On June 18, 2011, the Cassini spacecraft performed a flyby of Saturn’s moon Helene. Passing at a distance of 6,968 km (4,330 miles) it was Cassini’s second-closest flyby of the icy little moon.
The image above is a color composite made from raw images taken with Cassini’s red, green and blue visible light filters. There’s a bit of a blur because the moon shifted position in the frames slightly between images, but I think it captures some of the subtle color variations of lighting and surface composition very nicely!
At right is a 3D anaglyph view of Helene made by Patrick Rutherford from Cassini’s original raw images … if you have a pair of red/blue glasses, check it out!
Cassini passed from Helene’s night side to its sunlit side. This flyby will enable scientists to create a map of Helene so they can better understand the moon’s history and gully-like features seen on previous flybys.
(When Cassini acquired the images, it was oriented such that Helene’s north pole was facing downwards. I rotated the image above to reflect north as up.)
Helene orbits Saturn at the considerable distance of 234,505 miles (377,400 km). Irregularly-shaped, it measures 22 x 19 x 18.6 miles (36 x 32 x 30 km).
Helene is a “Trojan” moon of the much larger Dione – so called because it orbits Saturn within the path of Dione, 60º ahead of it. (Its little sister Trojan, 3-mile-wide Polydeuces, trails Dione at the rear 60º mark.) The Homeric term comes from the behavioral resemblance to the Trojan asteroids which orbit the Sun within Jupiter’s path…again, 60º in front and behind. These orbital positions are known as Lagrangian points (L4 and L5, respectively.)
KENNEDY SPACE CENTER – The cargo canister for NASA’s final space shuttle mission was delivered to the sea-side launch pad at the Kennedy Space Center (KSC) in Florida and hoisted up the pads massive launch pad gantry early Friday (June 17).
NASA is targeting a July 8 blastoff of the STS-135 mission with Space Shuttle Atlantis and the last cargo a shuttle will ever haul to space. The 60 foot long cargo canister is the size of a shuttle payload bay.
The STS-135 mission is the very final flight of the three decade long Space Shuttle Era and is slated for liftoff at 11:26 a.m. EDT from Launch Pad 39A. The flight is scheduled to last 12 days and will be NASA’s 36th and last shuttle mission bound for the International Space Station (ISS).
Atlantis will deliver the Italian- built “Raffaello” logistics module to the orbiting outpost.
Raffaello is loaded full with about 5 tons of critical space parts, crew supplies and experiments to sustain space station operations once the shuttles are retired at the conclusion of the STS-135 mission, according to Joe Delai, NASA’s Payload Processing Manager for the STS-135 mission.
NASA technicians at the launch pad have closed the cocoon-like Rotating Service Structure (RSS) back around the orbiter to gain access to the vehicles payload bay. Atlantis’ payload bay doors will be opened Saturday night and the cargo will be installed into the shuttle’s cargo bay on Monday (June 20).
The secondary payload is dubbed the Robotic Refueling Mission (RRM) – a sort of “gas station in space” said Delai, who spoke to me at Pad 39A.
Pad workers were also busy on Saturday (June 18) with work to begin the collection of high resolution X-ray scans of Atlantis External Tank at certain support ribs on the shuttle facing side, according to Allard Beutel, a NASA KSC shuttle spokesman.
“The technicians will scan the tops and bottoms of 50 support beams, called stringers, to confirm that there are no issues following the tanking test conducted by NASA this week at the launch pad”, Beutel said.
The reinforcing stringers were installed after minute cracks were discovered during the propellant loading of 535,000 gallons of super cold liquid oxygen and hydrogen into the fuel tank during the initial launch attempt of the STS-133 mission in November 2010. “No problems are expected and this work is just being done as a precautionary measure.”
During the tanking test, a potential fuel leak was discovered in a hydrogen fuel valve in Space Shuttle Main Engine No. 3, the right most engine.
“Technicians will spend the next week swapping out the engine valve with a new one and conduct tests to verify the fix solved the problem,” Buetel told me. “NASA expects the work can be completed with no delay to the July 8 launch.”
The engine leak would have been a show stopper and scrubbed the launch if this had been the real countdown on July 8, said Beutel – to the huge disappointment of the 500,000 to 750,000 folks expected to pack the Florida Space Coast.
The hydrogen valve replacement and X-Ray scans are being completed in parallel out at the pad.
The STS-135 crew of four veteran shuttle astronauts is led by Shuttle Commander Christopher Ferguson. Also aboard are Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim.
The crew will fly to into the Kennedy Space Center from Houston aboard their T-38 jets on Monday for several days of pre-launch training.
I will be covering the STS-135 launch for Universe Today on site at the KSC Press site, location of the world famous countdown clock.
Since January of this year, DARPA and NASA have been publicly talking about a 100-year starship program. They’ve held a symposium, put out an official Request for Information (RFI) looking for ideas about how a long-term human mission to boldly go out to the stars could possibly happen, they have an official website and have just put out a request for papers for a public symposium that will be held this fall in Orlando, Florida.
Yes, they are serious about this.
However, contrary to what the title of the project might infer, it’s not so much about actually building a starship that could go on a long duration, long distance journey, but more about solving the all the various technical, medical, sociological and economic problems so that one day – perhaps in a 100 years or so – we actually could build one and head for the stars.
And they are looking for someone to head up the program.
“This is really a hard problem and I wouldn’t suggest for a second that it would be easy”, said David Neyland, director of the Tactical Technology Office for DARPA who spoke with reporters in a teleconference on June 16, 2011. “But the ancillary developments along the way such as of all the technology development, innovations in energy, medicine, agriculture, and socio and environmental issues, has direct payback to the Department of Defense and NASA, as well as the private and commercial sector.”
DARPA is known for its brand of “blue sky science” where the scientific research they do might not have apparent and initial real-world applications.
But with this project, DARPA and NASA are hoping to spur a surge reminiscent of the research, technology, and education — as well as the unintended consequences – that came about because of developments of the early space program.
“It’s the unpredictable and ancillary things that are of benefit for all of us,” Neyland said.
Neyland has been working with NASA Ames Director Pete Worden on the concept and Neyland said they chose the name not because they actually want to send a starship on a 100-year mission to space – although that would be the ultimate goal — but they want to capture the imagination of folks who normally wouldn’t think of doing research and development and tag them with something they would be excited about.
This is akin to how science fiction has spurred generations of scientists and engineers to follow the career paths they did.
Just like all the technology development that DARPA has done in the past which required only small initial investments but ultimately lead to things, such as the internet and GPS technology — as well as NASA’s investment in space travel which has spawned items we use every day here on Earth — they believe a small investment now could lead to a big payoff for everyone in the future.
So they are starting small. DARPA has put up $1 million and NASA has contributed $100,000 for one year of symposiums and study. $500,000 of that has been set aside and will be used as money for a grant given to the “winner” of their Request for Papers.
You can see the RFP at this link, and the deadline for paper abstracts and/or panel descriptions must be submitted online at www.100yss.org by 2:00 pm ET on Thursday, July 8, 2011.
The recipient of the grant could be an individual or corporation who has the best proposal for how to execute and nurture the R&D necessary for the 100-Year Starship program. “It will be a single grant of that amount which is startup money — seed money — to get the lights on, to get their footing to go out and start the cycle of investments and research, which hopefully becomes successful and then brings money back in so that more research can be done.”
After the grant is awarded, DARPA and NASA will step away, letting the winner set out and boldly go.
Neyland said he knows these are austere times, but feels this is a strong way to leverage investments for a good, ultimate payoff, even though that payoff may not be for several decades.
What type of person or corporation could possibly win this grant?
“Who would do this?” Neyland replied to the question that was posed by Universe Today. “Some folks want to send money to DARPA right now for this, and some want to sign up to be on the crew for the 100-year starship. But I don’t want to say who would be a respondent to the RFP, as we want to it be very ‘open kimono.’ But we want people to propose to us what would be the right path to take.”
Neyland mentioned successful long-term foundations such as the Rockfeller and Gugenhiem foundations might be an example of what the entity could ultimately turn into, but he doesn’t want to prejudice that there is a specific entity or construct they are looking for. “We want people to propose to us what the right direction should be,” he said. “They’ll have the ability to go in whatever direction they see fit.”
Neyland added this is not intended to be open to US citizens or corporations only – although there is a dilemma that he is not sure DARPA can give a grant to a foreign entity. “But this has to has a much broader view that what can happen in the US academic and industrial base,” he said. “ This has to be across all international boundaries, across all academia and all industries.”
Neyland admitted there is the possibility that no one will step forward far enough to earn the grant.
“We want to get the most bang for the buck for the Department of Defense,” he said.
So, everyone out there who has the dream of traveling to the stars, what are your ideas?
See the 100 Year Starship website for more information. The public symposium will be in Orlando, Florida on Sept. 30 – Oct. 2, 2011.
Here are the list of tracks the conference will include. Individuals may submit speaking abstracts directly related to these topics, or they can propose entirely different ideas.
• Time-Distance Solutions [propulsion, time/space manipulation and/or dilation, near speed of light navigation, faster than light navigation, observations and sensing at near speed of light or faster than light]
• Education, Social, Economic and Legal Considerations [education as a mission, who goes, who stays, to profit or not, economies in space, communications back to earth, political ramifications, round-trip legacy investments and assets left behind]
• Philosophical, and Religious Considerations [why go to the stars, moral and ethical issues, implications of finding habitable worlds, implications of finding life elsewhere, implications of being left behind]
• Biology and Space Medicine [physiology in space, psychology in space, human life suspension (e.g., cryogenic), medical facilities and capabilities in space, on-scene (end of journey) spawning from genetic material]
• Habitats and Environmental Science [to have gravity or not, space and radiation effects, environmental toxins, energy collection and use, agriculture, self-supporting environments, optimal habitat sizing]
• Destinations [criteria for destination selection, what do you take, how many destinations and missions, probes versus journeys of faith]
• Communication of the Vision [storytelling as a means of inspiration, linkage between incentives, payback and investment, use of movies, television and books to popularize long term research and long term journeys]
You can follow Universe Today senior editor Nancy Atkinson on Twitter: @Nancy_A. Follow Universe Today for the latest space and astronomy news on Twitter @universetoday and on Facebook.
On July 8, less than a month from now, the last remaining space shuttle is slated to launch from Cape Canaveral. The STS-135 mission will bring supplies and parts up to the International Space Station and will be the historic conclusion of the 30-year-long shuttle program.
Unless otherwise rescheduled, at 11:40am on Friday, July 8, the big clock will count down, the rocket boosters will ignite, the steam will billow and the shuttle Atlantis will roar into the sky for one final, glorious time.
Just over a year from now, NASA’s Curiosity rover should be driving across fascinating new landscapes on the surface of Mars if all goes well. Curiosity is NASA next Mars rover – the Mars Science Laboratory – and is targeted to launch during a three week window that extends from Nov. 25 to Dec. 18, 2011 from Cape Canaveral Air Force Station, Fla..
At NASA’s Jet Propulsion Laboratory (JPL), Pasadena, Calif., engineering specialists have been putting Curiosity through the final phase of mobility tests to check out the driving capability, robotic arm movements and sample collection maneuvers that the robot will carry out while traversing the landing site after plummeting through the Martian atmosphere in August 2012.
Take a good look at this album of newly released images from JPL showing Curiosity from the front and sides, maneuvering all six wheels, climbing obstacles and flexing the robotic arm and turret for science sample collection activities as it will do while exploring the red planet’s surface.
Curiosity is following in the footsteps of the legendary Spirit and Opportunity rovers which landed on opposite side of Mars in 2004.
“The rover and descent stage will be delivered to the Payload Hazardous Servicing Facility at the Kennedy Space Center (KSC) later in June,” Guy Webster, public affairs officer at JPL, told me. An Air Force C-17 transport plane has already delivered the heat shield, back shell and cruise stage on May 12, 2011.
“The testing remaining in California is with engineering models and many operational readiness tests,” Webster elaborated. “Lots of testing remains to be done on the flight system at KSC, including checkouts after shipping, a system test, a fit check with the RTG, tests during final stacking.”
The three meter long rover will explore new terrain that will hopefully provide clues as to whether Mars harbored environmental conditions that may have been favorable to the formation of microbial life beyond Earth and preserved evidence of whether left ever existed in the past and continued through dramatic alterations in Mars history.
NASA is evaluating a list of four potential landing sites that will offer the highest science return and the best chance of finding a potentially habitable zone in a previously unexplored site on the red planet.
Scientists leading NASA’s Mars rover team have selected “Spirit Point” as the name for the spot where the “Opportunity” Mars rover will arrive at her next destination – Endeavour Crater. The site was named in honor of the death of the “Spirit” Mars Exploration Rover, which NASA recently declared has ceased all communications with Earth.
Spirit’s passing comes after more than six highly productive years roving the surface of the red planet as humankind’s surrogate. NASA concluded the last attempt to communicate with Spirit in a transmission on May 25, 2011.
“First landfall at Endeavour will be at the southern end of Cape York [at Spirit Point],” Steve Squyres told me. Squyres of Cornell University, Ithaca, N.Y., is principal investigator for the rovers. Read tributes from the Spirit rover science team below.
In memory of Spirit, the last panorama she snapped on Sol 2175 in February 2010 was featured on Astronomy Picture of the Day (APOD) on May 30, 2011 and is the lead image here. The photo mosaic was created by Marco Di Lorenzo and Ken Kremer and shows some of the last scenes that Spirit ever photographed.
Endeavour’s massive rim consists of a series of ridges. Cape York is a 400 foot wide (120 meters) rim fragment at the western edge of Endeavour. Opportunity should reach “Spirit Point” before the end of this year, 2011.
“Spirit Point” was chosen as the site at Endeavour to commemorate the scientific achievements of Opportunity’s twin sister “Spirit”. Endeavour Crater was determined to be Opportunity’s long term destination nearly three ago after she departed the environs of Victoria crater.
“The Initial exploration plan will be decided when we get closer. The [science] priorities will depend on what we find,” Squyres added.
Since August 2008, the blistering pace of Opportunity’s long overland trek of about 11 miles (18 kilometers) has brought the golf cart sized robot to within about 2 miles (3 kilometers) of the rim of the humongous Endeavour crater – some 14 miles (22 kilometers) in diameter. Endeavour is more than 20 times wider than Victoria crater and by far the largest feature the Opportunity will ever explore – see route maps below.
“Spirit achieved far more than we ever could have hoped when we designed her,” according to Squyres in a NASA statement. “This name will be a reminder that we need to keep pushing as hard as we can to make new discoveries with Opportunity. The exploration of Spirit Point is the next major goal for us to strive for.”
The imaging team of Marco Di Lorenzo and Ken Kremer created a series of Spirit photomosaics from publically available images to illustrate the location and hazardous nature of Spirits final resting place – which fortuitously turned out to be a scientific goldmine revealing new insights into the flow of liquid water on Mars billions of years ago.
The western rim of Endeavour possesses geological deposits far older than any Opportunity has investigated before and which may feature environmental conditions that were more conducive to the potential formation of ancient Martian life forms.
Spirits last transmissions to Earth took place in March 2010, before she entered hibernation mode due to ebbing solar power and succumbed to the likely damaging effects of her 4th Martian winter.
Spirit was closing in on her next science target, a mysterious volcanic feature named Von Braun, when she became mired in a sand trap named “Troy” on the outskirts of the eroded volcano named “Home Plate, just about 500 feet away. See our mosaics.
Unable to escape and absent of sufficient power to run critical survival heaters, Spirit experienced temperatures colder than ever before that probably crippled fragile electronics components and connections and prevented further communications – although no one knows for sure.
NASA’s twin rovers Spirit and Opportunity have been exploring the Martian terrain on opposite sides of the red planet since the dynamic duo successfully landed over 7 years ago in January 2004.
Both robots were expected to last just three months but have accumulated a vast bonus time of exploration and discovery in numerous extended mission phases.
*** Several top members of the rover science team kindly provided me some comments (below) to sum up Spirits achievements and legacy and what’s ahead for Opportunity at Endeavour.
Ray Arvidson of Washington University, St Louis, Deputy Principal Investigator for the rovers:
“Spirit’s last communication with Earth was in March 2010 as the southern hemisphere winter season began to set in, the sun was low on the horizon, and the rover presumably stopped communicating to use all available solar power to charge the batteries.
Von Braun was one of the two destinations Spirit was traveling to when the rover became embedded in soft sands in the valley to the west of Home Plate.
Von Braun is a conically-shaped hill to the south of Home Plate, Inner Basin, Columbia Hills. Goddard is an oval-shaped shallow depression to the west of von Braun and was the second area to be visited by Spirit. Both von Braun and Goddard are suspected to be volcanic features.
During Spirit’s six year and two month mission the vehicle acquired remote sensing and in-situ observations that conclusively demonstrated that the ancient Columbia Hills in Gusev Crater expose materials that have been altered in water-related environments, including ground water corrosion and generation of sulfate and opaline minerals in volcanic steam vents and perhaps hydrothermal pools.
Together with its sister rover, Opportunity, the Mars Exploration Rover Mission, was designed to “follow the water” and return data that would allow us to test the hypothesis that water was at and near the surface during previous epochs.
Opportunity is still exploring the evidence in Meridiani for ancient shallow lakes and is on the way to outcrops on the rim of Endeavour crater, a ~20 km wide crater that exposes the old Noachian crust that shows evidence from orbital data for hydrated clay minerals.
These two rovers have performed far beyond expectations, unveiled the early, wet history of Mars, and have made an enormous scientific return on investment.”
Steve Squyres of Cornell University, Ithaca, N.Y., Principal Investigator for the rovers:
“Our best hope for hearing from Spirit was last fall. When that didn’t happen, we began a long, careful process of trying every possible approach to re-establishing contact. But it slowly became clear that it was unlikely, and I personally got used to the idea that Spirit’s mission was probably over several months ago.
Once that right front wheel failed, Spirit’s days were numbered in that kind of terrain. It wouldn’t have made any difference if we had tried to move Spirit sooner. We were very lucky to have survived as long as we did.
One of the lessons learned is to try to keep the wheels from failing.
It’s very sad to lose Spirit. But two things have softened the blow. First we’ve had a long time to get used to the idea. Second, even though Spirit is dead, she died an honorable death. If we’d lost her early in the mission, before she accomplished so much, it would have been much harder. But she accomplished so much more than any of us expected, the sadness is very much tempered with satisfaction and pride.
The big scientific accomplishments are the silica deposits at Home Plate, the carbonates at Comanche, and all the evidence for hydrothermal systems and explosive volcanism. What we’ve learned is that early Mars at Spirit’s site was a hot, violent place, with hot springs, steam vents, and volcanic explosions. It was extraordinarily different from the Mars of today.
Opportunity is heading at high speed for the rim of Endeavour Crater. First landfall will be at the southern end of Cape York. She should be there in not too many more months.
It hasn’t yet been decided where Opportunity will attempt to climb up Endeavour… we’ll see when we get there.
The phyllosilicates are a high priority, but the top priority depends on what we find.
I hope Spirits legacy will be the inspiration that people, especially kids, will take away from Spirit’s mission. I have had long, thoughtful conversations about Spirit with kids who have had a rover on Mars as long as they can remember. And my fondest hope for Spirit is that somewhere there are kids who will look at what we did with her, and say to themselves “well, that’s pretty cool… but I bet when I grow up I can do better. That’s what we need for the future of space exploration.
Spirit existed, and did what she did, because of the extraordinary team of engineers and scientists who worked so hard to make it possible. It’s a team that I’m incredibly proud to have been a small part of. Working with them has been quite literally the adventure of a lifetime.”
Jim Bell of Arizona State University, lead scientist for the rovers Pancam stereo panoramic camera:
“It is with a bittersweet sense of both sadness and pride that NASA announced the official end of the mission for the Mars Exploration Rover Spirit.
The Spirit team has seen the end coming since communications were lost with the rover in March 2010. Mission engineers made heroic efforts to reestablish contact. In the end Spirit was conquered by the extremely cold Martian winter and its two broken wheels, which prevented its dusty solar panels from pointing toward the Sun.
But what a mission! Designed to last 90 days, Spirit kept going for more than six years, with the team driving the rover almost 5 miles (8 km) across rocky volcanic plains, climbing rugged ancient hills, and scurrying past giant sand-dune fields. It eventually spent most of the mission near the region known as Home Plate, which is full of layered, hydrated minerals.
Data from the rover enabled dozens of scientific discoveries, but three stand out to me as most important:
Hydrated sulfate and high-silica soils in the Columbia Hills and around Home Plate.
These minerals, and the environment in which they occur (Home Plate is a circular-shaped, finely layered plateau that may be the eroded remains of a volcanic cone or other hydrothermal deposit), tell us that at some point in the past history of Gusev there was liquid water and there were heat sources — two key ingredients needed to consider the area habitable for life as we know it.
Carbonate minerals in some of the rocks within the Columbia Hills.
Carbonates were expected on Mars, if indeed the climate was warmer and wetter in the past. However, their detection has been elusive so far. Indeed, the Spirit team had to work hard to uncover the signature of carbonates years after the rover made the measurements. As the analysis continues the results for Mars in general could be profound.
An incredible diversity of rock types, from all over Mars, that Spirit was able to sample in Gusev crater.
Some of the rocks appear to be from local volcanic lava flows or ash deposits. But others have likely been flung in to the area over time by distant impacts or volcanoes, and a few even appear to be meteorites, flung in from outer space. Spirit’s instruments provided the team with the ability to recognize this amazing diversity, and thus to learn much more about Mars in general, not just Gusev in particular.
Spirit also helped us test an experiment: If we put all the rover’s images out on the Web for everyone in the world to see, in near real-time, would people follow along? They did!
I wonder if, maybe 10 or 15 years from now, I’ll meet some young colleagues who were turned on to space exploration by being able to check out the latest Spirit images from Mars from their classroom, or living room, every day when they were a kid. That would be extremely satisfying — and a great testament to the power of openly sharing data from space exploration missions like Spirit’s.
Meanwhile, Opportunity continues to rove on to city-size Endeavour crater, where orbital measurements have identified, for the first time in either rover’s mission, the signatures of clay minerals in the crater’s rim. Clays are also formed in water, but in less acidic, perhaps more life-friendly water than the sulfates that Opportunity has been mapping thus far.”
Rob Manning, Jet Propulsion laboratory, Pasadena, CA., Mars Rover Spacecraft System Engineering team lead
“Although Opportunity has proven her endurance, Spirit was the one we struggled with the hardest to get what she earned. Suffering from late repair and modification, a blown fuse in her power system and with possibly damaged circuits, she was very late getting out the door and onto the pad in Florida.
Unlike Opportunity, whose Hematite-laden Meridiani destination had been established long before launch, Spirit was launched with a great deal of uncertainty on where she would find herself on Mars. Would it be the flat and safe plains of Elysium? Would the intriguing but rough ancient Gusev crater with what appears to have been an ancient river flowing into a giant but now dry lake?
If Opportunity failed to get on her way to Mars, would her destination become Meridiani? Would Spirit have also been as lucky to find herself bouncing into a tiny rock-outcropped crater as Opportunity had?
Only after the successful launch of Opportunity followed by further successful rocket and airbag tests to confirm that the landing system design would work in the rougher terrain inside Gusev crater allowed us to seal her fate and her permanent home.
She would go Gusev and test the Gusev lake hypothesis. Sadly the surface of Gusev where she came to rest revealed a meteor impact-tilled lake of ancient lava. Any signs of ancient water lake beds and other fantastic discoveries would have to wait until she surmounted many more obstacles including summiting a formidable hill her designers never intended her to attempt.
Spirit, her designers, her builders, her testers, her handlers and I have a lot to be thankful for.
That NASA, the congress and the public were willing to trust us with this daunting feat is perhaps a statement about the persistent spirit of discovery that remains in all of us.
It starts out innocently enough: a small speck against a field of background stars, barely noticeable in the image data. But… it’s a speck that wasn’t there before. Subsequent images confirm its existence – there’s something out there. Something bright, something large, and it’s moving through our solar system very quickly. The faint blur indicates that it’s a comet, an icy visitor from the outermost reaches of the solar system. And it’s headed straight toward Earth.
Exhaustive calculations are run and re-run. Computer simulations are executed. All possibilities are taken into consideration, and yet there’s no alternative to be found; our world will face a close encounter with a comet in mere months’ time. Phone calls are made, a flurry of electronic messages fly between computer terminals across the world, consultations are held with top experts in the field. We are unprepared… what can we do? What does this mean for civilization as we know it? What will this speeding icy bullet from outer space do to our planet?
The answer? Nothing.
Nothing at all. In fact, it probably won’t even be very interesting to look at – if you can even find it when it passes by.
(Sorry for the let-down.)
There’s been a lot of buzz in the past several months regarding Comet Elenin, a.k.a. C/2010 X1, which was discovered by Russian astronomer Leonid Elenin on December 10, 2010. Elenin spotted the comet using a telescope in New Mexico remotely from his location in Lyubertsy, Russia. At that time it was about 647 million kilometers (401 million miles) from Earth… in the time since it has closed the distance considerably, and is now around 270 million km away. Elenin is a long-period comet, which means it has a rather large orbit around the Sun… it comes in from a vast distance, swings around the Sun and heads back out to the depths of the solar system – a round trip lasting over 10,000 years. During its current trip it will pass by Earth on October 16, coming as close as 35 million km (22 million miles).
Yes, 22 million miles.
That’s pretty far.
Way too far for us to be affected by anything a comet has to offer. Especially a not-particularly-large comet like Elenin.
Some of the doomy-gloomy internet sites have been mentioning the size of Elenin as being 80,000 km across. This is a scary, exaggerated number that may be referring to the size of Elenin’s coma – a hazy cloud of icy particles that surrounds a much, much smaller nucleus. The coma can be extensive but is insubstantial; it’s akin to icy cigarette smoke. Less than that, in fact… a comet’s coma and tail are even more of a vacuum than can be reproduced in a lab on Earth! In reality most comets have a nucleus smaller than 10km…that’s less than a billionth the mass of Earth (and a far cry from 80,000 km.) We have no reason to think that Elenin is any larger than this – it’s most likely smaller.
Ok, but how about the gravitational and/or magnetic effect of a comet passing by Earth? That’s surely got to do something, right? To Earth’s crust, or the tides? For the answer to that, I will refer to Don Yeomans, a researcher at NASA’s Near-Earth Object Program Office at JPL:
“Comet Elenin will not only be far away, it is also on the small side for comets. And comets are not the most densely-packed objects out there. They usually have the density of something akin to loosely packed icy dirt,” said Yeomans. “So you’ve got a modest-sized icy dirtball that is getting no closer than 35 million kilometers. It will have an immeasurably miniscule influence on our planet. By comparison, my subcompact automobile exerts a greater influence on the ocean’s tides than comet Elenin ever will.”
“It will have an immeasurably miniscule influence on our planet. By comparison, my subcompact automobile exerts a greater influence on the ocean’s tides than comet Elenin ever will.”
– Don Yeomans, NASA / JPL
And as far as the effect from Elenin’s magnetic field goes… well, there is no effect. Elenin, like all comets, doesn’t have a magnetic field. Not much else to say there.
But the claims surrounding Elenin have gone much further toward the absurd. That it’s going to encounter another object and change course to one that will cause it to impact Earth, or that it’s not a comet at all but actually a planet – Nibiru, perhaps? – and is on a collision course with our own. Or (and I particularly like this one) that alien spaceships are trailing Elenin in such a way as to remain undetected until it’s too late and then they’ll take over Earth, stealing our water and natural resources and turning us all into slaves and/or space munchies… or however the stories go. (Of course the government and NASA and Al Gore and Al Gore’s hamster are all in cahoots and are withholding this information from the rest of us. That’s a given.) These stories are all just that – stories – and have not a shred of science to them, other than a heaping dose of science fiction.
“We live in nervous times, and conspiracy theories and predictions of disaster are more popular than ever. I like to use the word cosmophobia for this growing fear of astronomical objects and phenomena, which periodically runs amuck on the Internet. Ironically, in pre-scientific times, comets were often thought to be harbingers of disaster, mostly because they seemed to arrive unpredictably – unlike the movements of the planets and stars, which could be tracked on a daily and yearly basis.”
– David Morrison, planetary astronomer and senior scientist at NASA’s Ames Research Center
The bottom line is this: Comet C/2010 X1 Elenin is coming, and it will pass by Earth at an extremely safe distance – 100 times the distance from Earth to the Moon. It will not be changing direction between now and then, it will not exert any gravitational effect on Earth, its magnetic field is nonexistent and there are no Star Destroyers cruising in its wake. The biggest effect it will have on Earth is what we are able to learn about it as it passes – after all, it is a visitor from the far reaches of our solar system and we won’t be seeing it again for a very, very long time.
I’m sure we’ll have found something else to be worried about long before then.
“This intrepid little traveler will offer astronomers a chance to study a relatively young comet that came here from well beyond our solar system’s planetary region. After a short while, it will be headed back out again, and we will not see or hear from Elenin for thousands of years. That’s pretty cool.”
– Don Yeomans
For more information about Elenin, check out this JPL news release featuring Don Yeomans, and there’s a special public issue of Astronomy Beat, a newsletter from the Astronomical Society of the Pacific, that features David Morrison of NASA’s Ames Research Center discussing many of the misconceptions about Elenin.
An updated chart of Elenin’s orbit and statistics can be viewed here.
According to the website, “Bono dedicated ‘Beautiful Day’ to Gabby Giffords, before asking, “Imagine a man looking down on us from 200 miles up. Looking down at our beautiful crowded planet… What would he say to us…? What is on your mind Commander Kelly?”
Kelly recorded a special message for his wife, Gabby Giffords, while he was floating inside the Cupola Observation Dome aboard the International Space Station during the STS-134 mission which landed safely on June 1 at the Kennedy Space Center.
“Hello Seattle… from the International Space Station.”
Before finishing on a line from David Bowie’s ‘Space Oddity’ : “I’m looking forward to coming home. Tell my wife I love her very much… she knows,” said Kelly
[/caption]
U2 has collaborated with NASA since their 2009 world tour to “include a dialogue between the band and the crew of the International Space Station.”
U2360° has worked with NASA and the International Space Station throughout this tour – having previously linked up with Belgian astronaut Commander Frank De Winne, Michael Barratt of NASA, Bob Thirsk of the Canadian Space Agency, Koichi Wakata of the Japan Aerospace Exploration Agency, and Gennady Padalka and Roman Romanenko of the Russian Federal Space Agency as well as Cirque du Soleil founder Guy Laliberte during his visit to the International Space Station.
“Working with U2 is atypical for NASA,” said Bill Gerstenmaier, NASA’s associate administrator for Space Operations in a NASA statement. “By combining their world tour with the space station’s out-of-this-world mission, more people — and different people than our normal target audiences — learned about the International Space Station and the important work we are doing in orbit.”
Be sure to check out this longer video version – and listen to the cheering crowd
Bono Intro to Beautiful Day with Commander Mark Kelly – U2 – Seattle, WA – June 4, 2011
[/caption]KENNEDY SPACE CENTER – The last shuttle that will ever blast to space has journeyed from the cavernous Vehicle Assembly Building out to the launch pad at NASA’s Kennedy Space Center (KSC) in Florida in anticipation of liftoff on July 8 at 11:38 a.m.
It was a proud and bittersweet moment for all the shuttle team members from top to bottom as Space Shuttle Atlantis was rolling out overnight to Launch Pad 39 A, at the same time that Space Shuttle Endeavour was plunging into Earth’s atmosphere for the scorching reentry and landing back at the shuttle landing strip at KSC.
Thousands of NASA and contractor employees and their families had been given special passes to witness the dramatic nighttime sojourn of Atlantis in a morale booster event as she emerged from inside the VAB on her way to the pad for what will be the grand finale of the 30 year long Space Shuttle Program.
I was privileged to watch and photograph Atlantis final journey from inside the VAB and the roof of the Launch Control Center (LCC). The LCC is the brain which commands and controls every aspect of Shuttle Launch operations.
The 12 day STS-135 mission will deliver the Raffaello logistic module to the International Space Station (ISS) which is loaded with critical spare parts, crew supplies and science gear that will be transferred to the massive orbiting outpost. Raffaello is a multipurpose logistics module built in Italy.
The STS-135 mission is a bonus for the shuttle program and was only officially added to the manifest in January 2011 as NASA sought funding from the Obama Administration and the US Congress.
The all veteran four person crew is led by Shuttle Commander Christopher Ferguson. He is joined by Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim.
Photos from Alan Walters for Universe Today: awaltersphoto.com
[/caption]
With her most recent drive of 482 feet (146.8 meters) on June 1, 2011 (Sol 2614), NASA’s Opportunity Mars Rover has zoomed past the unimaginable 30 kilometer (18,64 miles) mark in total odometry since safely landing on Mars nearly seven and one half years ago on Jan 24, 2004. That’s 50 times beyond the roughly quarter mile of roving distance initially forseen.
Opportunity is now 88 months into the original 3 month mission “warranty” planned by NASA and the rover team. That’s over 29 times beyond the original design lifetime and an achievement that no one on the rover teams ever expected to observe.
And Opportunity is still going strong, in good health and has abundant solar power as she continues driving on her ambitious overland trek across the martian plains of Meridiani Planum. She is heading to the giant Endeavour crater, some 22 km (14 miles) in diameter.
At this point Endeavour is barely 2 miles (3.5 km) away since Opportunity departed from Santa Maria Crater in March 2011. Landfall at Endeavour is expected sometime later this year.
Endeavour is a long awaited and long sought science target because it is loaded with phyllosilicate clay minerals. These clays have never before been studied and analyzed first hand on the red planets surface.
Phyllosilicate clays formed in neutral watery environments, which are much more conducive to the formation of life compared to the highly acidic environments studied up to now by Spirit and Opportunity. NASA’s Curiosity rover is due to land on Mars in 2012 at a site the science team believes is rich in Phyllosilicates.
In recent weeks, Opportunity has passed by a series and small young craters as she speeds to Endeavour as fast as possible. One such crater is named “Skylab”, in honor of America’s first manned Space Station, launched in 1973.
Now whip out your 3 D glasses and check out NASA’s newly released stereo images of “Skylab” and another named “Freedom 7” in honor of Alan Shepard’s flight as the first American in space. Be sure to also view Opportunity’s dance steps in 3 D performed to aid backwards driving maneuvers on the Red planet
“Skylab” is about 9 meters (30 feet) in diameter. The positions of the scattered rocks relative to sand ripples suggest that Skylab is young for a Martian crater. Researchers estimate it was excavated by an impact within the past 100,000 years.
“Freedom 7” crater is about 25 meters (82 feet) in diameter. During her long overland expedition, Opportunity is examining many craters of diverse ages at distant locales to learn more about the past history of Mars and how impact craters have changed over time.
Opportunity was just positioned at a newly found rock outcrop named “Valdivia” and analyzing it with the robotic arm instruments including the Microscopic Imager and the Alpha Particle X-ray Spectrometer (APXS).