After a six-week delay, the crew of Expedition 31 successfully launched aboard a Soyuz TMA-04M rocket on Tuesday, May 15 at 0301 GMT (11:01 p.m. EDT May 14) from Russia’s historic Baikonur Cosmodrome, located in the steppes of Kazakhstan.
The rocket will deliver NASA astronaut Joe Acaba and Russian cosmonauts Gennady Padalka and Sergei Revin to the International Space Station. After a two-day journey, their Soyuz capsule will dock with the ISS at 11:38 p.m. CDT on Wednesday.
The launch was aired live by NASA HD TV. The full launch can be viewed below:
The crew was originally slated to launch on March 30, but problems with a pressure test forced a delay until a new Soyuz rocket could be brought into service. In the meantime ISS crew members Don Pettit, ESA astronaut Andre Kuipers and cosmonaut Oleg Kononenko have had the station to themselves since April 27.
The three new crew members will remain on Space Station until mid-September, serving as flight engineers under Expedition 31 commander Oleg Kononenko until July 1, when the current crew will depart and Padalka will assume command, marking the beginning of Expedition 32.
For more news on Expedition 31, visit NASA’s ISS website here. Also, you can follow NASA astronaut Joe Acaba on Twitter @AstroAcaba.
Former NASA astronaut Story Musgrave is neither happy nor excited about the current state of the space administration or about the commercial COTS (Commercial Orbital Transportation Services) program. He’s not happy, and he’s not afraid to say so.
“The whole thing is chaos and a cop out. The whole thing is a Washington failure,” Musgrave bluntly stated to Examiner.com’s Charles Atkeison in an interview this past weekend.
Musgrave was a NASA astronaut for over 30 years and was a crew member on six shuttle missions. He performed the first shuttle spacewalk on Challenger’s first flight, was a pilot on an astronomy mission, was the lead spacewalker on the Hubble repair mission and on his last flight he operated an electronic chip manufacturing satellite on Columbia.
He has 7 graduate degrees in math, computers, chemistry, medicine, physiology, literature and psychology. He has been awarded 20 honorary doctorates and was a part-time trauma surgeon during his 30 year astronaut career.
And, according to Atkeison, Musgrave “feels the space agency has no true goals or focus today.”
“We’re not going anywhere… there is no where, there is no what, and there is no when,” the former astronaut told Atkeison. “There is no Mars program, none. There is also no Moon program. There is no asteroid program… there’s no what we’re gonna do and no when we’re gonna do it.”
Neither does Musgrave put much faith in the value of the COTS program… which includes the upcoming launch of SpaceX’s Dragon capsule.
This isn’t the first time Musgrave has spoken out against NASA’s direction, either; in June of 2011 Musgrave lambasted the administration for its failure to have a “next step” after phasing out the shuttle program.
“Why are we so poor in our vision and so poor in our project management that we come to a point where it’s reasonable to phase out the current program and we have no idea what the next one is?” Musgrave said in 2011. “Washington has to stop doing that.”
Story Musgrave, now 76, currently operates a palm farm in Orlando, FL, a production company in Sydney and a sculpture company in Burbank, CA. He is also a landscape architect, a design professor and a concept artist with Disney Imagineering. It’s clear that Musgrave is a man who knows what vision is — and isn’t. Still, he’s always honored to have had the opportunity to be a part of NASA.
“I’m massively privileged to be part of the space program, and I never forget to say that,” said Musgrave last year.
At 9:58 a.m. this morning (Friday May 11), technicians unplugged Space Shuttle Endeavour marking the final power down of NASA’s last powered orbiter and termination of all power flowing to the flight deck. Today, Endeavour was euthanized. The flight deck went dark for the last time as Endeavour is being prepped inside Orbiter Processing Facility-2 (OPF-2) for final departure from the Kennedy Space Center later this year and display at her final resting place in Los Angeles.
As Endeavour was powered back up this past week for one final time to carry out decommissioning and safing activities, a tiny media group was invited to crawl inside and photographically record the flight deck as a living spaceship for the last time in history. Ken Kremer and Mike Deep were honored to receive a NASA invitation and to represent Universe Today and we share our photos of Endeavour’s last flight deck power-up here.
For me, standing on the astronauts flight deck was like being transported to the bridge of the “Starship Enterprise” – but this was real, not science fiction. I was at last standing on the “Starship Endeavour” and this was the closest I ever felt to being in space. The only thing better is being in orbit.
The blue display screens used by the Shuttle Commander and Pilot were real, lit and vividly moving before my eyes, dials were active and shining and multitudes of critical gauges lined the cabin all over from front to back, left to right , top to bottom.
Endeavour was the youngest in NASA’s fleet of three surviving orbiters and designated as vehicle OV-105. She flew 25 missions over a spaceflight career that spanned 19 years from the inaugural flight in 1992 to the final flight in 2011 to deliver the dark matter hunting Alpha Magnetic Spectrometer (AMS) to the International Space Station (ISS). Altogether, Endeavour spent 299 days in space, orbited the Earth 4671 times and traveled over 197 million kilometers (123 million mi).
Endeavour’s power termination on May 11, 2012 comes almost exactly one year since her final launch on the 16 day long STS-134 mission on May 16, 2011. Since then technicians have been removing hazardous materials and propellants from the orbiters hydraulic and fuel lines and thoroughly cleansing Endeavour to make it safe for museum display to the general public. The power must be on to drain and purge the toxic materials.
This week I watched as technicians removed components of Endeavours fuel lines from the aft compartments that might possibly be reused at some future date inside NASA’s new Heavy Lift rocket, dubbed the SLS or Space Launch System.
Power to NASA’s two other orbiters, Discovery and Atlantis, was terminated in December on the 16th and 22rd respectively. Read my earlier story at Universe Today, here.
Following the forced retirement of the Space Shuttle Program for lack of money after the STS-135 mission in July 2011, all three orbiters were cleansed and purged of toxic contaminants in preparation for their final assignment as museum pieces.
The orbiters had a lot of usable life left in them, having flown barely a third of the 100 mission design lifetime.
Discovery was the first orbiter to leave the Kennedy Space Center. On April 17, Discovery was flown atop a modified Boeing 747 jumbo Jet to the Smithsonian’s Udvar-Hazy Center outside Washington, DC. Discovery was towed inside the museum on April 19 and placed on permanent public display.
Since the conclusion of the Space Shuttle Program, the US has had absolutely zero capability to send astronauts or cargo to the International Space Station. For at least another 4 or 5 years, the US will be completely reliant on the Russians to ferry American astronauts to the ISS until around 2016 or 2017 when NASA’s hopes that one or more of the privately developed commercial “space taxis” will be ready to launch.
Devastating and continuous cuts to NASA’s budget by visionless politicians in Washington, DC have forced repeated delays to the initial launch of the commercial crew spacecraft- such as the SpaceX Dragon.
To be one of the last humans on Earth present as an eyewitness to the historic last power up of the last living shuttle – Endeavour – while standing immersed inside the astronauts flight deck and experience what are truly the final days of NASA’s 30 year long Space Shuttle Program was simultaneously humbling, thrilling beyond words and incredibly sad – for all the missions that might yet have been and the Exploration and Discovery that’s yet to be accomplished on the High Frontier.
Bright craters, dark craters… craters shaped like butterflies… they’re all represented here in a panorama made from images acquired by NASA’s Dawn spacecraft, currently in orbit around the asteroid Vesta.
I stitched two images together (using a third for gap fill-in) that were originally acquired by Dawn’s framing camera in October 2011 and released last week. Because the angle of sunlight is pretty close to straight-on, there’s not a whole lot of relief in the original images so I bumped that contrast up a bit as well, to help bring out Vesta’s terrain.
The dark crater in the center is Laelia, and it’s surrounded by smaller dark impact craters as well… most notably one that displays dramatic rays of dark material. At top right is the much larger crater Sextilia, which has bright material revealed along its inner rim.
Near the lower left edge, just horizontal from Laelia, is the butterfly-shaped Helena crater. It shows both bright and dark material, the latter of which can be seen slumping into the crater as well as outward from its rim. Helena is approximately 22 kilometers (14 miles) in diameter. (There’s a scale at the lower right showing a 10-km / 6.2-mile-wide span.)
The images were acquired during the HAMO (high-altitude mapping orbit) phase of the mission.
On Thursday, May 10, NASA will host a news conference at 11 a.m. PDT (2 p.m. EDT) to present a new analysis of the giant asteroid Vesta using data from the agency’s Dawn spacecraft. The event will be broadcast live on NASA Television and streamed on the agency’s website. For streaming video, downlink and scheduling information visit: http://www.nasa.gov/ntv.
The event will also be streamed live on Ustream with a moderated chat available at http://www.ustream.com/nasajpl2. Questions may also be asked via Twitter using the hashtag #asknasa.The event will be held at NASA Headquarters in Washington, broadcast live on NASA Television and streamed on the agency’s website. For NASA TV streaming video, downlink and scheduling information, visit: http://www.nasa.gov/ntv.
Image credit: NASA/ JPL-Caltech/ UCLA/ MPS/ DLR/ IDA. Edited by J. Major.
51 years ago today, on May 5, 1961, NASA launched the Mercury-Redstone 3 rocket carrying Alan B. Shepard, Jr. aboard the Freedom 7 capsule. Shepard successfully became America’s first man in space, making a brief but historic suborbital test flight that propelled American astronauts into the space race of the 1960s.
The video above is made from photographs taken by a film camera mounted to the Freedom 7 spacecraft and scanned by archivists at Johnson Space Center. It shows the view from Freedom 7 as the Redstone rocket launched it into space, getting an amazing view of Earth’s limb and the blackness beyond before falling back to splash down in the Atlantic.
The video is made from the entire film reel, so at the end there’s also some shots of a light experiment inside the spacecraft. (View the individual scans at ASU’s March to the Moon website here.)
What’s amazing to realize is that, at this point in time, the space surrounding our planet was a very empty place. This was a time before communication and weather satellites, before GPS, before Space Station and space shuttles — and space junk — and student-made weather balloon videos. Just 51 years ago low-Earth orbit was a new frontier, and guys like Shepard (and Gagarin and Glenn, etc.) were blazing the path for everyone that followed.
Even though images of Earth from space are still amazing to look at today, seeing these photos reminds us of a time when it was all just so very new.
Read more about Shepard and the MR-3 launch here.
Images and video: NASA/JSC/Arizona State University
NASA researchers have just completed science mission flights over Greenland and the surrounding seas, gathering data on ice distribution and thickness with the MABEL (Multiple Altimeter Beam Experimental Lidar) laser altimeter instrument mounted in the nose of an ER-2 aircraft. WIth MABEL’s unprecedented ability to detect individual photons, researchers will be able to even more accurately determine how Arctic ice sheets are behaving in today’s changing climate.
At the same time, news has come in from researchers with the University of Washington, who have completed a NASA- and NSF-funded study of the enormous island’s glaciers spanning a ten-year period. What they have found is that the glaciers have been increasing in speed about 30% over the past ten years — which is actually less than earlier studies had anticipated.
“In some sense, this raises as many questions as it answers. It shows there’s a lot of variability,” said Ian Joughin, a glaciologist in the UW’s Applied Physics Laboratory and coauthor of the paper, published May 4 in Science.
Previous research had suggested that Greenland’s melting glaciers could contribute up to 19 inches to global sea level rise by 2100. But the behavior of Greenland’s vast ice fields and ocean-draining glaciers was not yet thoroughly researched. Based on this new study, the outlet glaciers have not sped up as much as expected.
Still, ocean-draining (a.k.a. marine-terminating) glaciers move much faster than their land-based counterparts, and the UW researchers have found that their speeds are increasing on average — up to 32% in some areas.
The team realizes that the study may just not have observed a long enough period of time. (These are glaciers, after all!)
“There’s the caveat that this 10-year time series is too short to really understand long-term behavior, so there still may be future events – tipping points – that could cause large increases in glacier speed to continue,” said Ian Howat, an assistant professor of earth sciences at Ohio State University and a co-author of the paper. “Or perhaps some of the big glaciers in the north of Greenland that haven’t yet exhibited any changes may begin to speed up, which would greatly increase the rate of sea level rise.”
What the researchers didn’t find was any evidence that the rate of flow is slowing down. Though the true extent of the effect of Greenland’s ice on future sea level rise may not be unerringly predictable down to the inch or centimeter, even at the currently observed rate a contribution of 4 or more inches by the end of the century is still very much a possibility.
Meanwhile, the data gathered from the MABEL science flights over the past four weeks will be used to calibrate NASA’s next-generation ice-observing satellite, IceSat-2, planned for launch in 2016. Once in orbit, IceSat-2 will provide even more detailed insight to the complex behavior of our planet’s ice sheets.
The latest images are in from Saturn’s very own personal paparazzi, NASA’s Cassini spacecraft, fresh from its early morning flyby of the ice-spewing moon Enceladus. And, being its last closeup for the next three years, the little moon didn’t disappoint!
The image above is a composite I made from two raw images (this one and this one) assembled to show Enceladus in its crescent-lit entirety with jets in full force. The images were rotated to orient the moon’s southern pole — where the jets originate — toward the bottom.
Cassini was between 72,090 miles (116,000 km) and 90,000 miles (140,000 km) from Enceladus when these images were acquired.
This morning’s E-19 flyby completed a trio of recent close passes by Cassini of the 318-mile (511-km) -wide moon, bringing the spacecraft as low as 46 miles (74 km) above its frozen surface. The goal of the maneuver was to gather data about Enceladus’ internal mass — particularly in the region around its southern pole, where a reservoir of liquid water is thought to reside — and also to look for “hot spots” on its surface that would give more information about its overall energy distribution.
Cassini had previously discovered that Enceladus radiates a surprising amount of heat from its surface, mostly along the “tiger stripe” features — long, deep furrows (sulcae) that gouge its southern hemisphere, they are the source of the water-ice geysers.
Cassini also used the flyby opportunity to study Enceladus’ gravitational field.
By imaging the moon with backlit lighting from the Sun the highly-reflective ice particles in the jets become visible. More direct lighting reduces the jets’ visibility in images, which must be exposed for the natural light of the scene or risk “blowing out” due to Enceladus’ natural high reflectivity.
The images below are raw spacecraft downloads right from the Cassini’s imaging headquarters in Boulder, CO.
Cassini also swung closely by Dione during this morning’s flyby but the images from that encounter aren’t available yet. Stay tuned to Universe Today for more postcards from Saturn!
As always, you can follow along with the ongoing Cassini mission on JPL’s dedicated site here, as well as on the Cassini Imaging Central Laboratory for Operations (CICLOPS) site.
The European Space Agency has given the go-ahead for an exciting mission to explore the icy moons of Jupiter, as well as the giant planet itself.
JUICE — JUpiter ICy moons Explorer — will consist of a solar-powered spacecraft that will spend 3.5 years within the Jovian system, investigating Ganymede, Europa and the upper atmosphere of Jupiter. Anticipated to launch in June 2022, JUICE would arrive at Jupiter in early 2030.
As its name implies, JUICE’s main targets are Jupiter’s largest icy moons — Ganymede and Europa — which are thought to have liquid oceans concealed beneath their frozen surfaces.
The largest moon in the Solar System, Ganymede is also thought to have a molten iron core generating a magnetic field much like Earth’s. The internal heat from this core may help keep Ganymede’s underground ocean liquid, but the dynamics of how it all works are not quite understood.
JUICE will also study the ice-coated Europa, whose cueball-smooth surface lined with cracks and jumbled mounds of frozen material seem to be sure indicators of a subsurface ocean, although how deep and how extensive is might be are still unknown — not to mention its composition and whether or not it could be hospitable to life.
“JUICE will give us better insight into how gas giants and their orbiting worlds form, and their potential for hosting life,” said Professor Alvaro Giménez Cañete, ESA’s Director of Science and Robotic Exploration.
The JUICE spacecraft was originally supposed to join a NASA mission dedicated to the investigation of Europa, but NASA deemed their proposed mission too costly and it was cancelled. According to Robert Pappalardo, study scientist for the Europa mission based at JPL, NASA may still supply some instruments for the spacecraft “assuming that the funding situation in the United States can bear it.”
JUICE will also capture images of Jupiter’s moon Callisto and search for aurorae in the gas giant’s upper atmosphere, as well as measure the planet’s powerful magnetic field. Once arriving in 2030, it will spend at least three years exploring the Jovian worlds.
Read more in today’s news release from Nature, and stay tuned to ESA’s JUICE mission page here.
Actually it’s more like 3.5 times their weight in gold, according to today’s market value… and meteorite experts from SETI and NASA’s Marshall Space Flight Center.
During the daylight hours of April 22, 2012, reports came in from all over the north central California area of an extremely bright fireball — described as a “glittering sparkler” — and accompanying loud explosion. It was soon determined that this was the result of a meteoroid about the size of a minivan entering the atmosphere and disintegrating. It was later estimated that the object weighed about 70 metric tons and detonated with a 5-kiloton force.
Over a thousand meteorite hunters scrambled to the area, searching for any traces of the cosmic visitor’s remains. After a few days, several pieces of the meteorite were found and reported by five individuals, adding up to 46 grams in total.
Those pieces could be worth over $9,000 USD, according to Bill Cooke of NASA’s Meteoroid Environment Office at Marshall Space Flight Center.
Based on today’s market, that’s about 3.6 times the value of gold (about $1,660 per troy ounce — 31.1 grams).
The high value is due to the extreme rarity of the meteorite fragments. The California fireball is now known to have been created by a CM chondrite, a type of carbonaceous meteorite with material characteristics similar to comets.
According to Franck Marchis, Planetary Astronomer at the Carl Sagan Center of the SETI Institute and one of the coordinators of the meteorite reporting teams, CM chondrites appear to have been altered by water, and have deuterium-to-hydrogen ratios in line with what’s been measured in the tails of comets Halley and Hyakutake.
They also have been found to contain organic compounds and amino acids, lending to the hypothesis that such meteorites may have helped supply early Earth with the building blocks for life.
But due to their fragile composition, they are also incredibly rare. Only 1% of known meteorites are CM chondrites, making even the small handful of fragments found in California very valuable.
“This will be only the third observed CM fall in the US, after Crescent, OK, in 1936, (78 g) and Murray, KY, in 1950 (13 kg),” Marchis told Universe Today.
As far as what the finders will do with the fragments, that’s entirely up to them.
“They can sell them on eBay or they can lend them to the scientists… or make a donation.” Marchis said.
Just goes to show that all that glitters really isn’t gold — it could be even better.
Read more in an article by Sara Reardon on New Scientist, and read more on the comet/chondrite connection here. And the ongoing search for pieces of what’s now being referred to as the “Sutter’s Mill Meteorite” can be followed here and here.
The largest CM chondrite ever recovered was from a fall in Murchison, Australia on September 28, 1969. The total mass of its collected fragments weighed in at over 100 kg (220 lbs).
The folks at NASA Goddard’s multimedia division have outdone themselves this time on a new video compilation which, really, shows how NASA dreams big science. Its asks the big questions of why we really explore and how important these explorations can be. It shows views of the Earth, the planets, the Sun, and the endless universe beyond. The video description says it best: “Come for the cool, stay for the music, take away a sense of wonder to share. It’s six minutes from Earth to forever, and you can see it here!”
And what will be lost if NASA is allowed to just fade away through neglect? If you live in the US, contact your Congress members and encourage them to support NASA. Currently NASA’s budget isn’t big enough to even show up as a line on a pie chart, and represents 0.46% of the US budget — less than half a penny for every dollar spent in the US, and has been relatively unchanged for 25 years.
Here’s a graph of what NASA’s percentage of the budget has been like over time:
“NASA contributes to society in massively huge ways in terms of technological, economical, and inspirational progress,” says the website Penny4NASA. “The progress that we have seen in the last 40 years comes largely from the world’s extremely talented scientists and engineers. Now, talk to most any scientist and/or engineer of the last 40 years, and we are willing to bet that they were drawn into their chosen field by something NASA related.”
Check out Penny4NASA for more information and to sign a petition to ask for more funding for NASA.