Kepler Discovers Its Smallest and First Rocky Planet

NASA's Kepler mission confirmed the discovery of its first rocky planet, named Kepler-10b. Measuring 1.4 times the size of Earth, it is the smallest planet ever discovered outside our solar system.

[/caption]

NASA’s Kepler planet hunting space telescope has made an historic discovery by finding its first rocky planet – and it’s simultaneously the smallest planet ever found beyond our solar system. The exoplanet, dubbed Kepler-10b, measures barely 1.4 times the diameter of Earth and orbits its star in less than one earth day. Therefore the planet is located well outside the habitable zone and is far too close to the star for liquid water to exist. It is Earth-sized but not Earth-like with respect to the search for life. The finding of such a small and rocky world marks a major milestone for Keplers scientific capabilities in finding another world like our own.

Indeed the scorching hot planet orbits so close to its parent star – once every 0.84 days – that the surface is molten and temperatures exceed 2,500 degrees Fahrenheit, hotter than lava flows here on Earth. Kepler-10b is 20 times closer to its star than Mercury is to our sun. Its density is similar to that of an iron dumbbell.

Check out the amazing video below narrated by Natalie Batalha, Kepler’s deputy science team lead from NASA’s Ames Research Center which describes Kepler’s exciting discovery of the smallest exoplanet known to date – some 560 light years from Erath.

The discovery is based on data that was collected from May 2009 to early January 2010 and was independently confirmed with the W.M. Keck Observatory in Hawaii. A peer reviewed paper has been accepted for publication in the Astrophysical Journal. The spacecraft was launched in March 2009 by a Delta II rocket.

Over 500 exoplanets have been discovered up to now. Kepler uses the transit method to detect exoplanets and monitors 150,000 stars by aiming 42 detectors between the constellations of Cygnus and Lyra.

Kepler Mission Star Field.
An image by Carter Roberts of the Eastbay Astronomical Society in Oakland, CA, showing the Milky Way region of the sky where the Kepler spacecraft/photometer will be pointing. Each rectangle indicates the specific region of the sky covered by each CCD element of the Kepler photometer. There are a total of 42 CCD elements in pairs, each pair comprising a square. Credit: Carter Roberts / Eastbay Astronomical Society.

Read more at this NASA Press release

NASA’s Kepler mission confirmed the discovery of its first rocky planet, named Kepler-10b. Measuring 1.4 times the size of Earth, it is the smallest planet ever discovered outside our solar system.

The discovery of this so-called exoplanet is based on more than eight months of data collected by the spacecraft from May 2009 to early January 2010.

“All of Kepler’s best capabilities have converged to yield the first solid evidence of a rocky planet orbiting a star other than our sun,” said Natalie Batalha, Kepler’s deputy science team lead at NASA’s Ames Research Center in Moffett Field, Calif., and primary author of a paper on the discovery accepted by the Astrophysical Journal. “The Kepler team made a commitment in 2010 about finding the telltale signatures of small planets in the data, and it’s beginning to pay off.”

Kepler’s ultra-precise photometer measures the tiny decrease in a star’s brightness that occurs when a planet crosses in front of it. The size of the planet can be derived from these periodic dips in brightness. The distance between the planet and the star is calculated by measuring the time between successive dips as the planet orbits the star.

Kepler is the first NASA mission capable of finding Earth-size planets in or near the habitable zone, the region in a planetary system where liquid water can exist on the planet’s surface. However, since it orbits once every 0.84 days, Kepler-10b is more than 20 times closer to its star than Mercury is to our sun and not in the habitable zone.

Kepler-10b orbits one of the 150,000 stars that the spacecraft is monitoring between the constellations of Cygnus and Lyra.
We aim our mosaic of 42 detectors there, under the swan’s wing, just above the plane of the Milky Way galaxy. The star itself is very similar to our own sun in temperature, mass and size, but older with an age of over 8 billion years, compared to the 4-and-1/2 billion years of our own sun. It’s a quiet star, slowly spinning with a weak magnetic field and few of the sun spots that characterize our own sun. The star’s about 560 light years from our solar system and one of the brighter stars that Kepler is monitoring. It was the first we identified as potentially harboring a very small transiting planet. The transits of the planet were first seen in July of 2009.

The diameter of Kepler-10b is only about 1.4 times the diameter of Earth and it's mass is about 4.5 times that of Earth. It is the best example of a rocky planet to date.

Kepler-10 was the first star identified that could potentially harbor a small transiting planet, placing it at the top of the list for ground-based observations with the W.M. Keck Observatory 10-meter telescope in Hawaii.

Scientists waiting for a signal to confirm Kepler-10b as a planet were not disappointed. Keck was able to measure tiny changes in the star’s spectrum, called Doppler shifts, caused by the telltale tug exerted by the orbiting planet on the star.

“The discovery of Kepler-10b, a bone-fide rocky world, is a significant milestone in the search for planets similar to our own,” said Douglas Hudgins, Kepler program scientist at NASA Headquarters in Washington. “Although this planet is not in the habitable zone, the exciting find showcases the kinds of discoveries made possible by the mission and the promise of many more to come,” he said.

“Our knowledge of the planet is only as good as the knowledge of the star it orbits,” said Batalha. Because Kepler-10 is one of the brighter stars being targeted by Kepler, scientists were able to detect high frequency variations in the star’s brightness generated by stellar oscillations, or starquakes. “This is the analysis that really allowed us to pin down Kepler-10b’s properties.,” she added.

“We have a clear signal in the data arising from light waves that travel within the interior of the star,” said Hans Keldsen, an astronomer at the Kepler Asteroseismic Science Consortium at Aarhus University in Denmark. Kepler Asteroseismic Science Consortium scientists use the information to better understand the star, just as earthquakes are used to learn about Earth’s interior structure. “As a result of this analysis, Kepler-10 is one of the most well characterized planet-hosting stars in the universe next to our sun,” Kjeldsen said.

Kepler from the high-gain antenna side in the clean room at Astrotech. Credit: nasatech.net

That’s good news for the team studying Kepler-10b. Accurate stellar properties yield accurate planet properties. In the case of Kepler-10b, the picture that emerges is of a rocky planet with a mass 4.6 times that of Earth and with an average density of 8.8 grams per cubic centimeter — similar to that of an iron dumbbell.

“This planet is unequivocally rocky, with a surface you could stand on,” commented team member Dimitar Sasselov, of the Harvard-Smithsonian Center for Astrophysics in Cambridge and a Kepler co-investigator.

“All of Kepler’s best capabilities have converged for this discovery,” Batalha said, “yielding the first solid evidence of a rocky planet orbiting a star other than our sun.”

Ames manages Kepler’s ground system development, mission operations and science data analysis. NASA’s Jet Propulsion Laboratory in Pasadena, Calif., managed Kepler mission development.

Ball Aerospace and Technologies Corp. in Boulder, Colo., developed the Kepler flight system and supports mission operations with the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder. The Space Telescope Science Institute in Baltimore archives, hosts and distributes the Kepler science data.

……..
Click here to view a hi res 360 degree panorama of Kepler inside the cleanroom. Credit: nasatech.net

NASA Redoubling Efforts to Contact Spirit

Spirit’s Last Picture Show - for now. Spirit’s final panoramic mosaic was taken on Sol 2175 in February 2010, a few weeks before entering hibernation mode in March 2010 just prior to the onset of her 4th winter on Mars. The Columbia Hills serve as a backdrop in this image. The rover is stalled in a sand trap called Troy adjacent to the Home Plate volcanic feature in Gusev Crater. Von Braun mound, left of center, was next driving target for science until Spirit became mired in sulfate rich soil - which indicates significant past flow of liquid water in this region of Mars. Credit: NASA/JPL/Cornell, Marco Di Lorenzo, Kenneth Kremer

[/caption]

No one is giving up hope for Spirit. Not Yet. And neither should you.

It’s too soon to turn out the lights. Indeed NASA is stepping up operational efforts to contact the plucky rover – More communications commands; more listening time; more frequencies. Spirit last communicated with mission controllers back on Earth on March 22, 2010. The rover entered hibernation mode – some nine months ago – as the available sunlight to power the life giving solar panels was diminishing. NASA hopes to reawaken Spirit from a long slumber and reignite her breakthrough campaign of exploration and discovery from a scientific goldmine on the surface of the red planet.

“The sun is still rising on Mars,” says Ray Arvidson in an interview from Washington University in St. Louis. Arvidson is the deputy principal investigator for the Spirit and Opportunity rovers.

“We will keep listening for many months if necessary,” Steve Squyres informed me. Squyres is the Principal Scientific Investigator for the Mars Exploration Rover mission.

Carbonate-Containing Martian Rocks, False Color.
Data from Spirit collected in late 2005 has confirmed that an outcrop called Comanche contains a mineral indicating that a past environment was wet and non-acidic, possibly favorable to life.
Spirit captured this view of the Comanche outcrop during Sol 689 on Mars (Dec. 11, 2005). The rover's Mössbauer spectrometer, miniature thermal emission spectrometer and alpha particle X-ray spectrometer each examined targets on Comanche.
About one-fourth of the composition of Comanche is magnesium iron carbonate. That concentration is 10 times higher than for any previously identified carbonate in a Martian rock. Carbonates originate in wet, near-neutral conditions, but dissolve in acid. The find at Comanche is the first unambiguous evidence from either Spirit or Opportunity for a past Martian environment that may have been more favorable to life than the wet but acidic conditions indicated by the rovers' earlier finds. Credit: NASA/JPL-Caltech/Cornell University

By the time of the last dispatch from Mars, Spirit had lasted for nearly six years of bonus mission time – during the extended mission phase – light years beyond the 3 month “warranty” proclaimed by NASA as the mission began back in January 2004.

At Spirit’s location in the southern hemisphere of Mars, Southern Summer has not yet arrived. Right now it’s mid Southern Spring and daylight hours are increasing. And Summer doesn’t even start until mid-March 2011. The question is whether Spirit’s unheated electronics components have endured the extremely harsh and frigidly cold conditions of her 4th winter on Mars – her coldest ever. At about -100 C … Imagine Antarctica !

“The amount of solar energy available for Spirit is still increasing every day for the next few months,” said Mars Exploration Rover Project Manager John Callas of NASA’s Jet Propulsion Laboratory (JPL) , Pasadena, Calif. “As long as that’s the case, we will do all we can to increase the chances of hearing from the rover again.”

“We’re stepping up our efforts to contact Spirit — doubling down on her, as it were,” tweeted JPL mars rover driver Scott Maxwell.

And all those negative stories you may have read about Spirit being “Still Stuck” … well they totally missed the point.

A topographical map showing where Spirit became mired in loose, sulfate rich soil at a depression called Scamander Crater, about 8 meters (26 feet) wide and 25 centimeters (10 inches) deep. The total relief indicated by the color differences is about half a meter (20 inches) from the higher ground (color coded red) to the lower ground (color coded black). The map covers an area 12 meters (39 feet) wide from west to east. North is to the top.From its embedded position, the rover used its robotic arm to examine the patch of bright soil it had exposed, called Ulysses. The map indicates that Spirit is situated with its left wheels within the crater and right wheels outside the crater. Credit: NASA/JPL-Caltech/Ohio State University

In the final Sols, or Martian days, before falling silent in March 2010, there was dramatic movement by Spirit. “During the last 9 drives, Spirit actually moved 34 cm. That’s pretty good for a stationary rover,” Arvidson said.

This movement came despite the loss of two of the rover’s six wheels and after many months of methodical testing in the “Mars sand box”. Engineers at JPL devised and tested numerous strategies in attempting to extricate Spirit from the sand trap of soft soil in which she became mired.

Because of the declining sun and available power, Spirit basically just ran out of time to try and completely escape from the sand trap. This left it unable to obtain a favorable tilt for solar energy during the rover’s fourth Martian winter, which began last May.

Many members of the rover team are hopeful that they can indeed “Free Spirit” if she awakens from her current hibernation mode.

“I have no idea whether we’ll hear from Spirit again or not… there’s simply no way to predict it,” Squyres told me. “We will keep listening for many months. All we can do is listen”

Even if we never hear from Spirit again, she has accomplished a remarkable series of scientific breakthroughs, far beyond the wildest dreams of the science and engineering teams that built and operate the twins.

Both rovers have made important discoveries about wet environments on ancient Mars that may have been favorable for supporting microbial life.

Spirit discovered a rock that contained high levels of carbonates, minerals that form in neutral watery conditions that are far more conducive to the formation of life than the acidic watery conditions reported earlier in the mission.

Although Spirit has been stalled at a place called ‘Troy’ since April 2009. she made a significant science discovery at that exact spot. Spirit examined the soil in great detail and found key evidence that water, perhaps as snow melt, trickled into the subsurface fairly recently and on a continuing basis.

While driving on the western edge of an eroded over volcanic feature named ‘Home Plate’, she unknowingly broke through a hard surface crust (perhaps 1 cm thick) and sank into hidden soft sand beneath. At ‘Troy’, Spirit discovered that the crust was comprised of water related sulfate materials and therefore found evidence for the past flow of liquid water on the surface of Mars – a great science discovery!

After mid-March, prospects for reviving Spirit would begin to drop, say NASA officials. Communication strategies would change based on reasoning that Spirit’s silence is due to factors beyond just a low-power condition. Mission-ending damage from the cold experienced by Spirit in the past Martian winter is a real possibility.

This mosaic of images shows the soil in front of NASA's Mars Exploration Rover Spirit after a series of short backward drives during attempts to extricate the rover from a sand trap in January and early February 2010. It is presented in false color to make some differences between materials easier to see. Bright-toned soil was freshly exposed by the rover's left-front wheel during the drives and can be seen with a sand wave shaping that resulted from the unseen wheel's action.

Spirit's panoramic camera (Pancam) took the component images during the period from the 2,163rd to 2,177th Martian days, or sols, of Spirit's mission on Mars (Feb. 2 to Feb. 16, 2010). The turret at the end of the rover's arm appears in two places because of movement during that period. Insets in the upper left and lower right corners of the frame show magnified views of the nearby inscribed rectangles within the mosaic. The patch of ground within each rectangle is about 25 centimeters (10 inches) across. The top inset and upper portion of the mosaic include targets within soil layers exposed by the action of Spirit's wheels in April 2009 and examined in detail with instruments on Spirit's arm during the five subsequent months.

Olive pit and Olive leaf are two of the analyzed targets. The investigations determined that, under a thin covering of windblown sand and dust, relatively insoluble minerals are concentrated near the surface and more-soluble ferric sulfates have higher concentrations below that layer. This pattern suggests water has moved downward through the soil, dissolving and carrying the ferric sulfates. The brightness and color of the freshly disturbed soil seen in the center area of the mosaic indicates the this formerly hidden material is sulfate-rich. Before Spirit drove into this patch, the surface looked like the undisturbed ground highlighted in the lower-right inset. Flecks of red material in the surface layer resemble the appearance of the surface layer at other locations where Spirit's wheels have exposed high-sulfate, bright soils. Image Credit: NASA/JPL-Caltech/Cornell University


Spirit entered a low-power fault mode in March 2010 with minimal activity except charging and heating the batteries and keeping its clock running. With most heaters shut off, Spirit’s internal temperatures dipped lower than ever before on Mars. That stress could have caused damage, such as impaired electrical connections, that would prevent reawakening or, even if Spirit returns to operation, would reduce its capabilities.

“Components within the rover electronic module (REM) inside the rover’s warm electronic box (WEB) are experiencing record low temperatures,” said Doug McCuistion, the director of Mars Exploration at NASA Headquarters in Washington, DC, in an interview about Spirit’s predicament. “The expectation is for the REM hardware to reach -55C at the coldest part of the winter. We have tested the REM down to -55C”.

NASA’s Deep Space Network of antennas in California, Spain and Australia has been listening for Spirit daily in coordination with the spacecraft orbiting Mars; Mars Odyssey and Mars Reconnaissance Orbiter. In X-band, the DSN listens for Spirit during one pass each day. The rover team has also been sending commands to elicit a response from the rover even if the rover has lost track of time.

Now, the monitoring is being increased. Additional listening periods include times when Spirit might mistake a signal from NASA’s Mars Reconnaissance Orbiter as a signal from Earth and respond to such a signal. Commands for a beep from Spirit will be sent at additional times to cover a wider range of times-of-day on Mars when Spirit might awaken.

“DSN does an average of 4 “sweep & beep” commands in each day’s pass,” according to JPL spokesman Guy Webster. Also, NASA is listening on a wider range of frequencies to cover more possibilities of temperature effects on Spirit’s radio systems

Opportunity is still blazing a trail of discovery on the opposite side of Mars. She is currently exploring the stadium sized Santa Maria Carter which holds deposits of water bearing minerals that will further elucidate the potential habitability on the red planet.

For current updates about Opportunity’s exciting view from the steep walled crater and while being simultaneously imaged from Mars orbit in exquisite high resolution, read my earlier stories.

The Mystery of John Glenn’s Fireflies Returns

Astronaut John Glenn as photographed during his space flight by an automatic sequence motion picture camera mounted inside Friendship 7. Credit: NASA

[/caption]

What were the “fireflies” that John Glenn saw during the first orbital spaceflight for the US? Enjoy a new “you-were-there” look at the stories of early space exploration from the original NASA transcripts, but in a vastly improved format. A new website called Spacelog has put the transcripts in a searchable, linkable format. Spacelog is an open source venture making the transcripts more accessible to the public, and adding photos and timelines in with the text. Currently the Apollo 13 mission and Mercury Friendship 7 mission are available with more coming in the future. A linking feature allows users to Tweet and link to particular parts of the transcripts. As an open source project, Spacelog is also looking for help.

Below is the part of the Friendship 7 transcript where John Glenn describes small, mysteriously illuminated particles surrounding his capsule:

John Glenn

This is Friendship Seven. I’ll try to describe what I’m in here. I am in a big mass of some very small particles, that are brilliantly lit up like they’re luminescent. I never saw anything like it. They round a little; they’re coming by the capsule, and they look like little stars. A whole shower of them coming by.
00 01 15 57

John Glenn
They swirl around the capsule and go in front of the window and they’re all brilliantly lighted. They probably average maybe 7 or 8 feet apart, but I can see them all down below me, also.
00 01 16 06
CAPCOM
Roger, Friendship Seven. Can you hear any impact with the capsule? Over.
00 01 16 10
John Glenn
Negative, negative. They’re very slow; they’re not going away from me more than maybe 3 or 4 miles per hour. They’re going at the same speed I am approximately. They’re only very slightly under my speed. Over.
00 01 16 33
John Glenn
They do, they do have a different motion, though, from me because they swirl around the capsule and then depart back the way I am looking.
00 01 16 46
John Glenn
Are you receiving? Over.

———-

What were these fireflies? In the movie “The Right Stuff” the fireflies were given the illusion of being mystical or perhaps alien — or maybe part of Glenn’s imagination. People in mission control were worried the heat shield on his spacecraft could be falling apart.

The answer wasn’t confirmed until the next Mercury mission, Aurora 7, with astronaut Scott Carpenter on board in May 1962. Carpenter also saw the fireflies, or snowflakes, as he called them, and quickly could identify the source. They were tiny white pieces of frost from the side of the spacecraft. Condensation gathered on the outside of the spacecraft as the capsule passed from the cold orbital darkness and warm sunlight, and then froze again, creating a layer of frost. As the spacecraft again came into sunlight, the frost flakes would come off and float around the capsule. The sunlight also illuminated them, making them “luminescent.” When Carpenter banged on the side of the capsule, more flakes came off and were visible.

Read more at Spacelog.

Opportunity Photographed from Mars Orbit at Crater Precipice

Opportunity rover at the SW rim of Santa Maria Crater on New Year's Eve 2010 - Sol 2466. The rover sits at the edge of the crater rim and was photographed from Mars orbit by the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter. Look closely to see the rover tracks on the left as Opportunity approached the westerm rim of Santa Maria crater. Credit: NASA/JPL/University of Arizona

[/caption]

“I enjoy seeing our rover again,“ says Steve Squyres in an exclusive for Universe Today. Squyres is the top scientist for the Opportunity and Spirit Mars rovers.

NASA’s Opportunity rover was just been photographed from Mars Orbit while perched at the precipice of Santa Maria crater – just meters away from the edge of the Southwest rim. The photo was taken on New Year’s Eve, Dec. 31, 2010 on Sol 2466 of the mission which has lasted nearly 7 years ! Opportunity landed on Mars on Jan. 24, 2004.

This newly released photo was taken by the high resolution HiRISE camera circling overhead in Mars orbit aboard NASA’s Mars Reconnaissance Orbiter (MRO).

“Well, it’s always great to see images like that,” Steve Squyres just informed me after seeing the new photos of Opportunity. Squyres, of Cornell University, is the Principal Scientific Investigator for NASA’s Spirit and Opportunity Mars rovers.

“This one reminds me a lot of the first time we ever saw a rover from orbit, just after Opportunity had arrived at the rim of Victoria crater. It’s a very evocative scene, and it’s hard not to project certain things onto the rover (“valiant”, “lonely”) when you see it. Mostly, though, I just enjoy seeing our rover again.”

“The last time I laid eyes on Opportunity was about seven and a half years ago, and it’s nice getting another glimpse of her,” said Squyres.

Oblique view of Opportunity on New Years Eve 2010 from Mars Orbit. HiRISE also took an an oblique view of the same area of Mars. This image shows the view looking West, as MRO pointed off nadir 18 degrees to the West to acquire this oblique image, similar to the view out an airplane window. Credit: NASA/JPL/University of Arizona

Opportunity arrived at the western rim of Santa Maria on Dec. 16 (Sol 2451) after a long and arduous trek of some 19 km since departing from Victoria Crater over 2 years ago in September 2008.

The rover has been exploring around the western portion of Santa Maria crater since arriving and is now heading to the southeast rim which possesses deposits of hydrated minerals.

Opportunity drove some 40 meters south along the steep rim from the initial location at “Palos” Promontory and then bumped incrementally further up to the edge on Sol 2464 at a place dubbed “Wanahani”.

The rover was photographed from Mars orbit while perched at “Wanahani” on New Years Eve, Dec 31, 2010 on Sol 2466.

“We are driving the vehicle in a counterclockwise direction around Santa Maria to reach the very interesting hydrated sulfates on the other side,” according to Ray Arvidson, the deputy principal investigator for the rovers, in an interview from Washington University in St. Louis. “We’ll make 3 stops or more depending on what we see”

Simultaneously to being photographed from orbit, the rover itself was of course merrily snapping a ground level view of Santa Maria. To experience the surface eye view from Opportunity, see our photo mosaic – stitched from the raw images – to display the rovers panoramic perspective whilst gazing outwards from “Wanahani” to the cliffs of Santa Maria on Sols 2464 and 2466.

Opportunity’s surface view of Santa Maria on New Years Eve Dec 31 while being photographed overhead from Mars Orbit.
Wanahani outlook at Santa Maria Crater. Opportunity took this panaromic mosaic from “Wanhani” just meters from the crater rim on Dec 29, 2010 (Sol 2464). Note rover tracks near rim at left, relatively clean solar panel at right and numerous ejecta rocks. The rim is inclined roughly 5 degrees here. CRISM mapper results suggest water bearing materials are located at the southeastern edge of the crater rim, nicknamed “Yuma”. Portions of distant Endeavour Crater are faintly visible as bumps on the horizon in the background. Mosaic Credit: NASA/JPL/Cornell, Ken Kremer, Marco Di Lorenzo

“Opportunity is imaging the crater interior to better understand the geometry of rock layers as a means of defining the stratigraphy and the impact process, says Matt Golembek, Mars Exploration Program Landing Site Scientist at the Jet Propulsion Laboratory (JPL), Pasadena, Calif.

Santa Maria is a relatively young, 90 meter-diameter impact crater (note blocks of ejecta around the crater), but old enough to collect sand dunes in its interior.

Santa Maria Crater, located in Meridiani Planum, is about 6 kilometers from the rim of Endeavour Crater, which contains spectral indications of phyllosilicates, or clay bearing minerals that are believed to have formed in wet conditions that could have been more habitable than the later acidic conditions in which the sulfates Opportunity has been exploring formed.

Data from the CRISM mineral mapper aboard MRO data show indications of hydrated sulfates on the Southeast edge of the Santa Maria Crater at which Opportunity is planning on spending the upcoming solar conjunction. After that, Opportunity will traverse to the Northwest rim of Endeavour Crater, aided tremendously by HiRISE images like the one here for navigation and targeting interesting smaller craters along the way.

Opportunity rover at the SW rim of Santa Maria Crater on New Year's Eve 2010 - Sol 2466. The rover sits at the edge of the crater rim and was photographed from Mars orbit by the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter. Look closely to see the rover tracks on the left as Opportunity approached the westerm rim of Santa Maria crater. Credit: NASA/JPL/University of Arizona

“Astrobiology” Parody Video of Ke$ha’s “We R Who We R”

Wanna get turned on by … “Astrobiology” ?? Are we alone in the universe?

Well check out just this newly-released music video parody of Ke$ha’s hit song “We R Who We R” – “Astrobiology.”

Suspend your disbelief. It’s different. It’s cool. And it’s very clever.

And .. It’s even better the second time around when you listen to the lyrics more closely … combined with the shocking video .. Featuring beautiful maidens and alien dolls galore. Continue reading ““Astrobiology” Parody Video of Ke$ha’s “We R Who We R””

New Years Postcards from the Edge by Opportunity Mars Rover

Wanahani outlook at Santa Maria Crater. Opportunity took this panaromic mosaic from “Wanhani” just meters from the crater rim on Dec 29, 2010 (Sol 2464). Note rover tracks near rim at left, relatively clean solar panel at right and numerous ejecta rocks. CRISM mapper results suggest water bearing materials are located at the southeastern edge of the rim located at the southeastern section of the crater. Portions of distant Endeavour Crater are faintly visible as bumps on the horizon in the background. Mosaic Credit: NASA/JPL/Cornell, Ken Kremer, Marco Di Lorenzo

[/caption]

A robot from Earth is celebrating New Years on Mars by snapping another amazing set of “Postcards from the Edge” while perched near the sharp edge of a crater cliff on the red planet. NASA’s Opportunity rover is now stationed just meters away from a new precipice at the stunningly beautiful crater named Santa Maria. The twin rovers mark their 7th anniversary on Mars this week. See martian postcard mosaics above and below.

Craters expose the hidden history of Mars and permit scientists a path to explore the past geologic epochs which otherwise would remain buried and inaccessible.

Santa Maria Crater from Orbit. Opportunity arrived at the western rim of Santa Maria Crater, some 90 meters wide, on Dec. 16, 2010 at a spot called “Palos”. Opportunity then drove in a counterclockwise direction to a spot called “Wanahani” at the southern edge. It is collecting high resolution imagery and spectral data over New Years and will then resume driving to its next destination at the Southeast rim, an area nicknamed “Yuma”. See new annotations. Researchers are using data collected by the CRISM mineral mapping spectrometer aboard NASA’s Mars Reconnaissance Orbiter (MRO) to direct the route which Opportunity is traversing on Mars during the long term journey to Endeavour crater. Spectral observations recorded by CRISM indicates the presence of water-bearing sulfate minerals at the location shown by the red dot on the southeast rim crater whereas the crater floor at the blue dot does not. This image was taken by the High Resolution Imaging Science Experiment (HiRISE) camera also on MRO. Credit: NASA/JPL-Caltech/Univ. of Arizona.

Santa Maria is an exciting find because it appears to be relatively new and unweathered – on the order of possibly just a few million years old. Researchers are eager to drive around the rim in order to explore deposits of water bearing minerals that contain valuable clues to the flow of liquid water on ancient Mars.

The golf cart sized rover arrived this week (Dec. 29) at an outlook nicknamed “Wanahani” near the southern edge of Santa Maria. Opportunity arrived at the western rim of Santa Maria on Dec. 16. Just before Christmas, she drove about 20 meters south along the steep rim from the initial location at Palos Promontory and then bumped incrementally further up to the edge (Sol 2464) .

Palos Promontory and Santa Maria Panorama from Opportunity on Mars.
Opportunity drove within 2.5 meters of the rim and snapped this beautiful panoramic vista of the crater and distant horizon on Sol 2454. Note rover solar panel deck, antennae and sundial at left. Mosaic Credit: NASA/JPL/Cornell, Oliver de Goursac.
Santa Maria from Palos Promontory on Mars.
Opportunity drove to within 2.5 meters of the rim and snapped this gorgeous panoramic vista unveiling the whole interior on Sols 2453 & 2454. Note the steep walls and sand dunes on the floor. Mosaic Credit: NASA/JPL/Cornell, James Canvin
Wanahani outlook at Santa Maria Crater.
Opportunity took this panaromic mosaic from “Wanhani” just meters from the crater rim on Dec 29 (Sol 2464). Note rover tracks near rim at left, solar panel at right and numerous ejecta rocks. CRISM mapper results suggest water bearing materials are located at the southeastern section of the crater. Portions of distant Endeavour Crater are faintly visible as bumps on the horizon in the background. Mosaic Credit: NASA/JPL/Cornell, Ken Kremer, Marco Di Lorenzo
Crater Rim Duo with Signs of Hydates on Mars.
Santa Maria rim up close (80 meters away) and Endeavour rim (6 km away) on the horizon in the distance. Both craters show mineralogical evidence for the past flow of liquid water on Mars and are high priority science targets. Mosaic Credit: NASA/JPL/Cornell, Ken Kremer, Marco Di Lorenzo
Partial panorama near Wanahani outlook on Sol 2461.
Undulating sand dunes on the crater floor and southern portion of Santa Maria, inclined about five degrees. Mosaic Credit: nasatech.net

But there is no time to party and relax. The rover will soon resume driving to the next location – nicknamed “Yuma”. It will continue farther around the football field sized crater – measuring some 90 meters (295 ft) in diameter – to reach the exposures of sulfated hydrates located at the southeast portion of the crater near “Yuma”.

Opportunity must be in position at an important science target before mid January and the onset of solar conjunction and a temporary communications black out with Earth. The rover will remain stationary during conjunction.

Fish eye view from Wanahani outlook. Opportunity snapped this wide angle view from the crater rim of Santa Maria with the hazard camera on Sol 2464. Credit: NASA/JPL/Cornell

At Wanahani, Opportunity is now hurriedly toiling away over the New Year’s period to collect a pair of long baseline, high resolution stereo image mosaics using it’s panoramic, multispectral imaging camera. See our initial Wanahani mosaics assembled here from the navigation camera images just received on Earth (Sol 2464).

The team is using all 13 filters on the filter wheels of the panoramic camera, according to Ray Arvidson, the deputy principal investigator for the rovers, in an interview from Washington University in St. Louis. Over the course of several days, the left and right “eyes” of the panoramic camera will gather data at various wavelengths to maximize the collection of spectral information about the hydrated minerals located in the craters interior.

Data downlink is limited by the available amount of flash memory aboard Opportunity and is the Achilles heel of rover operations. Virtually all the pictures and science is streaming back to Earth via NASA’s long lived Mars Odyssey orbiter. The team is working to get all the acquired science data offloaded as swiftly as possible,

A functioning replica of the Santa Maria in Funchal harbor, Madeira Islands, Portugal.

Arvidson said that the team hopes that the meteor impact that excavated the crater also blasted some of these scientifically fascinating rocks free to spots which are more easily accessible – just outside the rim for close up analysis. Additional imaging and spectral data is also being collected from Mars orbit this new year’s weekend in hopes of quickly directing the rover to the best locations for science in the limited time available.

Opportunity will study the relatively fresh and uneroded ejecta rocks using all the instruments located at the end of the robotic arm. One target will be selected for a longer duration study during the period of solar conjunction, said Arvidson.

The Santa Maria replica at sea. Opportunity is on an epic expedition to a distant horizon far beyond the shores of Earth.
The rover team is naming places visited around the crater rim after islands visited by Columbus during his voyages of expedition and discovery to the New World starting in 1492. The Santa Maria was the largest of the three ships used during his first voyage.

Opportunity will resume her long term trek to Endeavour crater after the end of solar conjunction in mid February. The western rim of Endeavour is about 6 km distant. Endeavour is a very compelling science target because it shows significant signatures for clay minerals which formed in the presence of neutral bodies of liquid water on Mars, billions of years ago.

Spirit and Opportunity celebrate 7 Years on Mars this month since the dynamic duo landed in January 2004. Look for my story soon.

Gorgeous 3 D Vistas of Martian Crater and Hydrate Minerals at Santa Maria

Santa Maria is a football-field-size crater - about 90 m wide and 12 m deep - which dominates the scene in this stereo view from NASA's Opportunity rover. Opportunity sits about 5 meters from the steep western edge of this scientifically interesting impact crater which displays signatures of water bearing minerals at the center of this mosaic. Opportunity arrived here following a 25-meter (82-foot) drive on the 2,451st Martian day, or sol, of the rover's work on Mars (Dec. 16, 2010). The rover used its navigation camera to take the frames combined into this mosaic. The scene appears three-dimensional when viewed through red-blue glasses with the red lens on the left. It combines images taken with the left eye and right eye of the navigation camera. Credit: NASA/JPL/Cornell.

[/caption]

Spectacular new images of a gorgeous gaping hole on Mars are streaming back to Earth from NASA’s Opportunity Mars Rover. So let’s take a 3 D stroll placing all of us at Santa Maria Crater – “On Mars”. Via the photo mosaics above and below, we will circle in three dimensions about the stunningly beautiful Santa Maria Crater. At the southeast portion of the rim, the crater also possesses a scientific goldmine of hydrated mineral deposits. These minerals are indicative of the past flow of liquid water on Mars, an essential requirement for the formation of life.

Opportunity made landfall at the western edge of Santa Maria on Dec. 15 (Sol 2450) after a long and arduous journey of some 19 km since departing from Victoria Crater over 2 years ago in September 2008. She crawled closer to the rim the next day on Dec. 16 (Sol 2451) unveiling a magnificent vista of jumbled ejecta rocks, steep sloped cliffs and undulating sand dunes across the crater floor.

“Santa Maria is a relatively fresh impact crater. It’s geologically very young, hardly eroded at all, and hard to date quantitatively. On the order of 10 million years old or less,” said Ray Arvidson in an interview from Washington University in St. Louis. Arvidson is the deputy principal investigator for the Spirit and Opportunity rovers.

Santa Maria from Palos Promontory on Mars.
Imagine yourself at the steep cliff walls of Santa Maria crater at a place called Palos. To get a sense of scale in 2 D, human sized figures (2 m tall) have been strategically placed at multiple locations near and far, around and inside this gorgeous panoramic vista. Opportunity drove closer and snapped these images just 2.5 meters from the crater’s edge on Sols 2453 & 2454. Mosaic Credit: NASA/JPL/Cornell, James Canvin. Annotations of Mysterious men in black hats and their cousins, the French climbers by FredK and ElkDanGrove at unmannedspaceflight.com

“Santa Maria is the freshest big guy that Opportunity has seen and has a raised rim,” Arvidson told me. “It is much younger than Endurance Crater which Opportunity visited a few months after landing on Mars way back in 2004 and is roughly the same diameter.” See the entire Opportunity traverse map below.

“The crater is young enough that the interesting hydrate outcrops may not be coated with the nanophase iron oxide dust. There is virtually no erosion. We can see the ejecta rays and blocks,“ said Arvidson.

While sitting just five meters from the rim on Dec. 16, Opportunity imaged the football field sized crater – some 90 m wide – with both its left and right eye navigation cameras. A mosaic of these images was stitched together by NASA to create a stunning 360 degree stereo panoramic vista. The images are snapped from the same height seen by an adult to give the perspective that a human eye would see when standing “On Mars”.

The crater is the centerpiece of the stereo image above, which shows the crater’s sharp rim and rocks ejected from the impact that had excavated the crater. You will need to whip out your red-cyan stereo glasses to experience the full three-dimensional effect of the scene. Be sure to wear the red lens on the left, and try not to fall off the cliff.

Click here for the entire 360-degree high resolution stereo view – its 10 MB in all. South is at the center. North is at both ends. The view is presented as a cylindrical-perspective projection. The wheel tracks left behind in the Martian dirt – as the rover approached the crater – are seen at the far right and are also highlighted in our 2 D mosaic below.

Off in the distance, several portions of the rim of Endeavour Crater are visible as bumps on the horizon. Endeavour is the ultimate target of Opportunity’s long term trek across the Martian dunes at the Meridiani Planum region and is some 22 kilometers in diameter.

“Endeavour shows significant signatures of phylloslicates, or clay minerals, and water bearing sulfate minerals which formed in the presence of liquid water,” Arvidson explained. “The phyllosilicates formed at the crater rim about 3.8 to 4.2 Billion years ago and predate the sedimentary rocks which are younger than 3.8 billion years.”

Pictured below is a collection of stereo photo mosaics for a North to South up close tour around the rim of Santa Maria. Several of the images were created by members of unmannedspaceflight.com.

“Opportunity will drive in a counterclockwise direction around Santa Maria to reach the very interesting hydrated sulfates on the other side. We’ll make 3 stops or more depending on what we see”

Stereo view of the sharp northern rim of Santa Maria on Sol 2451. Credit: NASA/JPL/Cornell/Stu Atkinson
Convoluted martian rocks in 3 D close up at the sharp northern rim of Santa Maria. Credit: NASA/JPL/Cornell/Walfy at unmannedspaceflight.com

“On Dec. 19 (Sol 2454) we bumped the vehicle even closer to the rim from the initial approach point, to a promontory we’ve nicknamed ‘Palos’, stated Arvidson. “Opportunity was a mere 2.5 meters from the edge. At ‘Palos’, the rover collected the first set of long baseline, high resolution stereo images for creating a 3 D digital elevation map.”

“The coves at Santa Maria will be named after the islands which Columbus visited, using the native American language. All the rocks and boulders strewn about will be named after the sailors on the voyage with Columbus,” explained Arvidson.

“This past weekend we drove about 20 meters southeast towards the second location named ‘Wanahani’. On Tuesday of this week (Dec. 28) we bumped to the edge. The plan is to photograph the ejecta rocks and collect the next set of long baseline, high resolution stereo images.”

The third stop – which must be reached before Solar Conjunction in mid January 2011- will take Opportunity to the science hot spot detected by the powerful CRISM mineral mapping spectrometer circling above Mars aboard NASA’s Mars Reconnaissance Orbiter (MRO).

“With CRISM we are trying to cover all the rim segments to better understand the nature and geologic setting of the iron and magnesium smectite clay mineral exposures. The southeast portion of Santa Maria is generally the location of the CRISM spectra that show hydrated sulfates. Opportunity will go to the southeast rim and try and find a nice outcrop on the rim side to do measurements to field verify the expected mineralogy,” explained Arvidson.

“We might do a toe dip with the wheels but there is no plan to go inside.”

“We will use the Rock Abrasion Tool (RAT) to drill into a selected target. That spot will be named after ‘Columbus’.

The exposures of hydrated sulfates have a bright toned appearence in the images.

“With the sun over the camera’s shoulder there is a phenomenon called opposition effect in which rocks and soils become particularly bright when the sun-camera-surface line up, Arvidson told me. “But, it also may be that the bright looking rocks are intrinsically bright and not coated with the nanophase iron oxide coatings we have seen on previous outcrops. All in the realm of testable working hypotheses.”

“On Dec. 30 we are planning another CRISM spectral mapping campaign with MRO over Santa Maria,” said Arvidson. “Using a new technique which gimbals, or swivels, the CRISM optics we hope to use a pixel overlap technique to improve the ground resolution from 18 meters across to 6 meters across. This data will be used in tactical decisions about where to drive on Mars.”

Read more of my interview with Ray Arvidson in the next feature story describing the exciting plan for science exploration at Santa Maria and Endeavour, the outlook for Spirit and more – along with new mosaics from “Wanahani”.

Hydrated Sulfates in 3 D at Santa Maria.
This cropped 3 D segment shows the location of the bright toned exposures of hydrated sulfate minerals detected inside the southeast rim of the steep walled crater. Deposits of hydrated sulfates are an indicator of the past flow of liquid water on Mars. They were detected from orbit by the CRISM mapping spectrometer aboard NASA’s Mars Reconnaissance Orbiter (MRO). Opportunity will go to the SE rim and try to do measurements to field verify the expected mineralogy. Credit: NASA/JPL/Cornell
Looking in stereo to the steep walled southern rim of Santa Maria.
Opportunity will drive to the south rim in January 2011. Cape Tribulation is in the background and located at the western rim of the huge Endeavour Crater which possesses deposits of clay minerals, or phyllosilicates, which form in the presence of neutral liquid water. Cape Tribulation is about 100 meters tall. Credit: NASA/JPL/Cornell/NickF at unmannedspaceflight.com
‘Crocodile Tail’ in 3D.
Opportiunity drove past this amazing looking ejecta rock at the outskirts of Santa Maria Crater while approaching the rim. Credit: NASA/JPL/Cornell/Stu Atkinson
Rover wheel tracks on Mars
This mosaic of images from Sol 2451 (Not in 3 D) shows the tracks from Opportunity’s wheels on the approach to the steep crater rim on Sol 2450. Credit: NASA/JPL/Cornell, Marco Di Lorenzo, Ken Kremer
The Long Journey to Santa Maria:
This collage of two maps and a 2 D close up panorama of Santa Maria crater (bottom right) shows the route traversed by the Opportunity Mars rover during her nearly 7 year long overland expedition across the Meridiani Planum region of Mars. Opportunity arrived at the rim of Santa Maria Crater on Dec. 16, 2010 on Sol 2451 and will drive around the edge in a counterclockwise direction to examine rocks which are indicative of the past flow of liquid water. The next destination is Endeavour Crater - some 22 km wide - to investigate water bearing minerals at Cape York and Cape Tribulation which she will reach sometime in 2011. Credit: NASA/JPL/Cornell, Marco Di Lorenzo, Ken Kremer

Twas the Shuttles last Christmas

Memorial displays to all five Space Shuttle Orbiters were recently mounted inside the Space Shuttle Firing Room #4 - above the Shuttle countdown clock. These tribute displays highlight the significant achievements from the actual space voyages of the individual Orbiters launched from the Kennedy Space Center over three decades –starting with STS-1 in 1981. Credit: Ken Kremer

[/caption]

To mark the occasion of the Shuttle’s last Christmas, space shuttle worker Terry Sibile drafted a touching poem titled; “T’was the Shuttle’s Last Christmas”.

For your enjoyment Terry’s poem is reprinted below; as it appeared at Florida Today. The poem initially was circulated via email at the Kennedy Space Center (KSC) and other NASA sites across the US.

According to this article at Florida Today, Terry is a member of the engineering team dealing with cranes, platforms and doors which abound at the space center.

Only 2 or 3 flights remain before the shuttle is retired – at the peak of its performance – probably around mid-2011. NASA is still evaluating whether the budget will support flying the STS-135 mission to the International Space Station.

So it’s unlikely the shuttles will see another Christmas. Sibile’s poem thus marks another installment in the string of sad and bittersweet “lasts” for the shuttle program – “Our spirits were low … and soon we’d all go.”

The Space Shuttle Launch team at KSC recently created tribute displays to honor the achievements of all 5 Space Shuttle Orbiters and all the NASA and contractor workers involved. See photo above. Sibile’s poetry poignantly puts these displays into words.

‘Twas the Shuttle’s last Christmas by Terry Sibile

‘Twas the Shuttle’s last Christmas
and our spirits were low,
For the program was ending
and soon we’d all go.

We’d processed the Shuttles
with infinite care
And followed each mission
as if we were there.

We made every effort
to achieve all our goals;
We offered our talents,
our hearts and our souls.

Our work was much more
than a meager career;
‘Twas an honor and privilege
beyond all compare.

As this marvel of science
was applauded worldwide,
We looked on each Shuttle
with unfettered pride:

Columbia, Challenger,
Discovery, and then
Atlantis, Endeavour
all ferried brave men

And women to realms
past the confines of Earth,
Uncovering knowledge
of infinite worth.

We rejoiced with each mission’s
success, and we grieved
For the losses too painful
for us to conceive.

And over the years,
something wondrous took place:
We became kindred spirits,
united by Space.

And so, as we part,
I will bear a great loss.
And hope in the future
our paths again cross.

But until then, my friend,
this wish I confide:
Happy Christmas to all
— we had a great ride!

————————————-
Check out this 360 degree panoramic view from inside Firing Room 4 showing all five Shuttle tribute displays; recorded during my visit with Space Shuttle Launch Director Mike Leinbach. Leinbach led the effort to create the tribute displays. Courtesy of Nasatech.net

Red Moon, Red Planet

Red Moon, Red Mars. Top - Dec 21, 2010 Lunar Eclipse photos of the Red Moon taken near Princeton, NJ on an exquisitely clear night with a 250 mm lens and 1 sec exposure. Credit: Ken Kremer. Bottom Left: Red Mars from the Hubble Space Telescope. Credit: NASA. Right: Red Mars through a telescope in 2010 from The Plantation in Florida (not to scale). Credit: Ernie Rossi

[/caption]

In this season of Christmas tidings, many of us were blessed to witness the eerie Red Moon of the total lunar eclipse a few nights ago on Dec. 21. Here in “bonechilling” New Jersey, it was miraculously crystal clear the entire night from the beginning around 1:30 a.m. EST to the end – about three and one half hours later at around 5 a.m.

UPDATE: Check out more readers “Red Moon, Red Planet” astropix contributions below !

The eclipse occurred as the moon passed through the Earth’s inner dark shadow, or umbra and changed dramatically to varying shades of red, orange and brown.

Lunar Eclipse 12-21-2010 from The Plantation in Florida. Credit: Ernie Rossi
During totality – when the moon was completely immersed in the umbral shadow for about 72 minutes – the red moon changed from a faint red glow to a brilliant crimson red. At times it appeared to be blood red and as though the surface was stirring and oozing droplets of warm and viscous blood. It was surreal and looked to me as though it had been magically and majestically painted up into the night sky.

Well all this redness hanging in the sky during totality caused me to ponder Mars – the Red Planet – especially with the avalanche of good news streaming back lately.

And the wispy white light at near total eclipse harkened to the Martian polar ice caps.

Mars at Opposition in 2003 from New Jersey. 3.5 in Questar 0.1 seconds. Credit: Robert Vanderbei

Bright red Mars at Opposition in 2003 - The year that Spirit and Opportunity launched.

So please send your telescopic shots and descriptions of the Red Planet and/or the Red Moon and I’ll post them here. Email kremerken at yahoo dot com or post as comments to add here.

Looking up at the sky it was easy to imagine Opportunity newly arrived at the gorgeous Martian crater Santa Maria, hunting for minerals spotted from orbit that could influence the search for life, as Odyssey circles about at a record setting pace and transmits those tell tale clues back to scientists waiting on Earth.

Lunar Eclipse from New Jersey 12-21-2010. Credit: Robert Vanderbei

Despite the shadow the moon does not completely disappear. The red moon’s glow was caused by sunlight refracted through the earth’s atmosphere and cast upon the lunar surface. The hue varies depending on a variety of atmospheric conditions and can be intensified by floating clouds of volcanic ash and dust. The recent volcanic eruptions at Mount Merapi in Indonesia in October and at Mount Eyjafjallajökull in Iceland last April sent massive plumes of particles skyward which may have influenced the thrilling event.

Red Moon, Red Planet. One day we’ll journey there and back again.

———

Send me your astropix of Red Moon and/or Red Mars to post here:

Check out these gorgeous views of Mars in January 2010 from Efrain Morales Rivera at the Jaicoa Observatory in Aquadilla, Puerto Rico

Efrain writes; On this session (01/21/10) on Mars of this years apparition many details could be seen for its size. Image at left at closest to Earth and at the limb (L) Mount Olympus largest volcano in our system, Image at right (01/27/10) closest to the Sun. Credit: Efrain Morales Rivera, Jaicoa Observatory, Aquadilla, Puerto Rico

From Robert Vanderbei of Amateur Astronomers Association Of Princeton in New Jersey; A Lunar Eclipse Montage ! Just ahead of the monster blizzard which struck the northeast Corridor of the US on Dec 26.

Dec. 21, 2010 Lunar Eclipse Montage as imaged from New Jersey. Credit: Robert Vanderbei

Some pictures of the eclipse put together as a composite from beginning to totality by Russell King of Willingboro Astronomical Society, New Jersey.

All pictures were taken with my Canon EOS Digital Rebel XSi from my home in Neptune, New Jersey. I used my Canon 75 to 300MM lens and shot all exposures at 300MM. Camera was set on a fixed photo tripod. The pictures range from 1/2500 second at full moon to 1 second during totality. Images were processed in Photoshop 2 and Ulead. Credit: Russell King. http://www.rddnj.com

NASA Budget Uncertainties Will Continue Well into 2011

The cancelled Constellation Program. Credit: NASA

[/caption]

A temporary spending measure signed by President Obama on December 22 means NASA and other government agencies will stay at 2010 funding levels until March 4, 2011. This means, according to Jeff Foust at Space Politics, that among other items, the prohibition in the FY10 appropriations bill that prevents NASA from terminating any Constellation programs remains in effect, despite the human spaceflight plan enacted in the NASA authorization act signed into law in October.

The temporary measure, H.R. 3082, known as a continuing resolution, was passed by the House of Representatives on Dec. 21. With its signing by the president, NASA will continue to operate at spending rates proportional to the $18.72 billion appropriated for all of 2010, according to Space News.

An earlier version of the bill would have funded the federal government for the remainder of fiscal year 2011 and would have increased NASA spending by $186 million over 2010 levels and provided authority to cancel Constellation contracts and initiate new programs in the current fiscal year, but the measure stalled in the Senate under Republican opposition to earmarks contained in the $1.1 trillion funding package.

The continuing resolution, however, doesn’t not specify what money at NASA should be used for specific items, and so the additional shuttle flight that was deemed a certainty in the NASA Authorization Act of 2010 that Obama signed into law Oct. 11, will likely still happen, but it’s not a sure thing.

NASA spokesman Michael Cabbage said the agency was still reviewing H.R. 3082, but “The continuing resolution by itself does not endanger the extra shuttle mission, because on an annualized basis the continuing resolution provides enough funding to fly the mission,” Cabbage was quoted in Space News.
However, Foust suggested that “there remains the possibility that a new, more fiscally conservative Congress might seek to cut funding below the 2010 levels, either overall or for specific programs, when it convenes in January.”

So while NASA can’t cancel its Constellation contracts, the lack of specificity for NASA programs in H.R. 3082 gives the agency authority to continue developing a the Orion crew vehicle for deep space missions as called for in the authorization act. And because Congress provided $100 million for development of a heavy-lift rocket in the 2010 appropriation, NASA could begin work on that or a similar vehicle as directed in the authorization measure – all the while still paying for Constellation.

And the continuing resolution could pose potential problems for NASA’s Commercial Orbital Transportation Services (COTS) program, said Space News.

Under Obama’s 2011 budget proposal, NASA would have received $500 million for the effort to help commercial companies develop rockets and cargo ships capable of resupplying the space station. But because the program is new, and was not funded in the 2010 appropriation, NASA could be left to await new appropriations legislation before it can get started.

Many other NASA programs face uncertainty in their budgets, as well.

Sources: Space News, Space Politics