Goldilocks Moons

The Goldilocks Zones around various type stars. Credit: NASA/JPL-Caltech

[/caption]

The search for extraterrestrial life outside our Solar System is currently focused on extrasolar planets within the ‘habitable zones’ of exoplanetary systems around stars similar to the Sun. Finding Earth-like planets around other stars is the primary goal of NASA’s Kepler Mission.

The habitable zone (HZ) around a star is defined as the range of distances over which liquid water could exist on the surface of a terrestrial planet, given a dense enough atmosphere. Terrestrial planets are generally defined as rocky and similar to Earth in size and mass. A visualization of the habitable zones around stars of different diameters and brightness and temperature is shown here. The red region is too hot, the blue region is too cold, but the green region is just right for liquid water. Because it can be described this way, the HZ is also referred to as the “Goldilocks Zone”.

Normally, we think of planets around other stars as being similar to our solar system, where a retinue of planets orbits a single star. Although theoretically possible, scientists debated whether or not planets would ever be found around pairs of stars or multiple star systems. Then, in September, 2011, researchers at NASA’s Kepler mission announced the discovery of Kepler-16b, a cold, gaseous, Saturn-sized planet that orbits a pair of stars, like Star Wars’ fictional Tatooine.

This week I had the chance to interview one of the young guns studying exoplanets, Billy Quarles. Monday, Billy and his co-authors, professor Zdzislaw Musielak and associate professor Manfred Cuntz, presented their findings on the possibility of Earth-like planets inside the habitable zones of Kepler 16 and other circumbinary star systems, at the AAS meeting in Austin, Texas.

The Goldilocks Zones around various type stars. Credit: NASA/JPL-Caltech

“To define the habitable zone we calculate the amount of flux that is incident on an object at a given distance,” Billy explained. “We also took into account that different planets with different atmospheres will retain heat differently. A planet with a really weak greenhouse effect can be closer in to the stars. For a planet with a much stronger greenhouse effect, the habitable zone will be further out.”

“In our particular study, we have a planet orbiting two stars. One of the stars is much brighter than the other. So much brighter, that we ignored the flux coming from the smaller fainter companion star altogether. So our definition of the habitable zone in this case is a conservative estimate.”

Quarles and his colleagues performed extensive numerical studies on the long-term stability of planetary orbits within the Kepler 16 HZ. “The stability of the planetary orbit depends on the distance from the binary stars,” said Quarles. “The further out the more stable they tend to be, because there is less perturbation from the secondary star.”

For the Kepler 16 system, planetary orbits around the primary star are only stable out to 0.0675 AU (astronomical units). “That is well inside the inner limit of habitability, where the runaway greenhouse effect takes over,” Billy explained. This all but rules out the possibility of habitable planets in close orbit around the primary star of the pair. What they found was that orbits in the Goldilocks Zone farther out, around the pair of Kepler 16’s low-mass stars, are stable on time scales of a million years or more, providing the possibility that life could evolve on a planet within that HZ.

Kepler 16's orbit from Quarles et al

Kepler 16b’s roughly circular orbit, about 65 million miles from the stars, is on the outer edge of this habitable zone. Being a gas giant, 16b is not a habitable terrestrial planet. However, an Earth-like moon, a Goldilocks Moon, in orbit around this planet could sustain life if it were massive enough to retain an Earth-like atmosphere. “We determined that a habitable exomoon is possible in orbit around Kepler-16b,” Quarles said.

I asked Quarles how stellar evolution impacts these Goldilocks Zones. He told me, “There are a number of things to consider over the lifetime of a system. One of them is how the star evolves over time. In most cases the habitable zone starts out close and then slowly drifts out.”

During a star’s main sequence lifetime, nuclear burning of hydrogen builds up helium in its core, causing an increase in pressure and temperature. This occurs more rapidly in stars that are more massive and lower in metallicity. These changes affect the outer regions of the star, which results in a steady increase in luminosity and effective temperature. The star becomes more luminous, causing the HZ to move outwards. This movement could result in a planet within the HZ at the beginning of a star’s main sequence lifetime, to become too hot, and eventually, uninhabitable. Similarly, an inhospitable planet originally outside the HZ, may thaw out and enable life to commence.

“For our study, we ignored the stellar evolution part,” said lead author, Quarles. “We ran our models for a million years to see where the habitable zone was for that part of the star’s life cycle.”

Being at the right distance from its star is only one of the necessary conditions required for a planet to be habitable. Habitable conditions on a planet require various geophysical and geochemical conditions. Many factors can prevent, or impede, habitability. For example, the planet may lack water, gravity may be too weak to retain a dense atmosphere, the rate of large impacts may be too high, or the minimum ingredients necessary for life (still up for debate) may not be there.

One thing is clear. Even with all the requirements for life as we know it, there appear to be plenty of planets around other stars, and very likely, Goldilocks Moons around planets, orbiting within the habitable zones of stars in our galaxy, that detecting the signature of life in the atmosphere of a planet or moon around another Sun seems like only a matter of time now.

NASA’s Airborne Observatory Targets Newborn Stars

Infrared image of the W3A star cluster in Perseus. (SOFIA image -- NASA / DLR / USRA / DSI / FORCAST team Spitzer image -- NASA / Caltech - JPL.)

[/caption]

(DING!) “The captain has turned off the safety lights – you are now free to explore the infrared Universe.”

Mounted inside the fuselage of a Boeing 747SP aircraft, NASA’s Stratospheric Observatory for Infrared Astronomy, or SOFIA, is capable of searching the sky in infrared light with a sensitivity impossible from ground-based instruments. Cruising at 39,000 to 45,000 feet, its 100-inch telescope operates above 99% of the atmospheric water vapor that would otherwise interfere with such observations, and thus is able to pierce through vast interstellar clouds of gas and dust to find what lies within.

Its latest discovery has uncovered a cluster of newborn stars within a giant cloud of gas and dust 6,400 light-years from Earth.

The massive stars are still enshrouded in the gas cloud from which they formed, a region located in the direction of Perseus called W3. The Faint Object Infrared Camera for the SOFIA Telescope (FORCAST) instrument was able to peer through the cloud and locate up to 15 massive young stars clustered together in a compact region, designated W3A.

SOFIA's 747SP on the ground at NASA's Dryden Flight Research Center on Edwards Air Force Base, CA. (NASA/Tony Landis)

W3A’s stars are seen in various stages of formation, and their effects on nearby clouds of gas and dust are evident in the FORCAST inset image above. A dark bubble, which the arrow is pointing to, is a hole created by emissions from the largest of the young stars, and the greenish coloration surrounding it designates regions where the dust and large molecules have been destroyed by powerful radiation.

Without SOFIA’s infrared imaging capabilities newborn stars like those seen in W3A would be much harder to observe, since their visible and ultraviolet light typically can’t escape the cool, opaque dust clouds where they are located.

The radiation emitted by these massive young stars may eventually spur more star formation within the surrounding clouds. Our own Sun likely formed in this same way, 5 billion years ago, within a cluster of its own stellar siblings which have all long since drifted apart. By observing clusters like W3A astronomers hope to better understand the process of star birth and ultimately the formation of our own solar system.

Read more on the SOFIA news release here.

The observation team’s research principal investigator is Terry Herter of Cornell University. The data were analyzed and interpreted by the FORCAST team with Francisco Salgado and Alexander Tielens of the Leiden Observatory in the Netherlands plus SOFIA staff scientist James De Buizer. These papers have been submitted for publication in The Astrophysical Journal.

Crucial Rocket Firing Puts Curiosity on Course for Martian Crater Touchdown

[/caption]

NASA’s car-sized Curiosity Mars Science Lab (MSL) rover is now on course to touch down inside a crater on Mars in August following the completion of the biggest and most crucial firing of her 8.5 month interplanetary journey from Earth to the Red Planet.

Engineers successfully commanded an array of thrusters on MSL’s solar powered cruise stage to carry out a 3 hour long series of more than 200 bursts last night (Jan. 11) that changed the spacecraft’s trajectory by about 25,000 miles (40,000 kilometers) – an absolute necessity that actually put the $2.5 Billion probe on a path to Mars to “Search for Signatures of Life !”

“We’ve completed a big step toward our encounter with Mars,” said Brian Portock of NASA’s Jet Propulsion Laboratory (JPL), Pasadena, Calif., deputy mission manager for the cruise phase of the mission. “The telemetry from the spacecraft and the Doppler data show that the maneuver was completed as planned.”

Mars Science Lab and cruise stage separate from Centaur upper stage just minutes after Nov. 26, 2011 launch. Thrusters on cruise stage performed course correction on Jan. 11, 2012. Up to 6 firings total will put the NASA robot on precision course to Mars.
Credit: NASA TV

This was the first of six possible TCM’s or trajectory correction maneuvers that may be required to fine-tune the voyage to Mars.

Until now, Curiosity was actually on a path to intentionally miss Mars. Since the Nov. 26, 2011 blastoff from Florida, the spacecraft’s trajectory was tracking a course diverted slightly away from the planet in order to prevent the upper stage – trailing behind – from crashing into the Red Planet.

The upper stage was not decontaminated to prevent it from infecting Mars with Earthly microbes. So, it will now sail harmlessly past the planet as Curiosity dives into the Martian atmosphere on August 6, 2012.

The thruster maneuver also served a second purpose, which was to advance the time of the Mars encounter by about 14 hours. The TCM burn increased the velocity by about 12.3 MPH (5.5 meters per second) as the vehicle was spinning at 2 rpm.

“The timing of the encounter is important for arriving at Mars just when the planet’s rotation puts Gale Crater in the right place,” said JPL’s Tomas Martin-Mur, chief navigator for the mission.


Video caption: Rob Manning, Curiosity Mars Science Lab Chief Engineer at NASA JPL describes the Jan. 11, 2012 thruster firing that put the robot on a precise trajectory to Gale Crater on Mars. Credit: NASA/JPL

As of today, Jan. 12, the spacecraft has traveled 81 million miles (131 million kilometers) of its 352-million-mile (567-million-kilometer) flight to Mars. It is moving at about 10,300 mph (16,600 kilometers per hour) relative to Earth, and at about 68,700 mph (110,500 kilometers per hour) relative to the Sun.

The next trajectory correction maneuver is tentatively scheduled for March 26, 2012.

Curiosity rover launches to Mars atop Atlas V rocket on Nov. 26, 2011 from Cape Canaveral, Florida. Credit: Ken Kremer

The goal of the 1 ton Curiosity rover is to investigate whether the layered terrain inside Gale Crater ever offered environmental conditions favorable for supporting Martian microbial life in the past or present and if it preserved clues about whether life ever existed.

Curiosity will search for the ingredients of life, most notably organic molecules – the carbon based molecules which are the building blocks of life as we know it. The robot is packed to the gills with 10 state of the art science instruments including a 7 foot long robotic arm, scoop, drill and laser rock zapper.

Curiosity’s Roadmap through the Solar System-From Earth to Mars
Schematic shows 8.5 month interplanetary trajectory of Curiosity. Credit: NASA/JPL-Caltech

Curiosity Countdown – 205 days to go until Curiosity lands at Gale Crater on Mars !

January 2012 marks the 8th anniversary of the landings of NASA’s Spirit and Opportunity Mars rovers back in January 2004.

Opportunity continues to operate to this day. Read my salute to Spirit here

Read continuing features about Curiosity and Mars rovers by Ken Kremer starting here:
8 Years of Spirit on Mars – Pushing as Hard as We Can and Beyond !
2011: Top Stories from the Best Year Ever for NASA Planetary Science!
Opportunity Discovers Most Powerful Evidence Yet for Martian Liquid Water
Flawlessly On Course Curiosity Cruising to Mars – No Burn Needed Now
NASA Planetary Science Trio Honored as ‘Best of What’s New’ in 2011- Curiosity/Dawn/MESSENGER
Curiosity Mars Rover Launch Gallery – Photos and Videos
Curiosity Majestically Blasts off on ‘Mars Trek’ to ascertain ‘Are We Alone?
Mars Trek – Curiosity Poised to Search for Signs of Life

Mike Fossum Answers Your Questions

NASA astronaut Mike Fossum, Expedition 29 commander, works with the Combustion Integrated Rack (CIR) Multi-user Drop Combustion Apparatus (MDCA) in the Destiny laboratory of the International Space Station. Image Credit: NASA

[/caption]We recently launched a new “Ask” feature here at Universe Today. Our inaugural launch featured Dr. Alan Stern, Principal Investigator for the New Horizons mission to Pluto and the Kuiper Belt.

Following up on the success of our first “Ask” feature, we’ve followed up with a new installment featuring Expedition 29 commander Mike Fossum. We collected your questions and passed them along to Mike who graciously took the time to answer them.

Here are the questions picked by you, the readers, and Fossum’s responses. Special thanks to NASA and Mike Fossum for their participation.

1.) Living on the ISS is sometimes said to be a difficult experience – if you could make any one change to the ISS to make it more comfortable, what would it be?

Mike Fossum: “Get the transporter working – it would be great to be home for the weekend.” Fossum also added, “I loved living and working there (The ISS) and there’s very few things I’d change. I had a great window view and my own personal quarters. I guess if anything I missed being able to sit in a chair – that and being able to have a cup of coffee (instead of out of a bag) and read the newspaper in the morning.”

2.) As a trained astronaut, what are your thoughts on the feasibility of making space flight a routine for normal civilians ( besides tourists) especially with regard to interplanetary/beyond earth orbit flights?

Mike Fossum: “I think we’ll see low Earth-orbit very soon.” Fossum also mentioned, “I was born a few months after Sputnik’s launch, the changes in spaceflight over the past 54 years are staggering. The potential for changes over the next fifty years is unimaginable.” Fossum also had a parting thought on the rise of commercial space travel, “I have a nagging voice telling me to say “be careful”, we’ve learned hard and costly lessons”.

3.) While in the Earth’s shadow, could you see the stars, constellations and planets? If you could, did they look any better or brighter?

Mike Fossum: “Oh, Yes! The key is to be in a place where you can dark adapt – any sunlight overpowers night vision.” Fossum mentioned that during some “down” time on a spacewalk, he was able to turn off his helmet lights and immerse himself in the “3-d feeling” of being in the stars. Describing the quality of the views, Fossum stated, “The Milky Way was clear, and no twinkle in stars. The different colors of stars were more intense”.

4.) After a typical stay on the ISS, how long does it take an astronaut to recover from the effects of weightlessness?

Mike Fossum: “There’s a great deal of recovery in the first three weeks. Balance, running, walking, I’d say I’m at about 90%” Fossum mentioned one other side effect of his stay on the ISS – apparently he’s in better physical shape than before he left. Fossum speculated that the improvements in his physical shape were due to the rigorous exercise routines he performed during his stay on the ISS.

5.) What would you say is the strongest asset that each of the space fairing countries brings to the table when it comes to our forward progress into space as a species?

Mike Fossum: “The Russians have a different design process than we (The United States) do. They evolve, rather than start over.” Fossum added, “Looking at their station module design, they took stuff that worked from MIR and improved upon it, they analyzed and tested and broke stuff and added more steel. Americans analyze and analyze – it was a real shock to NASA on how Russia built things.” Fossum mentioned that in 2008, he helped install the JAXA Kibo module on the International Space Station and was impressed by the efficiency of JAXA engineers.

Regarding some of the other partner nations participating in the ISS, Fossum mentioned, “ESA has the best of German efficiency and Italian flexibility.” Fossum also discussed the Canadians niche in robotics, stating that they’ve been leaders who are proud of their work. Fossum cited the success of the remote manipulator arm on the space shuttles, as well as the “big arm” on the ISS and the DEXTRE manipulator.

Fossum shared a final thought regarding all the nations participating in the ISS, stating, “There’s a common passion for space among the big partners on the ISS.” Fossum also mentioned to “Look at history” regarding Russia, Germany, Italy, Japan and the U.S, emphasizing that nations who were at war with each other not that long ago are working together to achieve common goals in space.

This wraps up our latest “Ask” feature. Once again we’d like to thank Mike Fossum and NASA for taking the time to answer your questions.

100 Year Starship Project Has a New Leader

Mae Jemison. Credit: NASA

[/caption]

You may have heard by now about the 100 Year Starship project, a new research initiative to develop the technology required to send a manned mission to another star. The project is jointly sponsored by NASA and the Defense Advanced Research Projects Agency (DARPA). It will take that long just to make such a trip feasible, hence the name. So we’re a long ways off from naming any crew members or a starship captain, but the project itself does have a new leader, a former astronaut.

Mae Jemison, a former Space Shuttle astronaut, has been appointed the position by DARPA. She was also the first African-American woman to go into space, in 1992. Her own non-profit educational organization, the Dorothy Jemison Foundation for Excellence (in honor of her late mother) was chosen to work with DARPA, receiving a $500,000 contract. That funding is just seed money, to start the process of developing the framework needed for such an ambitious undertaking. The focus at this point is to create a foundation that can last long enough to research the technology required, rather than the actual government-funded building of the spacecraft.

As stated by the proposal, the goal is to “develop a viable and sustainable non-governmental organization for persistent, long-term, private-sector investment into the myriad of disciplines needed to make long-distance space travel viable.”

From the project’s mission statement:

The 100 Year Starship™ (100YSS™) study is an effort seeded by DARPA to develop a viable and sustainable model for persistent, long-term, private-sector investment into the myriad of disciplines needed to make long-distance space travel practicable and feasible.

The genesis of this study is to foster a rebirth of a sense of wonder among students, academia, industry, researchers and the general population to consider “why not” and to encourage them to tackle whole new classes of research and development related to all the issues surrounding long duration, long distance spaceflight.
DARPA contends that the useful, unanticipated consequences of such research will have benefit to the Department of Defense and to NASA, as well as the private and commercial sector.
This endeavor will require an understanding of questions such as: how do organizations evolve and maintain focus and momentum for 100 years or more; what models have supported long-term technology development; what resources and financial structures have initiated and sustained prior settlements of “new worlds?”

With today’s technology, it would take about 100,000 years to reach just the nearest star, Alpha Centauri. That time would hopefully be reduced significantly with the development of new, faster propulsion methods.

The dream of travelling to the stars may still be a long ways off in the future before becoming reality, but we are getting closer. Ad astra!

More information about the 100 Year Starship project is here.

8 Years of Spirit on Mars – Pushing as Hard as We Can and Beyond !

Spirit Mars rover - view from Husband Hill summit. Spirit snapped this view self portrait from the summit of Husband Hill inside Gusev crater on Sol 618 on 28 September 2005. The rovers were never designed or intended to climb mountains. It took more than 1 year for Spirit to scale the Martian mountain. This image was created by an international team of astronomy enthusiasts and appeared on the cover of the 14 November 2005 issue of Aviation Week & Space Technology magazine and the April 2006 issue of Spaceflight magazine. Also selected by Astronomy Picture of the Day (APOD) on 28 November 2005. Credit: Marco Di Lorenzo, Douglas Ellison, Bernhard Braun and Kenneth Kremer. NASA/JPL/Cornell/Aviation Week & Space Technology

[/caption]

January 2012 marks the 8th anniversary since of the daring landing’s of “Spirit” and “Opportunity”NASA’s now legendary twin Mars Exploration Rovers (MER), on opposite sides of the Red Planet in January 2004. They proved that early Mars was warm and wet – a key finding in the search for habitats conducive to life beyond Earth.

I asked the leaders of the MER team to share some thoughts celebrating this mind-boggling milestone of “8 Years on Mars” and the legacy of the rovers for the readers of Universe Today. This story focuses on Spirit, first of the trailblazing twin robots, which touched down inside Gusev Crater on Jan. 3, 2004. Opportunity set down three weeks later on the smooth hematite plains of Meridiani Planum.

“Every Sol is a gift. We push the rovers as hard as we can,” Prof. Steve Squyres informed Universe Today for this article commemorating Spirit’s landing. Squyres, of Cornell University, is the Scientific Principal Investigator for the MER mission.

“I seriously thought both Spirit and Opportunity would be finished by the summer of 2004,” Ray Arvidson told Universe Today. Arvidson, of Washington University in St. Louis, is the deputy principal investigator for the MER rovers.

'Calypso' Panorama of Spirit's View from 'Troy'
This full-circle view from the panoramic camera (Pancam) on NASA's Mars Exploration Rover Spirit shows the terrain surrounding the location called "Troy," where Spirit became embedded in soft soil during the spring of 2009. The hundreds of images combined into this view were taken beginning on the 1,906th Martian day (or sol) of Spirit's mission on Mars (May 14, 2009) and ending on Sol 1943 (June 20, 2009). Credit: NASA/JPL-Caltech/Cornell University
click to enlarge

Spirit endured for more than six years and Opportunity is still roving Mars today !

The dynamic robo duo were expected to last a mere three months, or 90 Martian days (sols). In reality, both robots enormously exceeded expectations and accumulated a vast bonus time of exploration and discovery in numerous extended mission phases.

Spirit survived three harsh Martian winters and only succumbed to the Antarctic-like temperatures when she unexpectedly became mired in an unseen sand trap driving beside an ancient volcanic feature named ‘Home Plate’ that prevented the solar arrays from generating life giving power to safeguard critical electronic and computor components.

Spirit was heading towards another pair of volcanic objects named von Braun and Goddard and came within just a few hundred feet when she died.

Everest Panorama from Husband Hill summit
It took Spirit three days, sols 620 to 622 (Oct. 1 to Oct. 3, 2005), to acquire all the images combined into this mosaic, called the "Everest Panorama". Credit: NASA/JPL-Caltech/Cornell University
Click to enlarge

“I never thought that we would still be planning sequences for Opportunity today and that we only lost Spirit because of her limited mobility and bad luck of breaking through crusty soil to get bogged down in loose sands,” said Arvidson

By the time of her last dispatch from Mars in March 2010, Spirit had triumphantly traversed the red planets terrain for more than six years of elapsed mission time – some 25 times beyond the three month “warranty” proclaimed by NASA as the mission began back in January 2004.

The "Columbia Hills" in Gusev Crater on Mars
Husband Hill is 3.1 kilometers distant. Spirit took this mosaic of images with the panoramic camera at the beginning of February, 2004, less than a month after landing on Mars. Image credit: NASA/JPL-Caltech/Cornell

“I am feeling pretty good as the MER rover anniversaries approach in that Spirit had an excellent run, helping us understand without a doubt that early Mars had magmatic and volcanic activity that was “wet”, Arvidson explained.

“Magmas interacted with ground water to produce explosive eruptions – at Home Plate, Goddard, von Braun – with volcanic constructs replete with steam vents and perhaps hydrothermal pools.”

Altogether, the six wheeled Spirit drove over 4.8 miles (7.7 kilometers) and the cameras snapped over 128,000 images. NASA hoped the rovers would drive about a quarter mile during the planned 90 Sol mission.

“Milestones like 8 years on Mars always make me look forward rather than looking back,” Squyres told me.

Carbonate-Containing Martian Rocks discovered by Spirit Mars Rover
Spirit collected data in late 2005 which confirmed that the Comanche outcrop contains magnesium iron carbonate, a mineral indicating the past environment was wet and non-acidic, possibly favorable to life. This view was captured during Sol 689 on Mars (Dec. 11, 2005). The find at Comanche is the first unambiguous evidence from either Spirit or Opportunity for a past Martian environment that may have been more favorable to life than the wet but acidic conditions indicated by the rovers' earlier finds. Credit: NASA/JPL-Caltech/Cornell University

Spirit became the first robotic emissary from humanity to climb a mountain beyond Earth, namely Husband Hill, a task for which she was not designed.

“No one expected the rovers to last so long,” said Rob Manning to Universe Today. Manning, of NASA’s Jet Propulsion laboratory, Pasadena, CA. was the Mars Rover Spacecraft System Engineering team lead for Entry, Descent and Landing (EDL)

“Spirit surmounted many obstacles, including summiting a formidable hill her designers never intended her to attempt.”

“Spirit, her designers, her builders, her testers, her handlers and I have a lot to be thankful for,” Manning told me.

After departing the Gusev crater landing pad, Spirit traversed over 2 miles to reach Husband Hill. In order to scale the hill, the team had to create a driving plan from scratch with no playbook because no one ever figured that such a mouthwatering opportunity to be offered.

Spirit Rover traverse map from Gusev Crater landing site to Home Plate: 2004 to 2011

It took over a year to ascend to the hill’s summit. But the team was richly rewarded with a science bonanza of evidence for flowing liquid water on ancient Mars.

Spirit then descended down the other side of the hill to reach the feature dubbed Home Plate where she now rests and where she found extensive evidence of deposits of nearly pure silica, explosive volcanism and hot springs all indicative of water on Mars billions of years ago.

“Spirit’s big scientific accomplishments are the silica deposits at Home Plate, the carbonates at Comanche, and all the evidence for hydrothermal systems and explosive volcanism, Squyres explained. “ What we’ve learned is that early Mars at Spirit’s site was a hot, violent place, with hot springs, steam vents, and volcanic explosions. It was extraordinarily different from the Mars of today.”

“We’ve still got a lot of exploring to do [with Opportunity], but we’re doing it with a vehicle that was designed for a 90-sol mission,” Squyres concluded. “That means that ever sol is a gift at this point, and we have to push the rover and ourselves as hard as we can.”

NASA concluded the last attempt to communicate with Spirit in a transmission on May 25, 2011.

Spirit Rover traverse map from Husband Hill to resting place at Home Plate: 2004 to 2011
The Last View Ever from Spirit rover on Mars
Spirit’s last panorama from Gusev Crater was taken during February 2010 before her death from extremely low temperatures during her 4th Martian winter. Spirit was just 500 feet from her next science target - dubbed Von Braun – at center, with Columbia Hills as backdrop.
Mosaic Credit: Marco De Lorenzo/ Kenneth Kremer/ NASA/JPL/Cornell University
Mosaic featured on Astronomy Picture of the Day (APOD) on 30 May 2011 - http://apod.nasa.gov/apod/ap110530.html

Meanwhile, the Curiosity Mars Science Lab rover, NASA’s next Red Planet explorer, continues her interplanetary journey on course for a 6 August 2012 landing at Gale Crater.

Read continuing features about the Mars Rovers, Curiosity and GRAIL by Ken Kremer here:
Two new Moons join the Moon – GRAIL Twins Achieve New Year’s Orbits
2011: Top Stories from the Best Year Ever for NASA Planetary Science!
Opportunity Discovers Most Powerful Evidence Yet for Martian Liquid Water
Curiosity Starts First Science on Mars Sojurn – How Lethal is Space Radiation to Life’s Survival

Jan 11: Free Lecture by Ken Kremer at the Franklin Institute, Philadelphia, PA at 8 PM for the Rittenhouse Astronomical Society. Topic: Mars & Vesta in 3 D – Plus Search for Life & GRAIL

Solar Powered Dragon gets Wings for Station Soar

SpaceX Dragon set to dock at International Space Station on COTS 2/3 mission. Falcon 9 launch of Dragon on COTS 2/3 mission is slated for Feb.7, 2012 from pad 40 at Cape Canaveral, Florida. Artist’s rendition of Dragon spacecraft with solar panels fully deployed on orbit. ISS crew will grapple Dragon and berth to ISS docking port. Credit: NASA

[/caption]

The Dragon has grown its mighty wings

SpaceX’s Dragon spacecraft has gotten its wings and is set to soar to the International Space Station (ISS) in about a month. NASA and SpaceX are currently targeting a liftoff on Feb. 7 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

Dragon is a commercially developed unmanned cargo vessel constructed by SpaceX under a $1.6 Billion contract with NASA. The Dragon spacecraft will launch atop a Falcon 9 booster rocket also built by SpaceX, or Space Exploration Technologies.

Dragon’s solar array panels being installed on Dragon’s trunk at the SpaceX hangar in Cape Canaveral,FL.

The Feb. 7 demonstration flight – dubbed COTS 2/3 – represents the first test of NASA’s new strategy to resupply the ISS with privately developed rockets and cargo carriers under the Commercial Orbital Transportation Services (COTS) initiative.

Following the forced retirement of the Space Shuttle after Atlantis final flight in July 2011, NASA has no choice but to rely on private companies to loft virtually all of the US share of supplies and equipment to the ISS.

The Feb. 7 flight will be the first Dragon mission actually tasked to dock to the ISS and is also the first time that the Dragon will fly with deployable solar arrays. The twin arrays are the primary power source for the Dragon. They will be deployed a few minutes after launch, following Dragon separation from the Falcon 9 second stage.

The solar arrays can generate up to 5000 watts of power on a long term basis to run the sensors and communications systems, drive the heating and cooling systems and recharge the battery pack.

SpaceX designed, developed and manufactured the solar arrays in house with their own team of engineers. As with all space hardware, the arrays have been rigorously tested for hundreds of hours under the utterly harsh conditions that simulate the unforgiving environment of outer space, including thermal, vacuum, vibration, structural and electrical testing.

SpaceX engineers conducting an early solar panel test. Hundreds of flood lamps simulate the unfiltered light of the sun. Photo: Roger Gilbertson/ SpaceX

The two arrays were then shipped to Florida and have been attached to the side of the Dragon’s bottom trunk at SpaceX’s Cape Canaveral launch processing facilities. They are housed behind protective shielding until commanded to deploy in flight.


Video Caption: SpaceX testing of the Dragon solar arrays. Credit: SpaceX

I’ve toured the SpaceX facilities several times and seen the Falcon 9 and Dragon capsule launching on Feb. 7. The young age and enthusiasm of the employees is impressive and quite evident.

NASA recently granted SpaceX the permission to combine the next two COTS demonstration flights into one mission and dock the Dragon at the ISS if all the rendezvous practice activities in the vicinity of the ISS are completed flawlessly.

Dragon with the protective fairings installed over the folded solar arrays, at the SpaceX

The ISS crew is eagerly anticipating the arrival of Dragon, for whch they have long trained.

“We’re very excited about it,” said ISS Commander Dan Burbank in a televised interview from on board the ISS earlier this week.

The ISS crew will grapple the Dragon with the station’s robotic arm when it comes within reach and berth it to the Earth-facing port of the Harmony node.

“From the standpoint of a pilot it is a fun, interesting, very dynamic activity and we are very much looking forward to it,” Burbank said. “It is the start of a new era, having commercial vehicles that come to Station.”

Burbank is a US astronaut and captured stunning images of Comet Lovejoy from the ISS just before Christmas, collected here.

Read recent features about the ISS and commercial spaceflight by Ken Kremer here:
Dazzling Photos of the International Space Station Crossing the Moon!
Absolutely Spectacular Photos of Comet Lovejoy from the Space Station
NASA announces Feb. 7 launch for 1st SpaceX Docking to ISS

Jan 11: Free Lecture by Ken at the Franklin Institute, Philadelphia, PA at 8 PM for the Rittenhouse Astronomical Society. Topic: Mars & Vesta in 3 D – Plus Search for Life & GRAIL

Dazzling Photos of the International Space Station Crossing the Moon!

Moon and International Space Station from NASA Johnson Space Center, Houston, Texas. This photo was taken in the early evening of Jan. 4. Equipment: Nikon D3S, 600mm lens and 2x converter, Heavy Duty Bogen Tripod with sandbag and a trigger cable to minimize camera shake. Camera settings: 1/1600 @ f/8, ISO 2500 on High Continuous Burst. Credit: NASA

[/caption]

Has the International Space Station (ISS) secretly joined NASA’s newly arrived GRAIL lunar twins orbiting the Moon?

No – but you might think so gazing at these dazzling new images of the Moon and the ISS snapped by a NASA photographer yesterday (Jan. 4) operating from the Johnson Space Center in Houston, Texas.

Check out this remarkable series of NASA photos above and below showing the ISS and her crew of six humans crossing the face of Earth’s Moon above the skies over Houston, Texas. And see my shot below of the Moon near Jupiter – in conjunction- taken just after the two GRAIL spacecraft achieved lunar orbit on New Year’s weekend.

In the photo above, the ISS is visible at the upper left during the early evening of Jan. 4, and almost looks like it’s in orbit around the Moon. In fact the ISS is still circling about 248 miles (391 kilometers) above Earth with the multinational Expedition 30 crew of astronauts and cosmonauts hailing from the US, Russia and Holland.

Space Station Crossing Face of Moon
This composite of images of the International Space Station flying over the Houston area show the progress of the station as it crossed the face of the moon in the early evening of Jan. 4, 2012 over NASA’s Johnson Space Center, Houston, Texas. Credit: NASA
click to enlarge

The amazing photo here is a composite image showing the ISS transiting the Moon’s near side above Houston in the evening hours of Jan 4.

The ISS is the brightest object in the night sky and easily visible to the naked eye if it’s in sight.

With a pair of binoculars, it’s even possible to see some of the stations structure like the solar panels, truss segments and modules.

Check this NASA Website for ISS viewing in your area.

How many of you have witnessed a sighting of the ISS?

It’s a very cool experience !

NASA says that some especially good and long views of the ISS lasting up to 6 minutes may be possible in the central time zone on Friday, Jan 6 – depending on the weather and your location.

And don’t forget to check out the spectacular photos of Comet Lovejoy recently shot by Expedition 30 Commander Dan Burbank aboard the ISS – through the Darth Vader like Cupola dome, and collected here

Moon and International Space Station (at lower right) on Jan 4, 2012 from NASA Johnson Space Center, Houston, Texas. Credit: NASA click to emlarge
Moon, Jupiter and 2 GRAILs on Jan. 2, 2012
Taken near Princeton, NJ after both GRAIL spacecraft achieved lunar orbit after LOI - Lunar Orbit Insertion- burns on New Year’s weekend 2012. Credit: Ken Kremer

NASA Channels “The Force” With Smart SPHERES

Three satellites fly in formation as part of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) investigation. Image Credit: NASA

[/caption]In an interesting case of science fiction becoming a reality, NASA has been testing their SPHERES project over the past few years. The SPHERES project (Synchronized Position Hold, Engage, Reorient, Experimental Satellites) involves spherical satellites about the size of a bowling ball. Used inside the International Space Station, the satellites are used to test autonomous rendezvous and docking maneuvers. Each individual satellite features its own power, propulsion, computers and navigational support systems.

The SPHERES project is the brainchild of David Miller (Massachusetts Institute of Technology). Miller was inspired by the floating remote “droid” that Luke Skywalker used to help hone his lightsaber skills in Star Wars. Since 2006, a set of five SPHERES satellites, built by Miller and his students have been onboard the International Space Station.

Since lightsabers are most likely prohibited onboard the ISS, what practical use have these “droids” been to space station crews?


The first SPHERES satellite was tested during Expedition 8 and Expedition 13, with a second unit delivered to the ISS by STS-121, and a third delivered by STS-116. The crew of ISS Expedition 14 tested a configuration using three of the SPHERES satellites. Since their arrival, over 25 experiments have been performed using SPHERES. Until recently, the tests used pre-programmed algorithms to perform specific functions.

“The space station is just the first step to using remotely controlled robots to support human exploration,” said Chris Moore, program executive in the Exploration Systems Mission Directorate at NASA Headquarters in Washington. “Building on our experience in controlling robots on station, one day we’ll be able to apply what we’ve learned and have humans and robots working together everywhere from Earth orbit, to the Moon, asteroids, and Mars.”

International Space Station researcher Mike Fossum, commander of Expedition 29, puts one of the Smart SPHERES through its paces. Image Credit: NASA
In November, the SPHERES satellites were upgraded with “off-the-shelf” smartphones by using an “expansion port” Miller’s team designed into each satellite.

“Because the SPHERES were originally designed for a different purpose, they need some upgrades to become remotely operated robots,” said DW Wheeler, lead engineer in the Intelligent Robotics Group at Ames.

Wheeler added, “By connecting a smartphone, we can immediately make SPHERES more intelligent. With the smartphone, the SPHERES will have a built-in camera to take pictures and video, sensors to help conduct inspections, a powerful computing unit to make calculations, and a Wi-Fi connection that we will use to transfer data in real-time to the space station and mission control.”

In order to make the smartphones safer to use onboard the station, the cellular communications chips were removed, and the lithium-ion battery was replaced with AA alkaline batteries.

By testing the SPHERES satellites, NASA can demonstrate how the smart SPHERES can operate as remotely operated assistants for astronauts in space. NASA plans additional tests in which the compact assistants will perform interior station surveys and inspections, along with capturing images and video using the smartphone camera. Additional goals for the mission include the simulation of free-flight excursions, and possibly other, more challenging tasks.

“The tests that we are conducting with Smart SPHERES will help NASA make better use of robots as assistants to and versatile support for human explorers — in Earth orbit or on long missions to other worlds and new destinations,” said Terry Fong, project manager of the Human Exploration Telerobotics project and Director of the Intelligent Robotics Group at NASA’s Ames Research Center in Moffett Field, Calif.

You can view a video of the SPHERES satellites in action at: http://ti.arc.nasa.gov/m/groups/intelligent-robotics/smartspheres_test_2011-11-01-4x.avi (Sorry, no lightsaber action.).

If you’d like to learn more about NASA’s SPHERES program, visit: http://www.nasa.gov/mission_pages/station/research/experiments/SPHERES.html

Source: NASA Telerobotics News

Missions that Weren’t: One-Way Mission to the Moon

The Apollo lunar landing module as it looked in 1963. Image credit: wired.com

[/caption]

When President Kennedy promised America a lunar landing in 1961, he effectively set the Moon as the finish line in the space race. In the wake of his speech, NASA began scrambling to find a way to reach the Moon in advance of the Soviet Union, which at the time held a commanding lead in space. Apollo, already on the drawing board as an Earth orbiting program, was revised to reflect the lunar goal and Gemini was established as the interim program.

The pieces were in place; all NASA needed was a way to get to the Moon. Against this pressing background, two men proposed a desperate and direct mission to get an American on the Moon as quickly as possible. 

A schematic showing three different flight modes for Apollo lunar missions. Image credit: NASA

The proposal came from two Bell Aerosystems Company employees. John M. Cord was a Project Engineer in the Advanced Design Division and Leonard M. Seale was a psychologist in charge of the Human Factors Division. At the Institute of Aerospace Sciences in Los Angeles in 1962, the pair unveiled their “One-Way Manned Space Mission” proposal.

The plan called for a one-man spacecraft to follow a direct ascent path to the Moon. Ten feet wide and seven feet tall, the empty spacecraft weighed less than half the much smaller Mercury capsule. Inside, the astronaut would have enough water for 12 days, oxygen for 18 with a 12-day emergency reserve, a battery-powered suit and backpack, and all the tools and medical supplies he might need.

He would land on the Moon after a two-and-a-half day trip and have just under ten days to set up his habitat. As part of his payload, the astronaut would arrive with four cargo modules with pre-installed life support systems and a nuclear reactor to generate electrical power. Two mated modules would become his primary living quarters, while the others placed in caves or buried in rubble — a feature Cord and Seale assumed would dominate the lunar landscape — would provide a shelter from solar storms.

A possible configuration for a direct ascent Apollo spacecraft. Image credit: NASA

With his temporary home set up, he would wait a little over two years for another mission to come and collect him. Cord and Seale estimated that this mission could be launched as early as 1965, a year of expected minimal solar activity. Larger launch vehicles capable of sending the three-man Apollo spacecraft would be ready by 1967. The one-way spaceman would have a long but finite stay on the Moon.

This proposal was incredibly practical. Since the astronaut wouldn’t be launching from the lunar surface, he wouldn’t need to carry the necessary propellant. Since he would return to Earth in another spacecraft, his own spacecraft wouldn’t need a heavy heat shield or parachutes. The one-way mission was a light and efficient proposal.

But it was also dangerous. The proposal didn’t include any redundancies; the direct ascent path gave the astronaut no chance to abort his mission after launch. He would have to deal with any problems that arose knowing he wouldn’t be able to make a quick return home.

Luckily for the possible astronaut the proposal was never seriously considered. In July 1962, a few weeks after the one-way mission was proposed, NASA announced its selection of the more complicated but safer Lunar Orbit Rendezvous (LOR) mode for Apollo missions.

John Houbolt explains the benefits of Lunar Orbit Rendezvous over Direct Ascent. Image credit: NASA/courtesy of nasaimages.org