Station Astronauts Enter the Dragon – First Private Capsule at ISS

NASA Astronuat Don Pettit and Russian cosmonaut Oleg Kononenko entered the Dragon commercial resupply ship for the first time on May 26, 2012 after Pettit opened the hatch at 5:53 AM EDT. Credit: NASA TV

[/caption]

For the first time in history space station astronauts have ‘Entered the Dragon’ .. The 1st Private Capsule in Space !

The hatches between the newly arrived Dragon private capsule and the International Space Station’s Harmony Node 2 module were opened at 5:53 a.m. EDT (0953 GMT) today, Saturday, May 26 as the massive complex was flying 407 kilometers (253 miles) over the Tasman Sea between Australia and New Zealand, just west of Auckland.

NASA astronaut Don Pettit had the honors of opening the hatch to the history making first commercial spacecraft to dock at the ISS and begin a busy few days of unloading gear and supplies.

Clearly the crew was eager for the momentous moment because Pettit and Russian cosmonaut Oleg Kononenko, Station Commander floated into Dragon nearly two hours ahead of schedule for the initial inspections.

NASA Astronuat Don Pettit opens hatch to Dragon from Harmony node module on May 26, 2012

Dragon is the first private spacecraft ever to journey and connect to the International Space Station and marked a milestone event in space history when it arrived yesterday morning on May 25. Dragon is the world’s first commercial resupply vehicle and was built by SpaceX Corporation based in Hawthorne, Calif., founded by CEO and Chief Designer Elon Musk.

Dragon berthed at the International Space Station. NASA TV

As a routine precaution to guard against possible contamination and floating debris, Pettit and Kononenko wore protective eye goggles and dust masks over their mouths as they floated and somersaulted playfully through the hatch and all looked in ship shape. They took off the protective gear about 20 minutes later after the air had been well mixed and receiving the all clear from Houston Mission Control.

“There was no sign of any kind of FOD (foreign object debris) floating around in the atmosphere inside,” Pettit reported to Houston upon entering the Dragon. “It kind of reminds me of the cargo capability that I could put in the back of my pickup truck, and the smell inside smells like a brand new car.”

NASA Astronaut Don Pettit inside Dragon on May 26, 2012

Barely 21 hours ago yesterday morning Pettit snared the Dragon as it was drifting free in space about 10 meters (30 ft) away using the stations 18 m (58 ft) long Canadian-built robotic arm. ESA Astronaut Andre Kuiper then parked Dragon at an open port on the Harmony node. The arm will remain grappled to Dragon throughout most of its docked time.

Docked Dragon viewed from the Cupola Observation Dome aboard ISS. NASA TV
It will take about 20 to 25 hours to unload the cargo on Dragon over the next few days before it is scheduled to undock and depart on May 31.

Dragon is a resupply ship meant to replace some of the cargo duties – both up mass and down mass – fully lost with the forced retirement of NASA’s Space Shuttle fleet last year. It is the first American built spacecraft of any kind to visit the ISS since the departure of the final Shuttle mission STS-135 in July 2011.

Dragon grappled with Earth backdrop. NASA TV

The Dragon was packed with 460 kilograms (1014 lbs) of non-critical cargo including 306 kg (674 lbs) of food and crew provisions; 21 kg (46 lbs)of science experiment; 123 kg (271 lbs) prepositioned cargo bags to be used for future flights; and 10 kg (22 lbs) of assorted computer supplies and a laptop.

The vehicle will be refilled with more than 1400 pounds of science samples, trash and unneeded gear for the trip back home. Dragon is the only ISS cargo resupply vessel that has any significant return to Earth capability since it is equipped with parachutes and a heat shield, unlike the ATV, HTV and Cygnus which burn up on re-entry into the Earth’s atmosphere.

“Dragon is really the main means of carrying cargo back from the space station,” said Elon Musk at a post docking media briefing.

First look inside the Dragon spacecraft, currently attached to the International Space Station. Credit: SpaceX

SpaceX is under contract with NASA to conduct a dozen Falcon 9/Dragon resupply missions to carry about 44,000 pounds of cargo to the ISS at a cost of some $1.6 Billion over the next few years.

The first operational Dragon resupply mission to the ISS could launch as soon as September.

SpaceX Falcon 9 rocket clears the tower after liftoff at 3:44 a.m. on May 22, 2012 from Space Launch Complex-40 at Cape Canaveral Air Force Station, Fla.,on the first commercial mission to loft the Dragon cargo resupply vehicle to the International Space Station. Credit: Ken Kremer/www.kenkremer.com

The Dragon was blasted to space atop a SpaceX Falcon 9 booster from Cape Canaveral, Florida on this historic test flight on May 22, 2012 and linked up with the ISS on Flight Day 4 on May 25.

Ken Kremer

Shuttle Replica Departs Kennedy for Ocean Voyage to Houston on a Barge – Enterprise is Next

The Space Shuttle replica “Explorer” towed onto a barge at the Kennedy Space Center. The full scale replica model has set sail for her permanent new museum display home at Space Center Houston, the visitor complex at NASA’s Johnson Space Center in Texas. Credit: Ken Kremer

[/caption]

A high fidelity replica of a NASA Space Shuttle orbiter has set off today, May 24, on an ocean going voyage by barge for NASA’s Johnson Space Center in Houston, Texas. This trip by the Shuttle replica gives a taste of what’s to come for the upcoming barge journey by Space Shuttle Enterprise around the southern tip of Manhattan in early June.

The replica model formerly named “Explorer” departed early this morning from the turn basin at the Kennedy Space Center in Florida in the shadow of the iconic vehicle Assembly Building (VAB) where the real Space Shuttles and Apollo Moon rockets were assembled for launch.

The space shuttle replica first moved through the inter-costal waterway and then set sail out from Port Canaveral and into the Atlantic Ocean this afternoon for about a week’s voyage that will take her southwards around the coastline of the Florida peninsula and then into the Gulf of Mexico on a heading for Houston, Texas.

Space Shuttle replica “Explorer” floats on a barge through Port Canaveral and past cruise ships and pleasure boats on the way from KSC to JSC in Houston. Credit: Kirby Corporation

The shuttle model was towed onto the barge at KSC Tuesday afternoon (May 23) by Beyel Bros. Crane and Rigging who are responsible for loading it. Beyel workers then welded the shuttle model to the deck of the barge.

None of the real space shuttles had ever been located at this position at KSC before near the VAB and waterways and provided truly amazing and unique photographic opportunities.

Space Shuttle replica “Explorer” towed onto a barge at the Kennedy Space Center has set sail for her permanent new museum display home at the visitor complex at NASA’s Johnson Space Center in Texas. Credit: Ken Kremer/kenkremer.com

The full scale replica – with the moniker Explorer removed – is being transported to her permanent new home at Space Center Houston, the visitor complex at NASA’s Johnson Space Center in Texas.

It will arrive in Houston around June 1, depending on the weather, where a free three day public arrival welcome “Shuttlebration Weekend” is planned.

Space Shuttle replica “Explorer” on a barge at the Kennedy Space Center near the iconic Vehicle Assembly Building (left) where the real shuttles were processed for space missions. Explorer is sailing to her new home at NASA’s Johnson Space Center in Houston, Texas. Credit: Ken Kremer

The Explorer had been on display alongside a gantry like tower at the Kennedy Space Center Visitor Complex (KSCVC) since 1993 and was enjoyed by millions of tourists since then along with full scale replica versions of the shuttle’s twin solid rocket boosters and huge external fuel tank.

The Explorer model was built was built in Apopka, Fla., by Guard Lee using schematics and blueprints provided by NASA. It’s the next best thing to having a real space shuttle. The model’s length is 122.7 feet, its height is 54 feet, and its wingspan is 78 feet.

Having been up close and inside all three of NASA’s real space shuttles, I can say that the Explorer mockup is an excellent representation of the genuine shuttle orbiters and gives a realistic sense of the airframe, heat shield tiles, cockpit and cavernous cargo bay. At KSCVC, visitors could see directly into the cargo bay housing a satellite. The Michelin wheels were genuine and had actually flown in space.

The Explorer was moved out from Kennedy’s Visitor Center on a 144 wheeled trailer in December 2011 by Beyel Bros to make way for Space Shuttle Atlantis. Atlantis will be towed to the KSC Visitor Complex in November 2012. The Visitor Complex is constructing a humongous permanent new display hall for Atlantis which is slated to open in 2013.

The Space Shuttle program was forcibly shutdown for lack of money at the direction of politicians in Washington DC after the final flight, STS-135, lifted off in July 2011, leaving the US with no capability to transport astronauts or cargo to the International Space Station since then.

The two other remaining space flown shuttles were assigned to museum locations near Washington, DC and Los Angeles. Discovery has already departed in April 2012, flying atop a 747 Jumbo Jet to the Smithsonian Air and Space Museum’s Annex outside Washington, DC.

The Endeavour will take the last cross country airplane trip of the shuttle program in September to her permanent new resting place at the California Science Museum. The Shuttle prototype orbiter Enterprise will be displayed at the Intrepid Air, Sea and Space Museum in New York City starting in mid-July 2012.

The Explorer is a consolation prize of sorts for the Johnson Space Center (JSC), which lost out on the nationwide bidding to display the three now retired NASA Space Shuttles.

JSC was home to the training facilities for the Space Shuttle crews and home to the NASA astronauts who flew aboard the five shuttle orbiters for the 30 year life of the Space Shuttle program. Many folks feel JSC was shortchanged in the shuttle museum home selections process.

On Sunday, June 3, the replica shuttle will arrive at Space Center Houston where it eventually will become part of a unique display telling the story of the Space Shuttle’s achievements and the nationwide team that made them possible. Further details about Space Center Houston – here

Ken Kremer

Going to the Moon? Don’t Touch the Historical Artifacts, NASA Says

NASA recommends an artifact boundary extending 75 m from the Apollo 11 lunar module descent stage. Photo credit: NASA

[/caption]

Don’t say you haven’t been warned. NASA put out an official document today specifying how close any future spacecraft and astronauts visiting the Moon can come to the artifacts left on the lunar surface by all US space missions, including the Apollo landing sites, any robotic landing sites like Surveyor and impact sites like LCROSS.

While these recommendations are not mandatory (there’s obviously no way to enforce this yet) the document states, “rather, it is offered to inform lunar spacecraft mission planners interested in helping preserve and protect lunar historic artifacts and potential science opportunities for future missions.”

For example, NASA recommends an artifact boundary extending 75 m from the Apollo 11 lunar module descent stage.

NASA isn’t expecting a rush of astro-looters to descend upon the Moon, but with China discussing a Moon landing, and with several Google Lunar X PRIZE teams hoping to send robotic landers, they want to make sure nothing from previous missions is disturbed.

“In the 50 years since the first lunar missions, the spaceflight community has not formally provided recommendations to the next generation of lunar explorers on how to preserve the original artifacts and protect ongoing science from the potentially damaging effects of nearby landers,” NASA said in an accompanying press release, saying that they recognize the steadily increasing technical capabilities of space-faring commercial entities and nations throughout the world that may be on the verge of landing spacecraft on the surface of the Moon.

The document specifies how close another spacecraft can hover, flyover, hop or touchdown near landing sites or spacecraft.

And not just hardware is included in the “don’t touch” areas: “U.S. human, human-robotic lunar presence, including footprints, rover tracks, etc., although not all anthropogenic indicators are protected as identified in the recommendations,” the document says.

NASA’s decisions on proximity boundaries were made from recommendations from external experts from the historic, scientific and flight-planning communities and apply to US government artifacts on the lunar surface.

NASA says they released this document to open discussions with commercial and international space agencies, and seek any improvements to the recommendations.

Read the full document here (pdf file).

Source: NASA

Opportunity Gets a View From The Edge

Opportunity's shadow aims eastward to the rim of Endeavour crater

[/caption]

The rover Opportunity captured a view into Endeavour crater as a low Sun cast a long shadow in this image, acquired back on March 9.

Endeavour is a large crater — 14 miles (22 km) wide, it’s about the same area as the city of Seattle. Opportunity arrived at its edge in August of 2011 after several years of driving across the Meridiani Plains.

Opportunity is currently the only operational manmade object on the surface of Mars… or any other planet besides Earth, for that matter. It’s a distinction it will hold until the arrival of Mars Science Laboratory at Gale Crater this August.

From the NASA news release by JPL’s Guy Webster:

The scene is presented in false color to emphasize differences in materials such as dark dunes on the crater floor. This gives portions of the image an aqua tint.

Opportunity took most of the component images on March 9, 2012, while the solar-powered rover was spending several weeks at one location to preserve energy during the Martian winter. It has since resumed driving and is currently investigating a patch of windblown Martian dust near its winter haven.

Opportunity and its rover twin, Spirit, completed their three-month prime missions on Mars in April 2004. Both rovers continued for years of bonus, extended missions. Both have made important discoveries about wet environments on ancient Mars that may have been favorable for supporting microbial life. Spirit stopped communicating in 2010. Since landing in the Meridiani region of Mars in January 2004, Opportunity has driven 21.4 miles (34.4 kilometers).

Image credit: NASA/JPL-Caltech/Cornell/Arizona State University

The Other End of an Eclipse

The Moon's shadow falling over the Pacific on May 20, 2012

[/caption]

As the annular eclipse on May 20 sent skywatchers around the globe gazing upwards to see the Sun get darkened by the Moon’s silhouette, NASA’s Terra satellite caught the other side of the event: the Moon’s shadow striking the Earth!

Cast across 240,000 miles of space, the lunar shadow darkened a circular swatch 300 km (185 miles) wide over the northern Pacific Ocean in this image, acquired by the Earth-observing Terra satellite’s Moderate Resolution Imaging Spectroradiometer (MODIS) at 20:30 UT on Sunday, May 20.

From the NASA Earth Observatory site:

Where the Moon passed in front of the Sun, Earth’s surface appeared black (left half of image). Around the margins of the shadow, our planet’s surface appeared yellowish brown. The shadow cast by an eclipse consists of two parts, the completely shadowed umbra and the partially shadowed penumbra.

The eclipse was first visible over eastern Asia and moved across the globe, later becoming visible on the west coast of the US. Known as an annular eclipse, even in totality there was a bright ring of Sun visible around the Moon — a result of the Moon’s elliptical orbit. The effect was dramatic, and was captured in some amazing photos from viewers around the world (as well as by a few above the world!)

Looking at Earth during the Annular Solar Eclipse of May 20, 2012, photographed by Don Pettit from the International Space Station at 23:36 GMT. (NASA)

Although there were a few images being circulated online of the “eclipse” that were not actual photos, be assured that these are the real deal.

And the next eclipse event? That will occur on November 13 of this year, when a total eclipse will be visible from Australia, the South Pacific and South America. Watch an animation of the Nov. 13 eclipse visibility here.

Top image: NASA/Jeff Schmaltz, LANCE MODIS Rapid Response.

Spectacular SpaceX Launch Opens Historic New Era in Spaceflight

The SpaceX Falcon 9 rocket lifts off at 3:44 a.m. from Space Launch Complex-40 at Cape Canaveral Air Force Station, Fla., to begin a demonstration test flight to the International Space Station as the first private spacecraft to dock at the orbiting laboratory complex. Credit: Ken Kremer

[/caption]Following this morning’s (May 22) spectacular nighttime blastoff of the SpaceX Falcon 9 rocket, human exploration of the cosmos embarked on a radical new course that will never be the same again.

The long awaited liftoff of the SpaceX Falcon 9 rocket at 3:44 a.m. lit up the Florida Space Coast for miles around as it roared off Pad 40 at Cape Canaveral, Florida on a history making mission bound for the International Space Station (ISS).

In a split second the page was turned to open a new era in humankinds exploration and exploitation of space that promises adventures to come that will one day be viewed as building a bridge from the dawn of the space age and the first human steps on the moon to starships that will one day ply the shores of interstellar space.

The SpaceX Falcon 9 rocket topped by the Dragon cargo capsule thundered to space from Space Launch Complex-40 at Cape Canaveral Air Force Station at 3:44 am (May 22) and is now safely in orbit with solar arrays deployed and is chasing the ISS flying some 249 miles overhead.

“I congratulate SpaceX for just an absolutely amazing countdown, launch and orbit insertion today, said Bill Gerstenmaier, Associate Administrator for Human Exploration and Operations Mission Directorate at NASA headquarters in Washington. “I’ve had the pleasure of working down here at the Cape with a lot of fantastic teams that have put together a lot of quality rockets and launched a lot of amazing things. I tell you, the SpaceX team, there is none better than this team that has really done a phenomenal job today.”

The on time Falcon 9 blastoff came three days after the first launch attempt was aborted a T Minus 0 when a computer automatically shutdown the already firing engines as it detected a high chamber pressure in one of the nine first stage Merlin 1 C engines.

“Every bit of adrenaline in my body released at that moment,” said Elon Musk to reporters at the post launch media briefing about the moment the rocket lifted off the pad. Musk is the founder, CEO and chief designer of SpaceX. “People were really giving it their all. For us, it was like winning the Super Bowl.”

SpaceX Falcon 9 rocket clears the tower after liftoff at 3:44 a.m. from Space Launch Complex-40 at Cape Canaveral Air Force Station, Fla.,on the first commercial mission to the International Space Station. Credit: Ken Kremer/www.kenkremer.com

Dragon will be the first private spacecraft that will rendezvous and dock with the ISS. After conducting a complicated series of rendezvous tests and maneuvers, docking is expected on day 4 of the mission on Friday morning EDT, May 26.

“There’s still a thousand things that have to go right, but we are looking forward to this exciting mission,” said Alan Lindenmoyer, manager of NASA’s Commercial Crew and Cargo Program.

Dragon will fly within range of the robotic arm. NASA Astronaut Don Pettit will grapple it and berth the Dragon on the earth facing side of the Harmony module.

NASA TV will provide live docking coverage

Ken Kremer

Repaired SpaceX Rocket Set for 2nd Blastoff Try on May 22

SpaceX Falcon 9 rocket poised at Pad 40 on Cape Canaveral Air Force Station for 2nd liftoff attempt on Tuesday, May 22 at 3:44 a.m. after repairs to first stage engine which caused a launch abort on May 19 Credit: Ken Kremer

[/caption]

SpaceX engineers have successfully replaced a faulty valve in a first stage engine that triggered a launch abort on May 19 and that now clears the way for a second launch attempt of the firms Falcon 9 rocket and Dragon spacecraft in the overnight hours early on Tuesday, May 22.

Litfoff of the Falcon 9/Dragon duo on the first private rocket bound for the International Space Station (ISS) is slated for 3:44 AM on May 22 on the historic test flight mision dubbed COTS 2.

“We are ready for blastoff on May 22,” SpaceX spokeswoman Kirstin Grantham told Universe Today during an interview at Space Launch Complex-40 at Cape Canaveral, Florida earlier today as the Falcon 9 rocket was standing erect at the pad under a brilliant blue sky.

“The work to replace a faulty nitrogen engine valve is complete and took just a few hours,” Grantham confirmed to me.

After a thorough inspection of the vehicle and analysis of the repair, the SpaceX team cleared the rocket for launch. The rocket remained vertical during the repair work.

SpaceX engineers at work fixing failed rocket engine valve at Pad 40
A team of SpaceX engineers diligently assessed the cause of the May 19 launch abort for the Falcon 9 rocket poised at Pad 40 on Cape Canaveral Air Force Station. Credit: Ken Kremer/www.kenkremer.com

The weather forecast has improved markedly to an 80% chance of favorable conditions at launch time because the chance of rain showers has decreased. The primary concern is for cumulus clouds.

The launch will be broadcast live on NASA TV and via SpaceX Webcast at http://spacex.com

As on May 19, the launch window is instantaneous meaning SpaceX has just a fraction of a second to get the vehicle off the ground and there is no chance to recycle to a later launch time on the same day.

“The next possibility to launch after May 22 is on May 25,” said Grantham in the event of a scrub on Tuesday. “We could not reserve May 23 due to a conflict with Air Force requirements.”

The two stage Falcon 9 rocket is 157 feet tall. The first stage generates a million pounds of thrust from nine Merlin 1 C engines configured in a 3 by 3 by 3 arrangement.

The May 19 launch was aborted in a split second by the flight computer just 0.5 seconds before liftoff when they detected a slightly high pressure in the combustion chamber of engine number 5 located at the center of the first stage core.

If the launch proceeds as planned, the Dragon will separate from the Falcon 9 second stage some nine minutes after liftoff. Over the next two days, Dragon will close in on the ISS and then perform a series of complicated and stringent rendezvous and abort tests that bring the vehicle to within 1.5 miles and prove it can safely dock at the ISS and pull away in an emergency to prevent any chance of crashing into the ISS.

If NASA is satisfied with the test results, Dragon will be grappled with the robotic arm by US Astronaut Don Pettit and berthed at a port on the ISS on May 25. Astronauts would open the hatch on May 26 and begin unloading the nearly 1200 pounds of cargo consisting of non-critical items such as food, water, clothing and science experiments.

Remote cameras set up to photograph the SpaceX Falcon 9 liftoff from Pad 40 on Cape Canaveral Air Force Station on May 22 at 3:44 a.m. after launch abort on May 19. Credit: Ken Kremer

This is the first third test flight of the Falcon 9 rocket and the first test flight of the Dragon in this vastly upgraded configuration with solar panels.

Only four entities have ever sent a spacecraft to dock at the ISS – the United States, Russia, Japan and the European Union.

If successful, SpaceX will open a new era in spaceflight by giving birth to the first fully commercial mission to the orbiting space station complex and unlock vast new possibilities for its utilization in science and exploration.

SpaceX is under contract with NASA to conduct twelve Falcon 9/Dragon resupply missions to carry about 44,000 pounds of cargo to the ISS for a cost of some $1.6 Billion over the next few years.

The purpose of Dragon is to carry supplies to the ISS and partially replace the cargo capabilities of NASA’s now retired space shuttle. Dragon is a commercial spacecraft designed and developed by SpaceX that will eventually blast astronauts to space.

Ken Kremer

What Will Happen During Tomorrow’s SpaceX Launch:

SpaceX's Falcon on the pad on May 18 (via Spaceflight Now)

With less than a day left before SpaceX’s historic launch of the first commercial vehicle to the ISS, slated for 4:55 am EDT on Saturday, May 19, here’s a video of what will happen once the Falcon lifts off.

(Part of me really wishes that they’ll be pumping out some dramatic music when it launches!)

[/caption]

The video, created by NASA in 2011, shows the events that will take place from the initial launch at SpaceX’s Cape Canaveral facility to the release of the Dragon capsule and its eventual docking with the ISS on Tuesday, as well as its return to Earth (yes, it’s reusable!)

The Dragon capsule contains 674 lbs (305 kg) of food and supplies for the Expedition 31 crew.

In addition to what’s aboard Dragon, the Falcon rocket will also be taking the cremated remains of 308 people — including Star Trek actor James Doohan and NASA astronaut Gordon Cooper — into space, via a private company called Celestis.

Read more about tomorrow’s launch here. And to watch the event live, stay tuned to SpaceX.com.

Video: NASA

Update 5/19: As it turned out, none of the above occurred. Instead, this happened. Maybe better luck on Tuesday!

The Big Dipper Like You’ve Never Seen It Before!

Junocam image of the stars that make up the "Big Dipper" asterism

[/caption]

All right, it may look just like any other picture you’ve ever seen of the Big Dipper. Maybe even a little less impressive, in fact. But, unlike any other picture, this one was taken from 290 million km away by NASA’s Juno spacecraft en route to Jupiter, part of a test of its Junocam instrument!  Now that’s something new concerning a very old lineup of stars!

“I can recall as a kid making an imaginary line from the two stars that make up the right side of the Big Dipper’s bowl and extending it upward to find the North Star,” said Scott Bolton, principal investigator of NASA’s Juno mission. “Now, the Big Dipper is helping me make sure the camera aboard Juno is ready to do its job.”

Diagram of the Juno spacecraft (NASA/JPL)

The image is a section of a larger series of scans acquired by Junocam between 20:23 and 20:56 UTC (3:13 to 3:16 PM EST) on March 14, 2012. Still nowhere near Jupiter, the purpose of the imaging exercise was to make sure that Junocam doesn’t create any electromagnetic interference that could disrupt Juno’s other science instruments.

In addition, it allowed the Junocam team at Malin Space Science Systems in San Diego, CA to test the instrument’s Time-Delay Integration (TDI) mode, which allows image stabilization while the spacecraft is in motion.

Because Juno is rotating at about 1 RPM, TDI is crucial to obtaining focused images. The images that make up the full-size series of scans were taken with an exposure time of 0.5 seconds, and yet the stars (brightened above by the imaging team) are still reasonably sharp… which is exactly what the Junocam team was hoping for.

“An amateur astrophotographer wouldn’t be very impressed by these images, but they show that Junocam is correctly aligned and working just as we expected”, said Mike Caplinger, Junocam systems engineer.

As well as the Big Dipper, Junocam also captured other stars and asterisms, such as Vega, Canopus, Regulus and the “False Cross”. (Portions of the imaging swaths were also washed out by sunlight but this was anticipated by the team.)

These images will be used to further calibrate Junocam for operation in the low-light environment around Jupiter, once Juno arrives in July 2016.

Read more about the Junocam test on the MSSS news page here.

As of May 10, Juno was approximately 251 million miles (404 million kilometers) from Earth. Juno has now traveled 380 million miles (612 million kilometers) since its launch on August 5, 2011 and is currently traveling at a velocity of 38,300 miles (61,600 kilometers) per hour relative to the Sun.

Watch a video of the Juno launch here, taken by yours truly from the press site at Kennedy Space Center!

Space Exploration By Robot Swarm

"Hopper" rover/spacecraft concept by Stanford University's Marco Pavone

[/caption]

With all there’s yet to learn about our solar system from the many smaller worlds that reside within it — asteroids, protoplanets and small moons — one researcher from Stanford University is suggesting we unleash a swarm of rover/spacecraft hybrids that can explore en masse.

Marco Pavone, an assistant professor of aeronautics and astronautics at Stanford University and research affiliate at JPL, has been developing a concept under NASA’s Innovative Advanced Concepts (NIAC) Program that would see small spherical robots deployed to small worlds, such as Mars’ moons Phobos and Deimos, where they would take advantage of low gravity to explore — literally —  in leaps and bounds.

Due to the proposed low costs of such a mission, multiple spacecraft could be scattered across a world, increasing the area that could be covered as well as allowing for varied surfaces to be explored. Also, were one spacecraft to fail the entire mission wouldn’t be compromised.

The concept is similar to what NASA has done in the past with the Mars rovers, except multiplied in the number of spacecraft (and reduced in cost.)

The robots would be deployed from a “mother” spacecraft and spring into action upon landing, tumbling, hopping and vaulting their way across low-mass worlds.

In addition to providing our first views from the surfaces of such worlds, Pavone’s hybrid rovers could also help prepare for future, more in-depth exploration.

“The systematic exploration of small bodies would help unravel the origin of the solar system and its early evolution, as well as assess their astrobiological relevance,” Pavone explains. “In addition, we can evaluate the resource potential of small bodies in view of future human missions beyond Earth.”

Read more from NASA’s Office of the Chief Technologist here.

Photo courtesy of Marco Pavone