What if Titan Dragonfly had a Fusion Engine?

Artist's Impression of Dragonfly on Titan’s surface. Credits: NASA/Johns Hopkins APL

In a little over four years, NASA’s Dragonfly mission will launch into space and begin its long journey towards Titan, Saturn’s largest moon. As part of the New Frontiers program, this quadcopter will explore Titan’s atmosphere, surface, and methane lakes for possible indications of life (aka. biosignatures). This will commence in 2034, with a science phase lasting for three years and three and a half months. The robotic explorer will rely on a nuclear battery – a Multi-Mission Radioisotope Thermal Generator (MMRTG) – to ensure its longevity.

But what if Dragonfly were equipped with a next-generation fusion power system? In a recent mission study paper, a team of researchers from Princeton Satellite Systems demonstrated how a Direct Fusion Drive (DFD) could greatly enhance a mission to Titan. This New Jersey-based aerospace company is developing fusion systems that rely on the Princeton Field-Reversed Configuration (PFRC). This research could lead to compact fusion reactors that could lead to rapid transits, longer-duration missions, and miniature nuclear reactors here on Earth.

Continue reading “What if Titan Dragonfly had a Fusion Engine?”

JWST Tries to Untangle the Signals of Water. Is it Coming From the Planet or the Star?

This artist concept represents the rocky exoplanet GJ 486 b. Credits: NASA, ESA, CSA, Joseph Olmsted (STScI)

The number of known extrasolar planets has exploded in the past few decades, with 5,338 confirmed planets in 4,001 systems (and another 9,443 awaiting confirmation). When it comes to “Earth-like” planets (aka. rocky), the most likely place to find them is in orbit around M-type red dwarf stars. These account for between 75 and 80% of all stars in the known Universe, are several times smaller than the Sun and are quite cool and dim by comparison. They are also prone to flare activity and have very tight Habitable Zones (HZs), meaning that planets must orbit very closely to get enough heat and radiation.

In addition, red dwarfs are highly-active when they are young, exposing planets in their HZs to lots of ultraviolet and X-ray radiation. As such, whether planets orbiting these stars can maintain or reestablish their atmospheres over time is an open question. Using the James Webb Space Telescope (JWST), researchers from the Space Telescope Science Institute (STScI) observed an exoplanet known as GJ 486 b. As they stated in a recent study, the team detected traces of water vapor, though it is unclear if the signal was coming from the planet or its parent star.

Continue reading “JWST Tries to Untangle the Signals of Water. Is it Coming From the Planet or the Star?”

Airbus Designs a Space Station With Artificial Gravity

Airbus LOOP concept art. Credit: © Airbus 2023

The International Space Station (ISS) is nearing the end of its service. While NASA and its partners have committed to keeping it in operation until 2030, plans are already in place for successor space stations that will carry on the ISS’ legacy. China plans to assume a leading role with Tiangong, while the India Space Research Organization (ISRO) plans to deploy its own space station by mid-decade. NASA has also contracted with three aerospace companies to design commercial space stations, including Blue Origin’s Orbital Reef, the Axiom Space Station (AxS), and Starlab.

Well, buckle up! The European multinational aerospace giant Airbus has thrown its hat into the ring! In a recently-released video, the company detailed its proposal for a Multi-Purpose Orbital Module (MPOP) called the Airbus LOOP. This modular space segment contains three decks, a centrifuge, and enough volume for a crew of four, making it suitable for future space stations and long-duration missions to Mars. The LOOP builds on the company’s long history of human spaceflight programs, like the ISS Columbus Module, the Automated Transfer Vehicle (ATV), and the Orion European Service Module (ESM).

Continue reading “Airbus Designs a Space Station With Artificial Gravity”

NASA Seeks Greater Diversity in Research Collaborations

MUREP Partnership Learning Annual Notification (MPLAN). Credit; NASA

In its pursuit of scientific research and human spaceflight, NASA engages in partnerships with various universities, laboratories, and academic institutes. In keeping with NASA’s policy of Diversity, Equity, Inclusion, and Accessibility and the Science Mission Directorate’s (SMD) Science Plan, NASA is seeking to expand its partnerships and encourage “a culture of diversity, inclusion, equity, and accessibility.” To this end, NASA created the Minority University Research and Education Project Partnership (MUREP) – administered through its Office of STEM Engagement (OSTEM).

Through MUREP, NASA provides expert guidance and financial assistance via competitive awards to Minority Serving Institutions (MSIs), which are announced annually through a MUREP Partnership Learning Annual Notification (MPLAN). NASA has teamed up with the leading crowdsourcing platform HeroX for this year’s MUREP opportunity and is awarding multiple prizes of $50,000 to MSIs for innovative ideas and action plans for commercialization that will advance NASA’s Mission Directorate priorities.

Continue reading “NASA Seeks Greater Diversity in Research Collaborations”

TESS Reaches Fifth Anniversary of Extraordinary Mission, but its Work is Far from Over

Artist illustration of NASA’s Transiting Exoplanet Survey Satellite (TESS) observing the heavens. (Credit: NASA's Goddard Space Flight Center)

NASA’s TESS (Transiting Exoplanet Survey Satellite) mission recently reached its fifth anniversary of service to humanity as it continues to tirelessly scan the heavens for worlds beyond. Dubbed as an all-sky mission, TESS was launched on April 18, 2018, aboard a SpaceX Falcon rocket. During its five years in space, TESS’s four 24 degrees by 24 degrees field-of-view CCD cameras have successfully mapped greater than 93% of the cosmos.

Continue reading “TESS Reaches Fifth Anniversary of Extraordinary Mission, but its Work is Far from Over”

NASA Wants New Ideas for Launching Lunar Payloads and Unlocking Climate Science!

NASA Entrepreneurs Challenge 2023. Credit: HeroX

NASA has a long history of crowdsourcing solutions, seeking input from the public, entrepreneurs, and citizen scientists. Currently, the agency is tasked with preparing for the long-awaited return to the Moon (the Artemis Program) and addressing the growing problem of Climate Change. The former entails all manner of requirements, from launch vehicles and human-rated spacecraft to logistical concerns and payload services. The latter calls for advances in climate science, Earth observation, and high-quality data collection.

To enlist the help of entrepreneurs in addressing these challenges, NASA’s Science Mission Directorate (SMD) has once again teamed up with the world-leading crowdsourcing platform HeroX to launch the NASA Entrepreneurs Challenge. With a total prize purse of $1,000,000, NASA is looking for ideas to develop and commercialize state-of-the-art technology and data usage that advances lunar exploration and climate science. The challenge launched on April 10th and will run until November 29th, after which the winners will be invited to a live pitch event hosted at the Defense TechConnect Innovation Summit and Expo in Washington, D.C.

Continue reading “NASA Wants New Ideas for Launching Lunar Payloads and Unlocking Climate Science!”

NASA is Sending Humans Back to the Moon, But it Won't Stop There. Next Comes Mars

Credits: NASA

NASA recently announced the astronauts that will make up the Artemis II crew. This mission will see the four-person crew conduct a circumlunar flight, similar to what the uncrewed Artemis I mission performed, and return to Earth. This mission will pave the way for the long-awaited return to the Moon in 2025, where four astronauts will fly to the Moon, and two (“the first woman and first person of color“) will land on the surface using the Starship HLS. These missions are part of NASA’s plan to establish a program of “sustained lunar exploration and development.”

As NASA has emphasized for over a decade, the Artemis Program is part of their “Moon to Mars” mission architecture. On Tuesday, April 18th, NASA released the outcomes from its first Architecture Concept Review (ARC 2022), a robust analysis designed to align with its overall mission strategy and define the supporting architecture. This included an Architecture Document and an executive summary that provide a detailed picture of the mission architecture and design process, plus six supporting white papers that addressed some of the biggest questions regarding exploration and architecture.

Continue reading “NASA is Sending Humans Back to the Moon, But it Won't Stop There. Next Comes Mars”

The First Light in the Universe Helps Build a Dark Matter Map

A view of Stephan’s Quintet, a visual grouping of five galaxies from the James Webb Telescope. Credit: NASA/ESA/CSA/STScI

In the 1960s, astronomers began noticing a pervasive microwave background visible in all directions. Thereafter known as the Cosmic Microwave Background (CMB), the existence of this relic radiation confirmed the Big Bang theory, which posits that all matter was condensed onto a single point of infinite density and extreme heat that began expanding ca. 13.8 years ago. By measuring the CMB for redshift and comparing these to local distance measurements (using variable stars and supernovae), astronomers have sought to measure the rate at which the Universe is expanding.

Around the same time, scientists observed that the rotational curves of galaxies were much higher than their visible mass suggested. This meant that either Einstein’s Theory of General Relativity was wrong or the Universe was filled with a mysterious, invisible mass. In a new series of papers, members of the Atacama Cosmology Telescope (ACT) collaboration have used background light from the CMB to create a new map of Dark Matter distribution that covers a quarter of the sky and extends deep into the cosmos. This map confirms General Relativity and its predictions for how mass alters the curvature of spacetime.

Continue reading “The First Light in the Universe Helps Build a Dark Matter Map”

The Crab Nebula Looks Completely Different in X-Rays, Revealing its Magnetic Fields

Credits: Magnetic field lines: NASA/Bucciantini et al; X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA-JPL-Caltech

Located about 6,500 light-years away in the constellation Taurus resides one of the best-studied cosmological objects known as the Crab Nebula (aka. Messier 1). Originally discovered in the 18th century by English astronomer John Bevis in 1731, the Crab Nebula became the first object included by astronomer Charles Messier in his catalog of Deep Sky Objects. Because of its extreme nature, scientists have been studying the Crab Nebula for decades to learn more about its magnetic field, its high-energy emissions (x-rays), and how these accelerate particles to close to the speed of light.

Astronomers have been particularly interested in studying the polarization of the x-rays produced by the pulsar and what that can tell us about the nebula’s magnetic field. When studies were first conducted in the 1970s, astronomers had to rely on a sounding rocket to get above Earth’s atmosphere and measure the polarization using special sensors. Recently, an international team of astronomers used data obtained by NASA’s Imaging X-ray Polarimetry Explorer (IXPE) to create a detailed map of the Crab Nebula’s magnetic field that has resolved many long-standing mysteries about the object.

Continue reading “The Crab Nebula Looks Completely Different in X-Rays, Revealing its Magnetic Fields”

What Can Be Done to Help Astronaut Vision in Space?

Astronauts Kate Rubins (left) and Jeff Williams (right) looking out of the ISS' cupola at a SpaceX Dragon supply spacecraft. Until recently, the effects of long-duration missions on eyesight was something of a mystery. Credit: NASA

Spaceflight takes a serious toll on the human body. As NASA’s Twin Study demonstrates, long-duration stays in space lead to muscle and bone density loss. There are also notable effects on the cardiovascular, central nervous, and endocrine systems, as well as changes in gene expression and cognitive function. There’s also visual impairment, known as Spaceflight-Associated Neuro-ocular Syndrome (SANS), which many astronauts reported after spending two months aboard the International Space Station (ISS). This results from increased intracranial pressure that places stress on the optic nerve and leads to temporary blindness.

Researchers are looking for ways to diagnose and treat these issues to prepare for future missions that will involve long-duration stays beyond Earth and transits in deep space. A cross-disciplinary team of researchers led by the University of Western Australia (UWA) has developed a breakthrough method for measuring brain fluid pressure that could reduce the risk of SANS for astronauts on long-duration spaceflights. This research could have applications for the many efforts to create a human presence on the Moon in this decade and crewed missions to Mars in the next.

Continue reading “What Can Be Done to Help Astronaut Vision in Space?”