By Dawn’s Early Light

Vesta's surface textures get highlighted by dawn's light

[/caption]

Sunrise on Vesta highlights the asteroid’s varied surface textures in this image from NASA’s Dawn spacecraft, released on Monday, Feb. 20. The image was taken on Dec. 18 with Dawn’s Framing Camera (FC).

Just as the low angle of  early morning sunlight casts long shadows on Earth, sunrise on Vesta has the same effect — although on Vesta it’s not trees and buildings that are being illuminated but rather deep craters and chains of pits!

The steep inner wall of a crater is seen at lower right with several landslides visible, its outer ridge cutting a sharp line.

Chains of pits are visible in the center of the view. These features are the result of ejected material from an impact that occurred outside of the image area.

Other lower-profile, likely older craters remain in shadow.

Many of these features would appear much less dramatic with a high angle of illumination, but they really shine brightest in dawn’s light.

See the full image release on the Dawn mission site here.

Image credit: NASA/ JPL-Caltech/ UCLA/ MPS/ DLR/ IDA

Opportunity Phones Home Dusty Self-Portraits and Ground Breaking Science

Mosaic: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Kenneth Kremer

[/caption]

Opportunity, the Princess of Martian Robots, phoned home dusty new self portraits – above and below – of her beautiful bod basking in the utterly frigid sunshine during her 5th winter on the Red Planet whilst overlooking a humongous crater offering bountiful science.

NASA’s endearing robot is simultaneously carrying out an ambitious array of ground breaking science experiments this winter – providing insight into the mysterious nature of the Martian core – while sitting stationary until the energy augmenting rays of the springtime Sun shower down on Mars from the heavens above.

Opportunity’s current winter worksite is located at the rim of the vast crater named Endeavour, some 14 miles (22 kilometers) in diameter. The robot will remain parked for the winter on a slope at the north end of the crater rim segment called Cape York with an approximate 15-degree northerly tilt towards the life-giving sun to maximize solar energy production. The park-site is at an outcrop dubbed “Greeley Haven”, named in honor of Ronald Greeley, a beloved and recently deceased science team member.

The power killing dust buildup is readily apparent on the solar arrays and High Gain Antenna pictured in the new panoramic self-portraits of Opportunity’s wing-like deck. The red Martian dust also functions as a rather effective camouflage agent, sometimes blending the rover to near invisibility with the surface.

Dusty Mars Rover's Self-Portrait- Dec 2011
NASA's Mars Exploration Rover Opportunity shows dust accumulation on the rover's solar panels as the mission approached its fifth Martian winter at the rim of Endeavour Crater. Opportunity is located on the north-facing slope of a site called "Greeley Haven." This is a mosaic of images taken by Opportunity's panoramic camera (Pancam) during the 2,811th to 2,814th Martian days, or sols, of the rover's mission (Dec. 21 to Dec. 24, 2011). Credit: NASA/JPL-Caltech/Cornell/Arizona State Univ.

Indeed because Opportunity is covered with a thicker film of dust compared to her prior four Martian winters, the rover team was forced to employ the same “tilting” strategy they successfully used to keep her twin sister Spirit alive during her trio of Antarctic-like winters. This is the first winter that Opportunity did not have sufficient power to continue roving across the surface.

Since Opportunity is located just south of the Martian equator, the daylight hours for solar power generation are growing shorter until the southern Mars winter solstice occurs on March 30, 2012. As of mid- February 2012, the latest measure of solar array energy production was 274 watt-hours, compared to about 900 watt-hours at the start of the mission. See Solar Power energy graph below.

Power generation from the solar arrays has fluctuated up and down throughout Opportunity’s lifetime depending on when the completely unpredictable and fortuitous Martian wind storms chance by and miraculously clean the arrays of the rusty red dust.

Opportunity Rover Self-Portrait From 2007
Opportunity used its panoramic camera (Pancam) during the mission's sols 1282 and 1284 (Sept. 2 and Sept. 4, 2007) to take the images combined into this mosaic view of the rover. The downward-looking view omits the mast on which the camera is mounted.The deck panorama is presented in approximate true color, the camera team's best estimate of what the scene would look like if humans were there and able to see it with their own eyes.Credit: NASA/JPL-Caltech/Cornell

The rover science team is ingeniously using the lack of movement to their advantage and Opportunity is still vigorously hard at work doing breakthrough research each and every day.

From her stationary position, Opportunity is conducting her first ever radio science Doppler tracking measurements to support geo-dynamic investigations and to elucidate the unknown structure of the Martian interior and core. The team was eager for the long awaited chance to carry out the radio tracking experiment with the High Gain Antenna (HGA) and determine if Mars core is liquid or solid. Months of data collection are required while the rover stays stationary.

“This winter science campaign will feature two way radio tracking with Earth to determine the Martian spin axis dynamics – thus the interior structure, a long-neglected aspect of Mars,” Ray Arvidson told Universe Today. Arvidson, of Washington University in St. Louis, is the deputy rover Principal Investigator.

Opportunity has nearly finished snapping the 13 filter, 360 degree stereo Greeley” panorama. The rover deployed the robotic arm onto the surface of the “Amboy” outcrop to collect multi-sol integrations with the Mössbauer Spectrometer and the largest ever mosaic campaign using the Microscopic Imager.

“We’ll do good science while we’re at Greeley Haven. But as soon as we catch a wind gust or the seasons change, we’ll be on our way again,” Steve Squyres told Universe Today. Squyres, of Cornell University is the rover Science Principal Investigator

“The Martian southern winter solstice occurs at the end of March. A few months after that date we will drive her off the outcrop and further explore Cape York,” Arvidson told me

The team will drive Opportunity in search of further evidence of the gypsum mineral veins like “Homestake” – indicative of ancient water flow – previously discovered at Cape York. Thereafter they’ll rove further south to investigate deposits of phyllosilicates, the clay minerals which stem from an earlier epoch when liquid water flowed on Mars eons ago and perhaps may have been more favorable to sustaining life.

Graph shows Opportunity’s Solar power energy generation over the past 1000 Sols, or Martian Days, from Sol 1900 up to February 2012. Credit: NASA/JPL/Marco Di Lorenzo

Mars from Earth on Feb 18, 2012 is nearly at opposition (occurs March 3) in this image taken using a Celestron 11 inch telescope in Leesburg, Florida. Astrophotographer Credit: Ernie Rossi

Opportunity is now well into her 9th year exploring hitherto unknown terrain on Mars, far exceeding anyone’s expectation. She landed inside a tiny crater on Jan. 24. 2004 for what was expected to be a mission of merely 90 Martian days, or Sols.

Today is Martian Sol 2873, that’s 32 times beyond the rover designers “warranty” for NASA’s Opportunity rover.

Altogether, Opportunity has journeyed more than 21 miles (34 kilometers) across the Red Planet’s surface, marking the first overland expedition on another Planet. See our route map below.

Opportunity Rover Traverse Map at Meridiani Planum on Mars - 2004 to 2012
Traverse map shows the 8 Year Journey of Opportunity from Eagle Crater landing site on Sol 1- Jan. 24, 2004 - to 5th Winter Haven worksite at Greeley Haven at Endeavour Crater rim in January 2012. Opportunity embarked on a crater tour and discovered bountiful evidence for the flow of liquid water on Mars billions of years ago. Endeavour Crater is 14 miles 22 kilometers) in diameter. Opportunity has driven more than 21 miles (34 km). Credit: NASA/JPL/Cornell/UA/Marco Di Lorenzo/Kenneth Kremer

Meanwhile, NASA’s Curiosity Mars Science Laboratory rover is rocketing through space and on course for a pinpoint touchdown inside the layered terrain of Gale Crater on August 6, 2012. Curiosity is now America’s last planned Mars rover following the cancellation of the joint NASA/ESA ExoMars rover mission in the Obama Administrations newly announced Fiscal 2013 NASA budget.

Degas: a Crater Painted Blue

MESSENGER wide-angle camera image of Degas crater

[/caption]

This image, acquired by NASA’s MESSENGER spacecraft on December 12, 2011, reveals the blue coloration of the 32-mile (52-km) -wide Degas crater located in Mercury’s Sobkou Planitia region.

Degas’ bright central peaks are highly reflective in this view, and may be surrounded by hollows — patches of sunken, eroded ground first identified by MESSENGER last year.

Such blue-colored material within craters has been increasingly identified as more of Mercury’s surface is revealed in detail by MESSENGER images. It is likely due to an as-yet-unspecified type of dark subsurface rock, revealed by impact events.

The slightly larger, more eroded crater that Degas abuts is named Brontë.

The image was acquired with MESSENGER’s Wide Angle Camera (WAC) of the Mercury Dual Imaging System (MDIS), using filters 9, 7, 6 (996, 748, 433 nanometers) in red, green, and blue, respectively.

Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington.

A Mardi Gras Moon Crossing

SDO AIA image of the Sun and Moon at 14:11 UT on Feb. 21, 2012

[/caption]

The Sun seems to be glowing in traditional Mardi Gras colors in this image, made from three AIA channels taken today at approximately 14:11 UT (about 9:11 a.m. EST) as the Moon passed between it and the Solar Dynamics Observatory spacecraft. Looks like it’s that time of year again!

During portions of the year, the Moon transits the Sun on a regular basis from the perspective of NASA’s SDO spacecraft, which lies within the Moon’s orbit. When this happens we are treated to an improvised eclipse… and it gives SDO engineers a way to fine-tune the observatory’s calibration as well.

Here are more AIA views of the same event captured in different wavelengths:

Lunar transit on 2-21-12; AIA 304
Lunar transit on 2-21-12; AIA 193
Lunar transit on 2-21-12; AIA 4500

…and here’s an interesting image taken in HMI Dopplergram:

HMI Dopplergram image of transit

While the AIA (Atmospheric Imaging Assembly) images the Sun in light sensitive to different layers of its atmosphere, the Helioseismic and Magnetic Imager (HMI) studies oscillations in the Sun’s magnetic field at the surface layer.

Watch a video of the path of this lunar transit, posted by the SDO team here.

And if you happen to be reading this as of the time of this writing (appx. 10:06 a.m. EST) you can keep up with the latest images coming in on the SDO site at http://sdo.gsfc.nasa.gov/.

It’s Mardi Gras and the Moon doesn’t want to miss out on any of the fun!

Images courtesy of NASA/SDO and the AIA, EVE, and HMI science teams. Hat-tip to Mr. Stu Atkinson who called the AIA alert on Twitter.

Experts React to Obama Slash to NASA’s Mars and Planetary Science Exploration

Earth’s next Mars rover will NOT be made in USA. President Obama has killed NASA funding for the ExoMars Rover joint project by NASA and ESA planned for 2018 Launch and designed to search for evidence of life. Credit: ESA - Annotation: Ken Kremer

[/caption]

Earth’s next Mars Rover – NOT Made in USA

Just days after President Obama met with brilliant High School students at the 2012 White House Science Fair to celebrate their winning achievements and encourage America’s Youth to study science and take up careers in the Science, Technology, Engineering and Math (STEM) technical fields, the Obama Administration has decided on deep budgets cuts slashing away the very NASA science programs that would inspire those same students to shoot for the Stars and Beyond and answer the question – Are We Alone ?

Last year, the Obama Administration killed Project Constellation, NASA’s Human Spaceflight program to return American astronauts to the Moon. This year, the President has killed NASA’s ExoMars Robotic Spaceflight program aimed at dispatching two ambitious missions to Mars in 2016 and 2018 to search for signs of life.

Both ExoMars probes involved a joint new collaboration with the European Space Agency (ESA) carefully crafted to share costs in hard times and get the most bang for the buck – outlined in my earlier Universe Today story, here.

Expert Scientists and Policy makers have been voicing their opinions.

President Obama meets America’s brightest Young Rocket Scientists
President Barack Obama hosted the winning science fair students from a range of nationwide competitions at the 2nd White House Science Fair on February 7, 2012. The ExoMars missions were eliminated from the NASA budget announced on Feb. 13, 2012.

All of NASA’s “Flagship” Planetary Science missions have now been cancelled in the 2013 Fiscal Year Budget proposed on Feb. 13, and others missions have also been curtailed due to the severe economy.

“There is no room in the current budget proposal from the President for new Flagship missions anywhere,” said John Grunsfeld, NASA’s Associate Administrator for Science at a NASA budget briefing for the media on Feb. 13.

ESA is now looking to partner with Russia as all American participation in ExoMars is erased due to NASA’ s forced pull out.

On Feb. 13, NASA’s Fiscal 2013 Budget was announced and the Obama Administration carved away nearly half the Mars mission budget. Altogether, funding for NASA’s Mars and Planetary missions in the Fiscal 2013 budget would be sliced by $300 million – from $1.5 Billion this year to $1.2 Billion in 2013. NASA was forced to gut the Mars program to pay for the cost overruns of the James Webb Space Telescope.

Mars rover scientist Prof. Jim Bell of Arizona State University and President of The Planetary Society (TPS) told Universe Today that “no one expects increases”, but cuts of this magnitude are “cause for concern”.

NASA’s robotic missions to Mars and other solar system bodies have been highly successful, resulted in fundamental scientific breakthroughs and are wildly popular with students and the general public.

“With these large proposed cuts to the NASA Mars exploration program, there will be a lot of cause for concern,” said Bell.

“The Mars program has been one of NASA’s crown jewels over the past 15 years, both in terms of science return on investment, and in terms of public excitement and engagement in NASA’s mission. It would also represent an unfortunate retreat from the kind of international collaboration in space exploration that organizations like The Planetary Society so strongly support.”

NASA Budget Cuts in Fiscal Year 2013 will force NASA to kill participation in the joint ESA/NASA collaboration to send two Astrobiology related missions to orbit and land rovers on Mars in 2016 and 2018- designed to search for evidence of Life. Credit: ESA - Annotation: Ken Kremer

Bell and other scientists feel that any cuts should be balanced among NASA programs, not aimed only at one specific area.

“Certainly no one expects increasing budgets in these austere times, and it is not useful or appropriate to get into a battle of “my science is better than your science” among the different NASA Divisions and Programs.” Bell told me.

“However, it would be unfortunate if the burden of funding cuts were to befall one of NASA’s most successful and popular programs in a disproportionate way compared to other programs. As Ben Franklin said, “We should all hang together, or surely we will all hang separately.”

Bell added that science minded organizations should work with Congress to influence the debate over the coming months.

“Of course, this would only be an initial proposal for the FY13 and beyond budget. Over the winter, spring, and summer many professional and public organizations, like TPS, will be working with Congress to advocate a balanced program of solar system exploration that focuses on the most important science goals as identified in the recent NRC Planetary Decadal Survey, as well as the most exciting and publicly compelling missions that are supported by the public–who ultimately are the ones paying for these missions.”

“Let’s hope that we can all find a productive and pragmatic way to continue to explore Mars, the outer solar system, and our Universe beyond,” Bell concluded.

“The impact of the cuts … will be to immediately terminate the Mars deal with the Europeans,” said Scott Hubbard, of Stanford University and a former NASA planetary scientist who revived the agency’s Mars exploration program after failures in 1999, to the Washington Post. “It’s a scientific tragedy and a national embarrassment.”

“I encourage whoever made this decision to ask around; everyone on Earth wants to know if there is life on other worlds,” Bill Nye, CEO of The Planetary Society, said in a statement. “When you cut NASA’s budget in this way, you’re losing sight of why we explore space in the first place.”

“There is no other country or agency that can do what NASA does—fly extraordinary flagship missions in deep space and land spacecraft on Mars.” Bill Nye said. “If this budget is allowed to stand, the United States will walk away from decades of greatness in space science and exploration. But it will lose more than that. The U.S. will lose expertise, capability, and talent. The nation will lose the ability to compete in one of the few areas in which it is still the undisputed number one.”

Ed Weiler is NASA’s recently retired science mission chief (now replaced by Grunsfeld) and negotiated the ExoMars program with ESA. Weiler actually quit NASA specifically in opposition to the Mars Program cuts ordered by the Office of Management and Budget (OMB) and had these comments for CBS News;

“To me, it’s bizarro world,” Weiler said an interview with CBS News. “Why would you do this? The President of the United States, President Obama, declared Mars to be the ultimate destination for human exploration. Obviously, before you send humans to the vicinity of Mars or even to land on Mars, you want to know as much about the planet as you possibly can. … You need a sample return mission. The president also established a space policy a few years ago which had the concept of encouraging all agencies to have more and more foreign collaboration, to share the costs and get more for the same bucks.”

“Two years ago, because of budget cuts in the Mars program, I had to appeal to Europe to merge our programs. … That process took two long years of very delicate negotiations. We thought we were following the president’s space policy exactly. Congressional reaction was very positive about our activities. You put those factors in place and you have to ask, why single out Mars? I don’t have an answer.”

Space Analysts and Political leaders also weighed in:

“The president’s budget is just a proposal,” said Howard McCurdy, a space-policy specialist at American University in Washington to the Christian Science Monitor.

The cuts “reflect the new reality” in which the economy, budget deficits, and the federal debt have elbowed their way to the top of Washington’s agenda, McCurdy adds.

“You don’t cut spending for critical scientific research endeavors that have immeasurable benefit to the nation and inspire the human spirit of exploration we all have,” said Rep. John Culberson (R-Tex.). Texas is home to NASA’s Johnson Space Center.

Rep. Adam Schiff (D-CA), who represents the district that’s home to the Jet Propulsion Laboratory (JPL), released this statement following his meeting with NASA Administrator Charles Bolden to discuss the agency’s 2013 budget proposal:

“Today I met with NASA Administrator Charles Bolden to express my dismay over widespread reports that NASA’s latest budget proposes to dramatically reduce the planetary science program, and with it, ground breaking missions to Mars and outer planetary bodies like Jupiter’s icy moon Europa, and to inform him of my vehement opposition to such a move.”

“America’s unique expertise in designing and flying deep-space missions is a priceless national asset and the Mars program, one of our nation’s scientific crown jewels, has been a spectacular success that has pushed the boundaries of human understanding and technological innovation, while also boosting American prestige worldwide and driving our children to pursue science and engineering degrees in college.

“As I told the Administrator during our meeting, I oppose these ill-considered cuts and I will do everything in my power to restore the Mars budget and to ensure American leadership in space exploration.”

In an interview with the San Gabriel Valley Tribune, Schiff said, “What they’re proposing will be absolutely devastating to planetary science and the Mars program. I’m going to be fighting them tooth and nail. Unfortunately if this is the direction the administration is heading, it will definitely hurt JPL – that’s why I’m so committed to reversing this.”

NASA still hopes for some type of scaled back Mars missions in the 2016 to 2020 timeframe which will be outlined in an upcoming article.

In the meantime, the entire future of America’s Search for Life on the Red Planet now hinges on NASA’s Curiosity Mars Science Laboratory rover speeding thru interplanetary space and a pinpoint touchdown inside the layered terrain of Gale Crater on August 6, 2012.

Curiosity will be NASA’s third and last generation of US Mars rovers – 4th Generation Axed !

NASA’s Opportunity Rover is now Earth’s only surviving robot on Mars

NASA’s Picture of the Future of Human Spaceflight

NASA infographic on the future of human spaceflight. Credit: NASA. Click for larger pdf poster version.

[/caption]

NASA released a new interactive infographic that attempts to give a picture of future of human spaceflight activities and where NASA might be going. The new Space Launch system and the Orion MPCV figure prominently in going to future destinations such as the Moon, Mars, Near Earth Asteroids and even LaGrange Points. It would be awesome to go to all those destinations, but – call me pessimistic — in reality, we’ll be lucky if we even get to one of them in the next 30 years. But since human spaceflight received favorable funding nods in the new NASA budget proposal, we can hopefully look forward to the first un-crewed test flight of the MPCV in 2013 or 2014.

In the interactive feature you can learn about the SLS and MPCV, along with spacesuits, deep space habitation and communications and more. Additionally, there are interviews with astronauts Sandy Magnus, Harrison Schmitt, and Tom Jones, along with NASA officials Doug Cooke and Waleed Abdalati.

As far as the various destinations, Schmitt says we should return to the Moon as the Apollo missions “barely scratched the surface,” and “the Moon is a history book of what went on in near Earth space and of what went on in the early solar system. The real geoscience value of the Moon is to learn about ourselves.”

Jones says asteroids will also provide scientific information about the early days of the solar system, as well as providing information about space resources such as water. We can also learn about how to protect our planet. “These objects will run into us in the future, as they have done in the past. For us to survive in the long run we’re going to have to learn to operate around and prevent a future collision by applying our space technology to the alteration to the orbits of some of these hazardous objects.”

Journalist Leonard David wrote an article this week about a recent NASA memo that talks about the potential for NASA building a waystation at one of the Earth-Moon libration points. Also, a working group of International Space Station members is being held in Paris this week, and David says this strategy is likely being discussed with international partners. It certainly sounds exciting, but may be perhaps the most expensive destination, as every resource would have to be brought there to build a station, instead of landing on a destination like the Moon or an asteroid and using the potential resources there.

Can NASA be successful in the “multiple path” plan or will they ultimately need to pick just one?

NASA Shuts Down Its Last Mainframe Computer

Sittra Battle of the Marshall Space Flight Center shuts down NASA's last mainframe computer. Credit: NASA

[/caption]

NASA has just powered down its last mainframe computer. Umm, everyone remembers what a mainframe computer is, right? Well, you certainly must recall working with punched cards, paper tape, and/or magnetic tape, correct? That does sound a little archaic. “But all things must change,” wrote Linda Cureton on the NASA CIO blog. “Today, they are the size of a refrigerator but in the old days, they were the size of Cape Cod.”


The last mainframe being used by NASA, the IBM Z9 Mainframe, was being used at the Marshall Space Flight Center. Cureton described the mainframe as a “ big computer that is known for being reliable, highly available, secure, and powerful. They are best suited for applications that are more transaction oriented and require a lot of input/output – that is, writing or reading from data storage devices.”

An IBM 704 mainframe from 1964. Via Wikipedia

In the 1960’s users gained access to the huge mainframe computer through specialized terminals using the punched cards. By the 1980s, many mainframes supported graphical terminals where people could work, but not graphical user interfaces. This format of end-user computing became obsolete in the 1990s when personal computers came to the forefront of computing.

Most modern mainframes are not quite so huge, and excel at redundancy and reliability. These machines can run for long periods of time without interruption. Cureton says that even though NASA has shut down its last one, there is still a requirement for mainframe capability in many other organizations. “The end-user interfaces are clunky and somewhat inflexible, but the need remains for extremely reliable, secure transaction oriented business applications,” she said.

But today, all you need to say is, “there’s an app for it!” Cureton said.

Kuiper’s Color Close-Up

[/caption]

The pale-orange coloration around the 39-mile (62-km) -wide Kuiper crater on Mercury is evident in this image, a color composition made from targeted images acquired by NASA’s MESSENGER spacecraft on September 2, 2011.

The color may be due to compositional differences in the material that was ejected during the impact that formed the crater.

Kuiper crater is named after Gerard Kuiper, a Dutch-American astronomer who was a member of the Mariner 10 team. He is regarded by many as the father of modern planetary science.

“Kuiper studied the planets… at a time when they were scarcely of interest to other astronomers. But with new telescopes and instrumentation, he showed that there were great things to discover, which is as true today as it was then.”

– Dr. Bill McKinnon, Professor of Planetary Sciences at Washington University in St. Louis

Airless worlds like Mercury are constantly bombarded with micrometeoroids and charged solar particles in an effect known as “space weathering”. Craters with bright rays — like Kuiper — are thought to be relatively young because they have had less exposure to space weathering than craters without such rays.

See the original image release on the MESSENGER site here.

Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

A Swirling Oasis of Life

A 150-km (93-mile) - wide eddy in the southern Indian Ocean. (NASA/Terra-MODIS)

[/caption]

A serpentine eddy swirls in the southern Indian Ocean several hundred kilometers off the coast of South Africa in this natural-color image, acquired by NASA’s Terra satellite on December 26, 2011.

The blue color is created by blooms of phytoplankton, fertilized by the nutrient-rich deep water drawn up by the 150-km-wide eddy.

The counter-clockwise anticyclonic structure of the eddy may resemble a hurricane or typhoon, but unlike those violent storms eddies bring nourishment rather than destruction.

“Eddies are the internal weather of the sea,” said Dennis McGillicuddy, an oceanographer at the Woods Hole Oceanographic Institution in Massachusetts.

And also unlike atmospheric storms, ocean eddies can last for months, even up to a year. The largest ones can contain up to 1,200 cubic miles (5,000 cubic kilometers) of water.

The nutrient-drawing power of eddies can supply the relatively barren waters of the open ocean with nutrients, creating “oases in the oceanic desert,” according to McGillicuddy.

Read more about the WHOI study of eddies here.

The eddy imaged here likely peeled off from the Agulhas Current, which flows along the southeastern coast of Africa and around the tip of South Africa. Agulhas eddies tend to be among the largest in the world.

The image below shows the eddy in context with the surrounding area:

Eddy off the coast of South Africa. December 26, 2011. (NASA/Terra-MODIS)

MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard NASA’s Terra (EOS AM) satellite. Terra MODIS views the entire Earth’s surface every 1 to 2 days, acquiring data in 36 spectral bands. These data improve our understanding of global dynamics and processes occurring on the land, in the ocean, and in the lower atmosphere.

Read more on NASA’s Earth Observatory site here.

NASA Earth Observatory image created by Jesse Allen, using data obtained from the Land Atmosphere Near real-time Capability for EOS (LANCE).

Tough Cuts for Planetary Science In NASA’s 2013 Budget Proposal

The cover of NASA's 2013 Budget Propsal

[/caption]

As expected, NASA’s 2013 budget request calls for an overall decrease in funding, with especially tough cuts to planetary science and education. The budget proposal of $17.7 billion is a decrease of 0.3% or $59 million from the 2012 budget and puts NASA at its lowest level of funding in four years. President Obama’s budget request for NASA includes a flat budget through 2017, with no out-year growth even for inflation.

Using the phrase “very difficult fiscal times” countless times, NASA Administrator Charles Bolden tried to put an upbeat spin on the bad news during a press conference on the budget on February 13.

“We are having to make tough decisions because these are very difficult fiscal times,” he said. “However this is a stable budget that allows us to support a diverse portfolio and continues the work we started last year.”

Overview of NASA's budget request.

While the proposal includes continued funding for the agency’s human space programs —including $4 billion for space operations and $4 billion for human activities for the International Space Station, nearly $3 billion for the heavy-lift Space Launch System and Orion MPCV, along with $830 million for the commercial crew and cargo — planetary science took a huge hit, especially the Mars science program, considered by many to be the “crown jewel” of NASA’s planetary program.

Mars exploration would be cut by a whopping 38.5 percent, going from $587 million this year to $361 million in 2013. As predicted NASA has pulled out of the Exo-Mars collaboration with the European Space Agency, for dual Mars missions in 2016 and 2018, with no future flagship missions even in the offing, beyond the $2.5 billion Mars Science Laboratory rover, now on its way to Mars.

“Flagship missions are essential for the nation,” said Bolden when asked about what could be expected for future missions, “but we just could not afford to do another one right now given the budget an these difficult fiscal times.”

The Science Mission Directorate budget, which includes planetary exploration, astronomy and Earth environment monitoring, would receive $4.911 billion in 2013 instead of the $5.07 billion it received in 2012.

The NASA education budget was cut $36 million, down from $136 million in 2012 to $100 million in 2013.

The only bright spot for potential future planetary missions is that a small amount of funding was included in the 2013 budget to look into the re-start of making Plutonium-238, the power source for outer-planet missions. However, the cut to exploration missions means there is no funding for any new missions to potentially use the power source, such as a spacecraft to study the moons of Jupiter or a Uranus orbiter, two projects that were a high priority in the Decadal Survey released by the science community in 2011. The reduction might also affect ongoing missions such as the remaining Mars Exploration Rover, Opportunity, the Mars Reconnaissance Orbiter, and the Cassini spacecraft orbiting Saturn. Those missions will be reviewed by NASA later this year.

This cut to planetary science has already been decried by many including the Planetary Society, which said the new proposal pushes planetary science “to the brink.”

“The priorities reflected in this budget would take us down the wrong path,” said Bill Nye, CEO of the Planetary Society. “Science is the part of NASA that’s actually conducting interesting and scientifically important missions. Spacecraft sent to Mars, Saturn, Mercury, the Moon, comets, and asteroids have been making incredible discoveries, with more to come from recent launches to Jupiter, the Moon, and Mars. The country needs more of these robotic space exploration missions, not less.”

The James Webb telescope, notorious for its cost overruns and delays, would get $627.6 million for 2013, up from $518.6 million in 2012 and $476.8 million in 2011. Many see JWST as responsible for draining money away from planetary science. JWST won’t launch until 2018 at the earliest.

Bolden said since NASA “replanned” JWST, they receive an accounting each month and so far the mission has been on-budget and on-time as far as meeting goals. “Through diligence and really paying attention to the budget and timeline, I think we can get this mission done,” Bolden said.

Two other bright spots in the budget was that funding for Earth observation satellites would be the same as 2012, at about $1.8 billion and the Space Technology program would get $699 million, up from the $569 million Congress approved for 2012.

As far as the human side, most officials were pleased with the numbers. The commercial Space Federation put out a statement saying that the “Commercial Crew program will enable American providers to free us from dependence on the Russian Soyuz for access to the International Space Station, a facility that American taxpayers have invested nearly $100 billion to build. NASA currently pays Russia more than $60 million per seat to access the Space Station, a price that is expected to rise above $70 million in the next few years.”

Executive Director Alex Saltman added, “With the Shuttle fleet retiring last year, Americans look forward to the day when we return our astronauts to space on American rockets. We are pleased that the Administration is requesting the funding necessary to make that happen. Now it’s Congress’s job to help put America back in space.”

As bad as the budget seems, according to some sources, things could have been much worse. The White House Office of Management and Budget had earlier asked NASA to submitted budget proposals at a 5, 10 or 15 percent cut. They may have been lucky to get only a .3% cut.

Here’s NASA’s upbeat video about the new budget:

For more information:
NASAs 2013 Budget webpage
NASA 2013 Budget Request Estimates(pdf)
2013 Budget Presentation (pdf)