew of seven NASA astronauts during re-entry on its final flight on Feb. 1, 2003.

This flight is also known as OA-6 and is being launched under terms of the firm’s Commercial Resupply Services (CRS) contract with NASA. It also counts as Orbital ATK’s fifth cargo delivery mission to the space station.

OA-6 is loaded with 3513 kg (7700 pounds) of science experiments and hardware, crew supplies, spare parts, gear and station hardware to the orbital laboratory in support over 250 research experiments being conducted on board by the Expedition 47 and 48 crews.

About a quarter of the cargo is devoted to science and research gear. The cargo includes 3279 kg of science investigations, 1139 kg of crew supplies, 1108 kg of vehicle hardware, 157 kg of spacewalk equipment, and 98 kg of computer resources.
Here a NASA description of a few of the scientific highlights:

– Gecko Gripper, testing a mechanism similar to the tiny hairs on geckos’ feet that lets them stick to surfaces using an adhesive that doesn’t wear off.

– Strata-1, designed to evaluate how soil on small, airless bodies such as asteroids behaves in microgravity.

– Meteor, an instrument to evaluate from space the chemical composition of meteors entering Earth’s atmosphere. The instrument is being re-flown following its loss on earlier supply missions.

– Saffire, which will set a large fire inside the Cygnus in an unprecedented study to see how large fires behave in space. The research is vital to selecting systems and designing procedures future crews of long-duration missions can use for fighting fires.

– Cygnus is carrying more than two dozen nanosatellites that will be ejected from either the spacecraft or the station at various times during the mission to evaluate a range of technology and science including Earth observations.

When the ISS Expedition 47 crew members open the hatch, they will be greeted with a sign noting the spacecraft was named ‘SS Rick Husband’ in honor of the STS-107 mission commander.

Orbital ATK CRS-6 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com
Orbital ATK CRS-6 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on March 22, 2016. Credit: Ken Kremer/kenkremer.com

Cygnus will spend approximately two months docked at the ISS.

OA-6 is only the second Cygnus to be launched atop a ULA Atlas V rocket, following the OA-4 mission last December.

The CRS-6/OA-6 flight is also the second flight of the enhanced Cygnus variant, that is over 1 meter longer and sports 50% more volume capability.

Thus it is capable of carrying a much heavier payload of some 3500 kg (7700 lbs) vs. a maximum of 2300 kg (5070 lbs) for the standard version.

Watch for Ken’s onsite launch reports direct from the Kennedy Space Center in Florida.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

The Cygnus spacecraft for the upcoming Orbital ATK Commercial Resupply Services-6 mission is encapsulated inside its payload fairing as it moves past the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. It is being moved to Space Launch Complex-41 at Cape Canaveral Air Force Station.  Credits: NASA/Dimitrios Gerondidakis
The Cygnus spacecraft for the upcoming Orbital ATK Commercial Resupply Services-6 mission is encapsulated inside its payload fairing as it moves past the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. It is being moved to Space Launch Complex-41 at Cape Canaveral Air Force Station. Credits: NASA/Dimitrios Gerondidakis

………….

Learn more about Orbital ATK Cygnus, ISS, ULA Atlas rocket, SpaceX, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Mar 21/22: “Orbital ATK Atlas/Cygnus launch to the ISS, ULA, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evening Mar 21 /late afternoon Mar 22

First American to Live on ISS for 3 Long Missions Arrives after Soyuz Night Launch and Docking

The Soyuz TMA-20M rocket launches from the Baikonur Cosmodrome in Kazakhstan on Saturday, March 19, 2016 carrying Expedition 47 Soyuz Commander Alexey Ovchinin of Roscosmos, Flight Engineer Jeff Williams of NASA, and Flight Engineer Oleg Skripochka of Roscosmos into orbit to begin their five and a half month mission on the International Space Station. Credit: NASA/Aubrey Gemignani
The Soyuz TMA-20M rocket launches from the Baikonur Cosmodrome in Kazakhstan on Saturday, March 19, 2016 carrying Expedition 47 Soyuz Commander Alexey Ovchinin of Roscosmos, Flight Engineer Jeff Williams of NASA, and Flight Engineer Oleg Skripochka of Roscosmos into orbit to begin their five and a half month mission on the International Space Station.  Credit: NASA/Aubrey Gemignani
The Soyuz TMA-20M rocket launches from the Baikonur Cosmodrome in Kazakhstan on Saturday, March 19, 2016 carrying Expedition 47 Soyuz Commander Alexey Ovchinin of Roscosmos, Flight Engineer Jeff Williams of NASA, and Flight Engineer Oleg Skripochka of Roscosmos into orbit to begin their five and a half month mission on the International Space Station. Credit: NASA/Aubrey Gemignani

The first American to become a three-time, long-term resident of the International Space Station (ISS) has just arrived at the orbiting outpost this evening, Friday, March 18 after blasting off with two Russian crewmates in a Soyuz spacecraft barely six hours ago and successfully completing a fast-track four orbit rendezvous.

NASA astronaut Jeff Williams rocketed to orbit aboard the Soyuz TMA-20M spacecraft with Russian cosmonauts Alexey Ovchinin and Oleg Skripochka of the Russian space agency Roscosmos.

The Russian-American trio vaulted off from the historic Launch Pad 1 at Baikonur Cosmodrome in Kazakhstan on Saturday, March 19, 2016 at 5:26 p.m. EST (3:26 a.m. Saturday, March 19, Baikonur time). Its the same pad from which Yuri Gagarin blasted to orbit in 1961 to become the world’s first human to travel to space.

Williams, Ovchinin and Skripochka reached the orbiting laboratory at 11:09 p.m. and successfully docked at the Poisk module approximately 250 miles (400 km) above the Southern Pacific Ocean off the western coast of Peru, after today’s flawless launch and rendezvous with the station.

They conducted a fly around maneuver of the ISS with the Soyuz to line up with the Poisk module at a distance of about 400 meters some 10 minutes before docking. Spectacular cameras views were transmitted from the Soyuz and ISS during the final approach and docking.

#Soyuz camera spots station. Crew begins flyaround before 11:11p ET docking to Poisk module on Mar. 18, 2016.  Credit: Roscosmos
#Soyuz camera spots station. Crew begins flyaround before 11:11p ET docking to Poisk module on Mar. 18, 2016. Credit: Roscosmos

“The crew is now firmly affixed to the space station,” radioed NASA mission control, after the hooks and latches were engaged to complete a hard dock and mate to the station.

Here’s a video of the spectacular overnight launch:

Their mission aboard the space station will last for nearly six months.

Overall this will be Williams fourth space mission, including three Soyuz trips and one Space Shuttle trip to space. During Expedition 47, Williams will set a new record for cumulative time in space by an American of 534 days.

Williams has already spent 362 days in space. He will thus surpass the recent American record for time in space set by NASA astronaut and Expedition 46 Commander Scott Kelly.

With the arrival of the new trio, the station is restored to its full complement of six crewmates and marks the start of the full Expedition 47 mission, with an international crew of astronauts and cosmonauts from America, Russia and England.

The three join Expedition 47 Commander Tim Kopra of NASA and Flight Engineers Tim Peake of ESA (European Space Agency) and Yuri Malenchenko of Roscosmos.

The Soyuz TMA-20M rocket launches from the Baikonur Cosmodrome in Kazakhstan on Saturday, March 19, 2016 carrying Expedition 47 Soyuz Commander Alexey Ovchinin of Roscosmos, Flight Engineer Jeff Williams of NASA, and Flight Engineer Oleg Skripochka of Roscosmos into orbit to begin their five and a half month mission on the International Space Station. (Photo Credit: NASA/Aubrey Gemignani)
The Soyuz TMA-20M rocket launches from the Baikonur Cosmodrome in Kazakhstan on Saturday, March 19, 2016 carrying Expedition 47 Soyuz Commander Alexey Ovchinin of Roscosmos, Flight Engineer Jeff Williams of NASA, and Flight Engineer Oleg Skripochka of Roscosmos into orbit to begin their five and a half month mission on the International Space Station. (Photo Credit: NASA/Aubrey Gemignani)

The combined efforts of the six person crew are aimed at advancing NASA’s plans for sending humans on a ‘Journey to Mars’ in the 2030s.

They also follow on and continue the research investigations of the recently concluded mission of the first ever ‘1 Year ISS crew’ comprising of Scott Kelly and Mikhail Kornienko who returned to Earth on March 1 after 340 days in space.

After the docking probe was removed and leak checks completed, the hatches between the ships were opened at 1:15 a.m. EDT on Sat. March 19.

The new Expedition 47 crew members will conduct more than 250 science investigation in fields that benefit all of humanity, such as biology, Earth science, human research, physical sciences and technology development, during their six month mission.

Many of these research experiments for both Expeditions 47 and 48 will be launched to the ISS just three days from now, when the next commercial Cygnus cargo freighter lifts off on the commercial resupply servives-6 (CRS-6) flight.

The science studies “include a study of realistic fire scenarios on a spacecraft, enable the first space-based observations of meteors entering Earth’s atmosphere from space, explore how regolith, or soil, behaves and moves in microgravity, test a gecko-inspired adhesive gripping device that can stick on command in the harsh environment of space, and add a new 3-D printer for use on station,” according to NASA officials.

The Orbital ATK CRS-6 mission with over 3500 kg of supplies and science experiments will be carried to orbit by a United Launch Alliance Atlas V rocket on Tuesday, March 22.

Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a Cygnus cargo spacecraft is being prepared for the upcoming Orbital ATK Commercial Resupply Services-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus was named SS Rick Husband in honor of the commander of the STS-107 mission. On that flight, the crew of the space shuttle Columbia was lost during re-entry on Feb. 1, 2003. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22.  Credit: Ken Kremer/kenkremer.com
Inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, a Cygnus cargo spacecraft is being prepared for the upcoming Orbital ATK Commercial Resupply Services-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus was named SS Rick Husband in honor of the commander of the STS-107 mission. On that flight, the crew of the space shuttle Columbia was lost during re-entry on Feb. 1, 2003. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22. Credit: Ken Kremer/kenkremer.com

SpaceX plans to launch its next cargo Dragon to the station on April 8, the first since a launch catastrophe on June 28, 2015 ended in failure. The SpaceX-8 mission is scheduled to carry the Bigelow Expandable Activity Module (BEAM). It is an experimental inflatable and expandable module that astronauts will enter.

In between, Russia will launch a Progress resupply ship with three tons of supplies, food and experiments.

Watch for Ken’s onsite Atlas/Cygnus launch reports direct from the Kennedy Space Center in Florida.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about Orbital ATK Cygnus, ISS, ULA Atlas rocket, SpaceX, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Mar 21/22: “Orbital ATK Atlas/Cygnus launch to the ISS, ULA, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evening Mar 21 /late afternoon Mar 22

Next Cygnus Cargo Freighter Named in Honor of Columbia’s Last Commander Rick Husband

Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a Cygnus cargo spacecraft is being prepared for the upcoming Orbital ATK Commercial Resupply Services-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus was named SS Rick Husband in honor of the commander of the STS-107 mission. On that flight, the crew of the space shuttle Columbia was lost during re-entry on Feb. 1, 2003. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22. Credit: Ken Kremer/kenkremer.com
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a Cygnus cargo spacecraft is being prepared for the upcoming Orbital ATK Commercial Resupply Services-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus was named SS Rick Husband in honor of the commander of the STS-107 mission. On that flight, the crew of the space shuttle Columbia was lost during re-entry on Feb. 1, 2003. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22.  Credit: Ken Kremer/kenkremer.com
Inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida, a Cygnus cargo spacecraft is being prepared for the upcoming Orbital ATK Commercial Resupply Services-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus was named SS Rick Husband in honor of the commander of the STS-107 mission. On that flight, the crew of the space shuttle Columbia was lost during re-entry on Feb. 1, 2003. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – The next Cygnus cargo resupply ship targeted to blastoff for the International Space Station (ISS) on March 22, has been named the S.S. Rick Husband in honor of Col. Rick Husband, the late commander of Space Shuttle Columbia, which was tragically lost with its crew of seven NASA astronauts during re-entry on its final flight on Feb. 1, 2003.

The ‘S.S. Rick Husband’ was announced as the Cygnus delivery vessels name by former astronaut Dan Tani, now senior director of Missions and Cargo Operations for Orbital ATK in Dulles, Virginia, during a media briefing in the clean room processing facility at the Kennedy Space Center in Florida.

“Rick was a very accomplished astronaut, and a devoted husband and father,” said Tani.

The commercial Cygnus cargo freighter was built by Orbital ATK, based in Dulles, Virginia.

Christened the S.S. Rick Husband, the spacecraft is a tribute to NASA astronaut Col. Rick Husband, of U.S. Air Force, who served as commander of Columbia’s STS-107 mission. The mission and all aboard were lost as Columbia disintegrated due to the effects of reentry heating into the Earth’s atmosphere high over Texas.

NASA astronaut Col. Rick Husband, of U.S. Air Force, who served as commander of Columbia’s STS-107 mission.  The Cygnus OA-6 cargo spacecraft is named the SS Rick Husband  in tribute to Rick Husband.  Credit: NASA
NASA astronaut Col. Rick Husband, of U.S. Air Force, who served as commander of Columbia’s STS-107 mission. The Cygnus OA-6 cargo spacecraft is named the SS Rick Husband in tribute to Rick Husband. Credit: NASA

“We are proud to unveil the name of our #OA6 #Cygnus spacecraft—the S.S. Rick Husband, in honor of the late astronaut,” added Orbital ATK in a statement.

This flight is known as OA-6 and is being launched as under terms of the firm’s Commercial Resupply Services (CRS) contract with NASA. It also counts as the Orbital ATK’s fifth cargo delivery mission to the space station.

A Cygnus cargo spacecraft named the SS Rick Husband  is being prepared inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016.  Credit: Ken Kremer/kenkremer.com
A Cygnus cargo spacecraft named the SS Rick Husband is being prepared inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016. Credit: Ken Kremer/kenkremer.com

Final processing of the cargo ship was completed as bunny suited media including myself observed technicians putting the finishing touches on the vehicle inside Kennedy’s Payload Hazardous Servicing Facility (PHSF). Technicians had already finished fueling the vehicle with hydrazine and nitrogen tetroxide.

Liftoff of the commercial resupply services mission to the orbiting outpost is now targeted for Tuesday, March 22, during a 30-minute launch window that opens at 11:05 p.m. EDT.

The Orbital ATK Cygnus spacecraft, also known as Commercial Resupply Services-6 (CRS-6), will launch atop a United Launch Alliance (ULA) Atlas V rocket from the seaside Space Launch Complex 41 at Cape Canaveral Air Force Station (CCAFS) in Florida.

OA-6 is loaded with 3513 kg (7700 pounds) of science experiments and hardware, crew supplies, spare parts, gear and station hardware to the orbital laboratory in support over 250 research experiments being conducted on board by the Expedition 47 and 48 crews.

When the ISS Expedition 47 crew members open the hatch, they will be greeted with a sign noting the spacecraft was named ‘SS Rick Husband’ in honor of the STS-107 mission commander.

A Cygnus cargo spacecraft named the SS Rick Husband  is being prepared inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016.  Credit: Ken Kremer/kenkremer.com
A Cygnus cargo spacecraft named the SS Rick Husband is being prepared inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016. Credit: Ken Kremer/kenkremer.com

Overall, Orbital will deliver approximately 28,700 kilograms of cargo to the ISS under the life of the CRS contract, which extends to 2018.

STS-107 was Husband’s second flight to space.

OA-6 is the first Cygnus to named after an astronaut who actually participated in building the ISS – during his first flight as shuttle pilot on the STS-96 mission in 1999.

The prior Cygnus cargo spacecraft was named the S.S. Deke Slayton during the OA-4 mission. OA-4 successfully launched to the ISS in December 2015 – read my on site articles here.

Orbital ATK has named each Cygnus after a deceased NASA astronaut, several of whom later worked for the company.

OA-6 is only the second Cygnus to be launch atop a ULA Atlas V rocket, following the OA-4 mission last December.

The CRS-6/OA-6 flight is also the second flight of the enhanced Cygnus variant, that is over 1 meter longer and sports 50% more volume capability.

Thus it is capable of carrying a much heavier payload of some 3500 kg (7700 lbs) vs. a maximum of 2300 kg (5070 lbs) for the standard version.

A Cygnus cargo spacecraft named the SS Rick Husband  is being prepared inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016.  Credit: Ken Kremer/kenkremer.com
A Cygnus cargo spacecraft named the SS Rick Husband is being prepared inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite launch reports direct from the Kennedy Space Center in Florida.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about Orbital ATK Cygnus, ISS, ULA Atlas rocket, SpaceX, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Mar 21/22: “Orbital ATK Atlas/Cygnus launch to the ISS, ULA, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evening Mar 21 /late afternoon Mar 22

Orbital ATK’s Cygnus Spacecraft carrying vital cargo to resupply the International Space Station lifts-off aboard a United Launch Alliance Atlas V rocket on Dec. 6, 2015.  Credit: Ken Kremer/kenkremer.com
Orbital ATK’s Cygnus Spacecraft carrying vital cargo to resupply the International Space Station lifts-off aboard a United Launch Alliance Atlas V rocket on Dec. 6, 2015. Credit: Ken Kremer/kenkremer.com

NASA’s About To Do The Most Dangerous Thing You Can Do In Space

The logo for Saffire, NASA's Spacecraft Fire Experiment. Image: NASA
The logo for Saffire, NASA's Spacecraft Fire Experiment. Image: NASA

Intentionally lighting a fire onboard a spacecraft might seem like a bad idea. But in order to understand how fire behaves on a spacecraft, and in order to reduce the risk from fire to crew members and equipment, NASA engineers are doing just that. The test, dubbed Spacecraft Fire Experiment, or Saffire, will be conducted on the Orbital ATK Cygnus cargo vehicle, on March 22nd.

The fire will be ignited remotely inside a 3ft. x 3ft. x 5ft. container inside Cygnus, once the craft has delivered its supplies to the ISS and is returning to Earth. Until now, the only combustion tests performed have been small fires aboard the ISS, in microgravity conditions. The containers at the heart of the Saffire experiments will allow the team of engineers conducting the tests to burn larger materials, and get a better understanding of how a larger fire will behave.

The tests will be performed prior to the destruction of Cygnus as it re-enters Earth’s atmosphere. Data and images from the fire will be transmitted to the researchers at the Glenn Research Center, home of the Saffire experiment, and shared with international partners.

Jason Crusan is NASA’s Advanced Exploration Systems director, and he had this to say about the experiment: “NASA’s objective is to reduce the risk of long-duration exploration missions, and a spacecraft fire is one of the biggest concerns for NASA and the international space exploration community.”

A fire aboard a deep space mission could be disastrous, with no possibility of escape or rescue for crew members. Inside a spacecraft, there’s no way for the heat and pressure generated by a fire to escape. If the fire generates any toxic by-products, they can’t escape either, which creates a very dangerous situation.

The Soviet space station MIR suffered a fire in 1997. The fire lasted either 90 seconds, or 14 minutes, depending on who you ask. American astronaut Jerry Linenger was on-board MIR at the time. Here’s his description of the fire, from his memoir “Off the Planet.”

As the fire spewed with angry intensity, sparks – resembling an entire box of sparklers ignited simultaneously – extended a foot or so beyond the flame’s furthest edge. Beyond the sparks, I saw what appeared to be melting wax splattering on the bulkhead opposite the blaze. But it was not melting max. It was molten metal. The fire was so hot that it was melting metal.

Jerry Linenger onboard Mir in 1997. Image: NASA
Jerry Linenger onboard Mir in 1997. Image: NASA

A catastrophic spacecraft fire hit NASA in the early years of the Apollo missions. Apollo 1, which was the first of the manned Apollo missions, never got off the ground. A cabin fire broke out during a launch rehearsal test in January 1967, and killed the entire crew.

“Gaining a better understanding of how fire behaves in space will help further NASA’s efforts in developing better materials and technologies to reduce crew risk and increase space flight safety,” said Gary A. Ruff, NASA’s Spacecraft Fire Safety Demonstration project manager.

There will actually be 3 Saffire tests in 2016. All three will be conducted on Cygnus ships, inside the same containers, but each test will burn different material samples. Three more similar tests are planned for 2018.

Virtual Reality and Space: From NASA to Smartphones

With the ever-increasing affordability of technology, Virtual Reality is making its way into people’s homes. Systems like the Oculus Rift, and Sony’s PlayStation VR when it’s released next Fall, are becoming increasingly common. These systems, and others to come, will allow people to not only watch VR movies and play VR games, but also to explore space from the comfort of their own homes. This won’t be the only intersection of Virtual Reality and space, though.

NASA, as is often the case, has already blazed a trail when it comes to VR and space. They’ve been using VR to train astronauts for quite a while now. They have a whole lab dedicated to it, called the Virtual Reality Lab, located at the Johnson Space Center in Houston, Texas. At this facility, astronauts use VR to prepare them for working aboard the ISS.

NASA has flirted with other VR solutions as well. They used an Oculus Rift and a VR Treadmill combined with Mars footage from the Curiosity rover to create a virtual walk on the surface of Mars.

NASA’s use of VR is the most advanced around, naturally, but it’s not something most of us will ever encounter. For the rest of us, VR is making it’s way into our space-loving lives in other ways.

A company called Immersive Education has created a VR simulation of the Apollo 11 mission. It allows users to re-live the mission. You can look around the inside of the spacecraft, look out the window toward Earth, even watch and listen as astronauts walk on the surface of the Moon. The company promises “Historically accurate spacecraft interiors and exteriors.”

Here, Apollo astronaut Charlie Duke checks out the Apollo 11 VR on Oculus Rift.

Companies DEEP Inc. and Freedom 360 collaborated with the Canadian Space Agency to create a VR film called “The Edge of Space.” They used 360 degree cameras to record the view from a balloon that reached an altitude of 40km above Earth. Check out their video here. To get the real interactive effect, visit their page to download their app and view it.

Then there’s what I call virtual VR. Or you could call it “headsetless” VR, I guess. Though it lacks the immersion of full VR, it’s still cool. It’s a virtual planetarium from Escapist Games Limited, called Star Chart. Star Chart allows users to cruise through the Solar System and the Universe, checking out stars, nebulae, planets and other objects along the way.

This is just the beginning of VR’s entertainment and educational capabilities. With the growing affordability of VR, and the technological advancements to come, there’s going to some great implementations of VR technology for we space enthusiasts. I expect that in the next few years, we wannabe space explorers will be able to explore the surface of other worlds with VR, right in our own living rooms.

The Bright Spots on Ceres are Blinking

Bright reflective material in Ceres' Occator crater, imaged by NASA's Dawn spacecraft in Sept .2015. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA.

All right, maybe not blinking like a flashlight (or a beacon on the tippity-top of a communication tower—don’t even start that speculation up) but the now-famous “bright spots” on the dwarf planet Ceres have been observed to detectably increase and decrease in brightness, if ever-so-slightly.

And what’s particularly interesting is that these observations were made not by NASA’s Dawn spacecraft, currently in orbit around Ceres, but from a telescope right here on Earth.

Researchers using the High Accuracy Radial velocity Planet Searcher (HARPS) instrument on ESO’s 3.6-meter telescope at La Silla detected “unexpected” changes in the brightness of Ceres during observations in July and August of 2015. Variations in line with Ceres’ 9-hour rotational period—specifically a Doppler effect in spectral wavelength created by the motion of the bright spots toward or away from Earth—were expected, but other fluctuations in brightness were also detected.

“The result was a surprise,” said Antonino Lanza from the INAF–Catania Astrophysical Observatory, co-author of the study. “We did find the expected changes to the spectrum from the rotation of Ceres, but with considerable other variations from night to night.”

Watch a video below illustrating the rotation of Ceres and how reflected light from the bright spots within Occator crater are alternately blue- and red-shifted according to the motion relative to Earth.

First observed with Hubble in December 2003, Ceres’ curious bright spots were resolved by Dawn’s cameras to be a cluster of separate regions clustered inside the 60-mile (90-km) -wide Occator crater. Based on Dawn data they are composed of some type of highly-reflective materials like salt and ice, although the exact composition or method of formation isn’t yet known.

Since they are made of such volatile materials though, interaction with solar radiation is likely the cause of the observed daily brightening. As the deposits heat up during the course of the 4.5-hour Ceres daytime they may create hazes and plumes of reflective particles.

“It has been noted that the spots appear bright at dawn on Ceres while they seem to fade by dusk,” noted study lead author Paolo Molaro in the team’s paper. “That could mean that sunlight plays an important role, for instance by heating up ice just beneath the surface and causing it to blast off some kind of plume or other feature.”

Once day turns to night these hazes will re-freeze, depositing the particles back down to the surface—although never in exactly the same way. These slight differences in evaporation and condensation could explain the random variation in daily brightening observed with HARPS.

These findings have been published the journal Monthly Notices of the Royal Astronomical Society (full text on arXiv here.)

Source: ESO

How Do We Terraform Mars?

Artist's conception of a terraformed Mars. Credit: Ittiz/Wikimedia Commons

As part of our continuing “Definitive Guide To Terraforming” series, Universe Today is happy to present our guide to terraforming Mars. At present, there are several plans to put astronauts and ever settlers on the Red Planet. But if we really want to live there someday, we’re going to need to do a complete planetary renovation. What will it take?

Despite having a very cold and very dry climate – not to mention little atmosphere to speak of – Earth and Mars have a lot in common. These include similarities in size, inclination, structure, composition, and even the presence of water on their surfaces. Because of this, Mars is considered a prime candidate for human settlement; a prospect that includes transforming the environment to be suitable to human needs (aka. terraforming).

That being said, there are also a lot of key differences that would make living on Mars, a growing preoccupation among many humans (looking at you, Elon Musk and Bas Lansdorp!), a significant challenge. If we were to live on the planet, we would have to depend rather heavily on our technology. And if we were going to alter the planet through ecological engineering, it would take a lot of time, effort, and megatons of resources!

The challenges of living on Mars are quite numerous. For starters, there is the extremely thin and unbreathable atmosphere. Whereas Earth’s atmosphere is composed of 78% nitrogen, 21% oxygen, and trace amounts of other gases, Mars’ atmosphere is made up of 96% carbon dioxide, 1.93% argon and 1.89% nitrogen, along with trace amounts of oxygen and water.

Artist's impression of the terraforming of Mars, from its current state to a livable world. Credit: Daein Ballard
Artist’s impression of the terraforming of Mars, from its current state to a livable world. Credit: Daein Ballard

Mars’ atmospheric pressure also ranges from 0.4 – 0.87 kPa, which is the equivalent of about 1% of Earth’s at sea level. The thin atmosphere and greater distance from the Sun also contributes to Mars’ cold environment, where surface temperatures average 210 K (-63 °C/-81.4 °F). Add to this the fact that Mars’ lacks a magnetosphere, and you can see why the surface is exposed to significantly more radiation than Earth’s.

On the Martian surface, the average dose of radiation is about 0.67 millisieverts (mSv) per day, which is about a fifth of what people are exposed to here on Earth in the course of a year. Hence, if humans wanted to live on Mars without the need for radiation shielding, pressurized domes, bottled oxygen, and protective suits, some serious changes would need to be made. Basically, we would have to warm the planet, thicken the atmosphere, and alter the composition of said atmosphere.

Examples In Fiction:

In 1951, Arthur C. Clarke wrote the first novel in which the terraforming of Mars was presented in fiction. Titled The Sands of Mars, the story involves Martian settlers heating up the planet by converting Mars’ moon Phobos into a second sun, and growing plants that break down the Martians sands in order to release oxygen.

In 1984, James Lovelock and Michael Allaby wrote what is considered by many to be one of the most influential books on terraforming. Titled The Greening of Mars, the novel explores the formation and evolution of planets, the origin of life, and Earth’s biosphere. The terraforming models presented in the book actually foreshadowed future debates regarding the goals of terraforming.

Kim Stanley Robinson's Red Mars Trilogy. Credit: variety.com
Kim Stanley Robinson’s Red Mars Trilogy. Credit: variety.com

In 1992, author Frederik Pohl released Mining The Oort, a science fiction story where Mars is being terraformed using comets diverted from the Oort Cloud. Throughout the 1990s, Kim Stanley Robinson released his famous Mars TrilogyRed Mars, Green Mars, Blue Mars – which centers on the transformation of Mars over the course of many generations into a thriving human civilization.

In 2011, Yu Sasuga and Kenichi Tachibana produced the manga series Terra Formars, a series that takes place in the 21st century where scientists are attempting to slowly warm Mars. And in 2012, Kim Stanley Robinson released 2312, a story that takes place in a Solar System where multiple planets have been terraformed – which includes Mars (which has oceans).

Proposed Methods:

Over the past few decades, several proposals have been made for how Mars could be altered to suit human colonists. In 1964, Dandridge M. Cole released “Islands in Space: The Challenge of the Planetoids, the Pioneering Work“, in which he advocated triggering a greenhouse effect on Mars. This consisted of importing ammonia ices from the outer Solar System and then impacting them on the surface.

Since ammonia (NH³) is a powerful greenhouse gas, its introduction into the Martian atmosphere would have the effect of thickening the atmosphere and raising global temperatures. As ammonia is mostly nitrogen by weight, it could also provide the necessary buffer gas which, when combined with oxygen gas, would create a breathable atmosphere for humans.

Scientists were able to gauge the rate of water loss on Mars by measuring the ratio of water and HDO from today and 4.3 billion years ago. Credit: Kevin Gill
Scientists were able to gauge the rate of water loss on Mars by measuring the ratio of water and HDO from today and 4.3 billion years ago. Credit: Kevin Gill

Another method has to do with albedo reduction, where the surface of Mars would be coated with dark materials in order to increase the amount of sunlight it absorbs. This could be anything from dust from Phobos and Deimos (two of the darkest bodies in the Solar System) to extremophile lichens and plants that are dark in color. One of the greatest proponents for this was famed author and scientist, Carl Sagan.

In 1973, Sagan published an article in the journal Icarus titled “Planetary Engineering on Mars“, where he proposed two scenarios for darkening the surface of Mars. These included transporting low albedo material and/or planting dark plants on the polar ice caps to ensure they absorbed more heat, melted, and converted the planet to more “Earth-like conditions”.

In 1976, NASA officially addressed the issue of planetary engineering in a study titled “On the Habitability of Mars: An Approach to Planetary Ecosynthesis“. The study concluded that photosynthetic organisms, the melting of the polar ice caps, and the introduction of greenhouse gases could all be used to create a warmer, oxygen and ozone-rich atmosphere.

In 1982, Planetologist Christopher McKay wrote “Terraforming Mars”, a paper for the Journal of the British Interplanetary Society. In it, McKay discussed the prospects of a self-regulating Martian biosphere, which included both the required methods for doing so and ethics of it. This was the first time that the word terraforming was used in the title of a published article, and would henceforth become the preferred term.

This was followed in 1984 by James Lovelock and Michael Allaby’s book, The Greening of Mars. In it, Lovelock and Allaby described how Mars could be warmed by importing chlorofluorocarbons (CFCs) to trigger global warming.

Artist's concept of a possible Mars terraforming plant. Credit: National Geographic Channel
Artist’s concept of a possible Mars terraforming plant, warming the planet through the introduction of hydrocarbons. Credit: nationalgeographic.com

In 1993, Mars Society founder Dr. Robert M. Zubrin and Christopher P. McKay of the NASA Ames Research Center co-wrote “Technological Requirements for Terraforming Mars“. In it, they proposed using orbital mirrors to warm the Martian surface directly. Positioned near the poles, these mirrors would be able to sublimate the CO2 ice sheet and contribute to global warming.

In the same paper, they argued the possibility of using asteroids harvested from the Solar System, which would be redirected to impact the surface, kicking up dust and warming the atmosphere. In both scenarios, they advocate for the use of nuclear-electrical or nuclear-thermal rockets to haul all the necessary materials/asteroids into orbit.

The use of fluorine compounds – “super-greenhouse gases” that produce a greenhouse effect thousands of times stronger than CO² – has also been recommended as a long term climate stabilizer. In 2001, a team of scientists from the Division of Geological and Planetary Sciences at Caltech made these recommendations in the “Keeping Mars warm with new super greenhouse gases“.

Where this study indicated that the initial payloads of fluorine would have to come from Earth (and be replenished regularly), it claimed that fluorine-containing minerals could also be mined on Mars. This is based on the assumption that such minerals are just as common on Mars (being a terrestrial planet) which would allow for a self-sustaining process once colonies were established.

This image illustrates possible ways methane might be added to Mars' atmosphere (sources) and removed from the atmosphere (sinks). NASA's Curiosity Mars rover has detected fluctuations in methane concentration in the atmosphere, implying both types of activity occur on modern Mars. A longer caption discusses which are sources and which are sinks. (Image Credit: NASA/JPL-Caltech/SAM-GSFC/Univ. of Michigan)
NASA’s Curiosity Mars rover has detected fluctuations in methane concentration in the atmosphere, implying that it is added and removed all the time. (Image Credit: NASA/JPL-Caltech/SAM-GSFC/Univ. of Michigan)

Importing methane and other hydrocarbons from the outer Solar System – which are plentiful on Saturn’s moon Titan – has also been suggested. There is also the possibility of in-situ resource utilization (ISRU), thanks to the Curiosity rover’s discovery of a “tenfold spike” of methane that pointed to a subterranean source. If these sources could be mined, methane might not even need to be imported.

More recent proposals include the creation of sealed biodomes that would employ colonies of oxygen-producing cyanobacteria and algae on Martian soil. In 2014, the NASA Institute for Advanced Concepts (NAIC) program and Techshot Inc. began work on this concept, which was named the “Mars Ecopoiesis Test Bed“. In the future, the project intends to send small canisters of extremophile photosynthetic algae and cyanobacteria aboard a rover mission to test the process in a Martian environment.

If this proves successful, NASA and Techshot intend to build several large biodomes to produce and harvest oxygen for future human missions to Mars – which would cut costs and extend missions by reducing the amount of oxygen that has to be transported. While these plans do not constitute ecological or planetary engineering, Eugene Boland (chief scientist of Techshot Inc.) has stated that it is a step in that direction:

“Ecopoiesis is the concept of initiating life in a new place; more precisely, the creation of an ecosystem capable of supporting life. It is the concept of initiating “terraforming” using physical, chemical and biological means including the introduction of ecosystem-building pioneer organisms… This will be the first major leap from laboratory studies into the implementation of experimental (as opposed to analytical) planetary in situ research of greatest interest to planetary biology, ecopoiesis and terraforming.”

The "greening of Mars" would be a multi-tiered process, Credit: nationalgeographic.com
The “greening of Mars” would be a multi-tiered process, involving the importation of gases and terrestrial organisms to convert the planet over the course of many generations. Credit: nationalgeographic.com

Potential Benefits:

Beyond the prospect for adventure and the idea of humanity once again embarking on an era of bold space exploration, there are several reasons why terraforming Mars is being proposed. For starters, there is concern that humanity’s impact on planet Earth is unsustainable, and that we will need to expand and create a “backup location” if we intend to survive in the long run.

This school of though cites things like the Earth’s growing population – which is expected to reach 9.6 billion by mid-century – as well as the fact that by 2050, roughly two-thirds of the world’s population is expected to live in major cities. On top of that, there is the prospect of severe Climate Change, which – according to a series of scenarios computed by NASA – could result in life becoming untenable on certain parts of the planet by 2100.

Other reasons emphasize how Mars lies within our Sun’s “Goldilocks Zone” (aka. “habitable zone), and was once a habitable planet. Over the past few decades, surface missions like NASA’s Mars Science Laboratory (MSL) and its Curiosity rover have uncovered a wealth of evidence that points to flowing water existing on Mars in the deep past (as well as the existence of organic molecules).

Project Nomad, a concept for terraforming Mars using mobile, factory-skyscrapers. 2013 Skyscraper Competition. Credit: evolo.com/Antonio Ares Sainz, Joaquin Rodriguez Nuñez, Konstantino Tousidonis Rial
Project Nomad, a concept for the 2013 Skyscraper Competition that involved mobile factory-skyscrapers terraforming Mars. Credit: evolo.com/A.A. Sainz/J.R. Nuñez/K.T. Rial

In addition, NASA’s Mars Atmosphere and Volatile EvolutioN Mission (MAVEN) (and other orbiters) have provided extensive information on Mars’ past atmosphere. What they have concluded is that roughly 4 billion years ago, Mars had abundant surface water and a thicker atmosphere. However, due to the loss of Mars’ magnetosphere – which may have been caused by a large impact or rapid cooling of the planet’s interior – the atmosphere was slowly stripped away.

Ergo, if Mars was once habitable and “Earth-like”, it is possible that it could be again one day. And if indeed humanity is looking for a new world to settle on, it only makes sense that it be on one that has as much in common with Earth as possible. In addition, it has also been argued that our experience with altering the climate of our own planet could be put to good use on Mars.

For centuries, our reliance on industrial machinery, coal and fossil fuels has had a measurable effect Earth’s environment. And whereas this has been an unintended consequence of modernization and development here on Earth; on Mars, the burning of fossil fuels and the regular release of pollution into the air would have a positive effect.

Credit: nationgeographic.com
Infographic showing a cost-estimate and time frame for the terraforming of Mars. Credit: NASA/National Geographic Channel/Discovery Channel

Other reasons include expanding our resources base and becoming a “post-scarcity” society. A colony on Mars could allow for mining operations on the Red Planet, where both minerals and water ice are abundant and could be harvested. A base on Mars could also act as a gateway to the Asteroid Belt, which would provide us with access to enough minerals to last us indefinitely.

Challenges:

Without a doubt, the prospect of terraforming Mars comes with its share of problems, all of which are particularly daunting. For starters, there is the sheer amount of resources it would take to convert Mars’ environment into something sustainable for humans. Second, there is the concern that any measure undertaken could have unintended consequences. And third, there is the amount of time it would take.

For example, when it comes to concepts that call for the introduction of greenhouse gases to trigger warming, the quantities required are quite staggering. The 2001 Caltech study, which called for the introduction of fluorine compounds, indicated that sublimating the south polar CO² glaciers would require the introduction of approximately 39 million metric tons of CFCs into Mars’ atmosphere – which is three times the amounts produced on Earth between 1972 and 1992.

Artist's conception of a terraformed Mars. Credit: Ittiz/Wikimedia Commons
Artist’s conception of a terraformed Mars. Credit: Ittiz/Wikimedia Commons

Photolysis would also begin to break down the CFCs the moment they were introduced, which would necessitate the addition of 170 kilotons every year to replenish the losses. And last, the introduction of CFCs would also destroy any ozone that was produced, which would undermine efforts to shield to surface from radiation.

Also, the 1976 NASA feasibility study indicated that while terraforming Mars would be possible using terrestrial organisms, it also recognized that the time-frames called for would be considerable. As it states in the study:

“No fundamental, insuperable limitation of the ability of Mars to support a terrestrial ecology is identified. The lack of an oxygen-containing atmosphere would prevent the unaided habitation of Mars by man. The present strong ultraviolet surface irradiation is an additional major barrier. The creation of an adequate oxygen and ozone-containing atmosphere on Mars may be feasible through the use of photosynthetic organisms. The time needed to generate such an atmosphere, however, might be several millions of years.”

The study goes on to state that this could be drastically reduced by creating extremophile organisms specifically adapted for the harsh Martian environment, creating a greenhouse effect and melting the polar ice caps. However, the amount of time it would take to transform Mars would still likely be on the order of centuries or millennia.

Mars-manned-mission vehicle (NASA Human Exploration of Mars Design Reference Architecture 5.0) feb 2009. Credit: NASA
Artist’s concept for a NASA manned-mission to Mars (Human Exploration of Mars Design Reference Architecture 5.0, Feb 2009). Credit: NASA

And of course, there is the problem of infrastructure. Harvesting resources from other planets or moons in the Solar System would require a large fleet of space haulers, and they would need to be equipped with advanced drive systems to make the trip in a reasonable amount of time. Currently, no such drive systems exist, and conventional methods – ranging from ion engines to chemical propellants – are neither fast or economical enough.

To illustrate, NASA’s New Horizons mission took more than 11 years to get make its historic rendezvous with Pluto in the Kuiper Belt, using conventional rockets and the gravity-assist method. Meanwhile, the Dawn mission, which relied relied on ionic propulsion, took almost four years to reach Vesta in the Asteroid Belt. Neither method is practical for making repeated trips to the Kuiper Belt and hauling back icy comets and asteroids, and humanity has nowhere near the number of ships we would need to do this.

On the other hand, going the in-situ route – which would involve factories or mining operations on the surface to release CO², methane or CFC-containing minerals into the air – would require several heavy-payload rockets to get all the machinery to the Red Planet. The cost of this would dwarf all space programs to date. And once they were assembled on the surface (either by robotic or human workers), these operations would have to be run continuously for centuries.

There is also several questions about the ethics of terraforming. Basically, altering other planets in order to make them more suitable to human needs raises the natural question of what would happen to any lifeforms already living there. If in fact Mars does have indigenous microbial life (or more complex lifeforms), which many scientists suspect, then altering the ecology could impact or even wipe out these lifeforms. In short, future colonists and terrestrial engineers would effectively be committing genocide.

NASA's Journey to Mars. NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Credit: NASA/JPL
NASA’s Journey to Mars. NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Credit: NASA/JPL

Given all of these arguments, one has to wonder what the benefits of terraforming Mars would be. While the idea of utilizing the resources of the Solar System makes sense in the long-run, the short-term gains are far less tangible. Basically, harvested resources from other worlds is not economically viable when you can extract them here at home for much less. And given the danger, who would want to go?

But as ventures like MarsOne have shown, there are plenty of human beings who are willing to make a one-way trip to Mars and act as Earth’s “first-wave” of intrepid explorers. In addition, NASA and other space agencies have been very vocal about their desire to explore the Red Planet, which includes manned missions by the 2030s. And as various polls show, public support is behind these endeavors, even if it means drastically increased budgets.

So why do it? Why terraform Mars for human use? Because it is there? Sure. But more importantly, because we might need to. And the drive and the desire to colonize it is also there. And despite the difficulty inherent in each, there is no shortage of proposed methods that have been weighed and determined feasible.In the end, all that’s needed is a lot of time, a lot of commitment, a lot of resources, and a lot of care to make sure we are not irrevocably harming life forms that are already there.

But of course, should our worst predictions come to pass, we may find in the end that we have little choice but to make a home somewhere else in the Solar System. As this century progresses, it may very well be Mars or bust!

We have written many interesting articles about terraforming here at Universe Today. Here’s The Definitive Guide To Terraforming, Could We Terraform the Moon?, Should We Terraform Mars?, How Do We Terraform Venus?, and Student Team Wants to Terraform Mars Using Cyanobacteria.

We’ve also got articles that explore the more radical side of terraforming, like Could We Terraform Jupiter?, Could We Terraform The Sun?, and Could We Terraform A Black Hole?

Astronomy Cast also has good episodes on the subject, like Episode 96: Humans to Mar, Part 3 – Terraforming Mars

For more information, check out Terraforming Mars  at NASA Quest! and NASA’s Journey to Mars.

And if you like the video, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

NASA Test Fires SLS Flight Engine Destined to Launch Astronauts Back to the Moon

NASA engineers conduct a successful test firing of RS-25 rocket engine No. 2059 on the A-1 Test Stand at NASA’s Stennis Space Center in Bay St. Louis, Mississippi. The hot fire marks the first test of an RS-25 flight engine for NASA’s new Space Launch System vehicle. Credits: NASA/SSC

NASA engineers conduct a successfully test firing of RS-25 rocket engine No. 2059 on the A-1 Test Stand at NASA’s Stennis Space Center in Bay St. Louis, Mississippi. The hot fire marks the first test of an RS-25 flight engine for NASA’s new Space Launch System vehicle.  Credits: NASA/SSC
NASA engineers conduct a successful test firing of RS-25 rocket engine No. 2059 on the A-1 Test Stand at NASA’s Stennis Space Center in Bay St. Louis, Mississippi. The hot fire marks the first test of an RS-25 flight engine for NASA’s new Space Launch System vehicle. Credits: NASA/SSC

NASA engineers have successfully test fired the first flight engine destined to power the agency’s mammoth new SLS rocket that will launch American astronauts back to the Moon and deep space for the first time in nearly five decades.

The flight proven RS-25 powerplant engine previously flew as one of three main engines that successfully rocketed NASA’s space shuttle orbiters to space during the three decade long Space Shuttle era that ended in 2011. Continue reading “NASA Test Fires SLS Flight Engine Destined to Launch Astronauts Back to the Moon”

Cassini Watches Star Through Enceladus’ Plume

When the Cassini probe first saw the plumes coming from Saturn’s moon Enceladus, it was a surprise. When it dipped through the plumes, some questions about the basic nature of the phenomenon were answered. But there are still many more questions, and today Cassini has an opportunity to find some answers.

Cassini will be in a perfect position today to observe the light from Epsilon Orionis, the central star in Orion’s belt, as it passes through Enceladus’ plume. This type of observation is known as a stellar occultation, and it promises to provide new information about the composition and density of the plume. Cassini’s Ultraviolet Imaging Spectrograph (UVIS) will do the capturing, and once the information is relayed back to Earth, it will be analyzed for clues.

An artist's impression of the plumes coming from Enceladus. Image: NASA/JPL.
An artist’s impression of the plumes coming from Enceladus. Image: NASA/JPL.

We already know a few things about Enceladus’ plumes. First of all, Enceladus itself is any icy world, with subsurface oceans. The moon is locked in an orbital resonance, which creates its eccentric orbit. This eccentric orbit is responsible for heating the south polar oceans, which drives material through the ice sheets and creates its stunning plumes, in a process known as cryovolcanism. (Radioactive decay might also have something to do with heating.)

Cassini has been at Saturn’s system for 12 years, and has gradually painted a more detailed picture of Enceladus. Over time, we’ve learned that the plumes themselves are similar to what comets are made of. Cassini initially detected mostly water vapor, with traces of molecular nitrogen, methane, and carbon dioxide. Later, the presence of the hydrocarbons propane, formaldehyde, and acetylene was confirmed.

This is all very interesting, but why would anyone other than chemistry geeks care? Because the universe, including our Solar System, is largely a cold, sterile place. And the plumes coming from Enceladus indicate the presence of water, potentially warm, salty, water at that. And warm water might mean life, or the potential for life.

Cassini has previously observed two other stellar occultations. But with today’s observation, we stand to learn even more about the plumes of Enceladus. We’ll not only learn more about their density and composition, but since is the third such occultation to be observed, we’ll learn something about the plume’s behaviour over time. We probably won’t learn anything definitive about Enceladus’ life-supporting potential, but we will almost certainly find another piece of the puzzle, and fill in a blank spot in our knowledge.

And that’s what science is all about.

Comet Created Chaos In Mars’ Magnetic Field

Comet Siding Spring (C/2007 Q3) as imaged in the infrared by the WISE space telescope. The image was taken January 10, 2010 when the comet was 2.5AU from the Sun. Credit: NASA/JPL-Caltech/UCLA
Comet Siding Spring (C/2007 Q3) as imaged in the infrared by the WISE space telescope. The image was taken January 10, 2010 when the comet was 2.5AU from the Sun. Credit: NASA/JPL-Caltech/UCLA

In the Autumn of 2014, NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft arrived at Mars and entered into orbit. MAVEN wasn’t the only visitor to arrive at Mars at that time though, as comet Siding Spring (C/2013 A1) also showed up at Mars. Most of MAVEN’s instruments were shut down to protect sensitive electronics from Siding Spring’s magnetic field. But the magnetometer aboard the spacecraft was left on, which gave MAVEN a great view of the interaction between the planet and the comet.

Unlike Earth, which has a powerful magnetosphere created by its rotating metal core, Mars’ magnetosphere is created by plasma in its upper atmosphere, and is not very powerful. (Mars may have had a rotating metal core in the past, and a stronger magnetosphere because of it, but that’s beside the point.) Comet Siding Spring is small, with its nucleus being only about one half a kilometer. But its magnetosphere is situated in its coma, the long ‘tail’ of the comet that stretches out for a million kilometers.

When Siding Spring approached Mars, it came to within 140,000 km (87,000 miles) of the planet. But the comet’s coma nearly touched the surface of the planet, and during that hours-long encounter, the magnetic field from the comet created havoc with Mars’ magnetic field. And MAVEN’s magnetometer captured the event.

MAVEN was in position to capture the close encounter between Mars and comet Siding Spring. Image: NASA/Goddard.
MAVEN was in position to capture the close encounter between Mars and comet Siding Spring. Image: NASA/Goddard.

Jared Espley is a member of the MAVEN team at Goddard Space Flight Center. He said of the Mars/Siding Spring event, “We think the encounter blew away part of Mars’ upper atmosphere, much like a strong solar storm would.”

“The main action took place during the comet’s closest approach,” said Espley, “but the planet’s magnetosphere began to feel some effects as soon as it entered the outer edge of the comet’s coma.”

Espley and his colleagues describe the event as a tide that washed over the Martian magnetosphere. Comet Siding Spring’s tail has a magnetosphere due to its interactions with the solar wind. As the comet is heated by the sun, plasma is generated, which interacts in turn with the solar wind, creating a magnetosphere. And like a tide, the effects were subtle at first, and the event played out over several hours as the comet passed by the planet.

Siding Spring’s magnetic tide had only a subtle effect on Mars at first. Normally, Mars’ magnetosphere is situated evenly around the planet, but as the comet got closer, some parts of the planet’s magnetosphere began to realign themselves. Eventually the effect was so powerful that the field was thrown into chaos, like a flag flapping every which way in a powerful wind. It took Mars a while to recover from this encounter as the field took several hours to recover.

MAVEN’s task is to gain a better understanding of the interactions between the Sun’s solar wind and Mars. So being able to witness the effect that Siding Spring had on Mars is an added bonus. Bruce Jakosky, from the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder, is one of MAVEN’s principal investigators. “By looking at how the magnetospheres of the comet and of Mars interact with each other,” said Jakosky, “we’re getting a better understanding of the detailed processes that control each one.”