Wheels and Helicopter Attached to Perseverance Rover

Credit: NASA/JPL-Caltech

This summer, NASA’s Perseverance rover will launch from Cape Canaveral Air Force Base in Florida. When it arrives on Mars (on February 18th, 2021), it will join the Curiosity rover and a host of other missions that are looking for evidence of past and present life on the Red Planet. At present, engineers at the Kennedy Space Center in Florida are conducting the final assembly of the rover in preparation for launch.

With less than 14 weeks to go before the mission’s launch period opens up, several important development milestones have been completed. This includes integrating the rover’s remaining components, like the rover’s six wheels and the small helicopter drone that will help explore the surface. These elements, and a slew of other final preparations, were integrated with the rover over the past few weeks.

Continue reading “Wheels and Helicopter Attached to Perseverance Rover”

Even More Things That Saved Apollo 13: Charging the Batteries

Overall view showing some of the activity in the Mission Operations Control Room during the final 24 hours of the Apollo 13 mission. From left to right are Shift 4 Flight Director Glynn Lunney, Shift 2 Flight Director Gerald Griffin, Astronaut and Apollo Spacecraft Program Manager James McDivitt, Director of Flight Crew Operations Deke Slayton and Shift 1 Flight Surgeon Dr. Willard Hawkins. Credit: NASA.

Following the explosion of an oxygen tank in Apollo 13’s Service Module on April 13, 1970, approximately 56 hours into the mission, the situation was bleak. With the Command Module (CM) without any power, the Lunar Module (LM) was activated as a life boat to sustain the crew. The task ahead – to save the spacecraft and the crew, and get them home again — would require an incredible amount of innovation by both the Apollo 13 astronauts and the engineers back on Earth.

The explosion caused the loss of the main source for oxygen, water, and most importantly, electrical power for the CM. With only 15 minutes of power left in the CM, astronaut Jack Swigert powered down the CM while Jim Lovell and Fred Haise got the LM up and running.

For engineers on the ground, one of the biggest concerns was maintaining enough electrical power in the LM and then creating enough power in the CM to power it back up again for reentry to Earth.

Continue reading “Even More Things That Saved Apollo 13: Charging the Batteries”

This is How the ESA and NASA Will be Working Together to Bring Rocks Back From Mars

This is what the Mars Sample Return mission looked like in 2019. Updated plans eliminate the Fetch Rover and will instead used Sample Retrieval Helicopters to bring the samples to the Sample Return Lander. Once at the Lander, the samples will be launched into orbit by rocket, to be retrieved by an orbiter and sent to Earth. Credit: ESA

In the near future, sample-return missions from Mars will finally be a reality. For decades, scientists have analyzed the composition of Martian rocks and soil by either sending rovers to the surface or by examining meteorites that came from Mars. But with missions like Perseverance, which are equipped with a sample cache instrument, it won’t be long before Martian rocks are brought back to Earth for study.

Similar to how the Apollo astronauts brought back Moon rocks, which revealed the existence of water on the Moon and its similarity to Earth, Martian rocks could reveal a great deal about the formation and evolution of the Red Planet. The question is, what rocks should be returned? This is the question that the international Mars Sample Return campaign is considering on the eve of Perseverance’s launch.

Continue reading “This is How the ESA and NASA Will be Working Together to Bring Rocks Back From Mars”

Trump Signs an Executive Order Allowing Mining the Moon and Asteroids

An illustration of a Moon base that could be built using 3D printing and ISRU, In-Situ Resource Utilization. Credit: RegoLight, visualisation: Liquifer Systems Group, 2018
An illustration of a Moon base that could be built using 3D printing and ISRU, In-Situ Resource Utilization. Credit: RegoLight, visualisation: Liquifer Systems Group, 2018

In 2015, the Obama administration signed the U.S. Commercial Space Launch Competitiveness Act (CSLCA, or H.R. 2262) into law. This bill was intended to “facilitate a pro-growth environment for the developing commercial space industry” by making it legal for American companies and citizens to own and sell resources that they extract from asteroids and off-world locations (like the Moon, Mars, or beyond).

On April 6th, the Trump administration took things a step further by signing an executive order that formally recognizes the rights of private interests to claim resources in space. This order, titled “Encouraging International Support for the Recovery and Use of Space Resources,” effectively ends the decades-long debate that began with the signing of The Outer Space Treaty in 1967.

Continue reading “Trump Signs an Executive Order Allowing Mining the Moon and Asteroids”

WFIRST Will Use Relativity to Find More Exoplanets!

Using the microlensing metthod, a team of astrophysicists have found the first extra-galactic planets! Credit: NASA/Tim Pyle

In 2025, NASA’s next-generation telescope, the Wide-Field Infrared Survey Telescope (WFIRST), will take to space and join in the search for extrasolar planets. Between its 2.4-meter (8 ft) telescope, 18 detectors, 300-megapixel camera, and the extraordinary survey speed it will offer, the WFIRST will be able to scan areas of the sky a hundred times greater than the Hubble Space Telescope.

Beyond its high-sensitivity and advanced suite of instruments, WFIRST will also rely on a technique known as Gravitational Microlensing to search for and characterize exoplanets. This is essentially a small-scale version of the gravitational lensing technique, where the gravitational force of a massive object between the observer and the target is used to focus and magnify the light coming from a distant source.

Continue reading “WFIRST Will Use Relativity to Find More Exoplanets!”

Mapping Out the Water on the Moon

Credit: ESA

In 2009, NASA launched the Lunar Reconnaissance Orbiter (LRO), the first mission to be sent by the US to the Moon in over a decade. Once there, the LRO conducted observations that led to some profound discoveries. For instance, in a series of permanently-shaded craters around the Moon’s South Pole-Aitken Basin, the probe confirmed the existence of abundant water ice.

Based on the temperature data obtained by the LRO of the Moon’s southern polar region, the ESA recently released a map of lunar water ice (see animation below) that will be accessible to future missions. This includes the ESA’s Package for Resource Observation and in-Situ Prospecting for Exploration, Commercial exploitation and Transportation (PROSPECT), which will be flown to the Moon by Russia’s Luna-27 lander in 2025.

Continue reading “Mapping Out the Water on the Moon”

Astronaut Pee Will Help Build Bases on the Moon

Artist's impression of a lunar base created with 3-d printing techniques. Credits: ESA/Foster + Partners

In the next few decades, NASA, the European Space Agency (ESA), China, and Russia all plan to create outposts on the lunar surface that will allow for a permanent human presence. These proposals seek to leverage advances in additive manufacturing (aka. 3-D printing) with In-Situ Resource Utilization (ISRU) to address the particular challenges of living and working on the Moon.

For the sake of their International Moon Village, the ESA has been experimenting with “lunacrete” – lunar regolith combined with a bonding agent to create a building material. But recently, a team of researchers conducted a study (in cooperation with the ESA) that found that lunacrete works even better if you add a special ingredient that the astronauts make all by themselves – urine!

Continue reading “Astronaut Pee Will Help Build Bases on the Moon”

This Powerful Ion Engine Will Be Flying on NASA’s DART Mission to Try and Redirect an Asteroid

The NEXT-C ion thruster in a vacuum chamber at NASA's Glenn Research Center. Image Credit: NASA/Bridget Caswell

Despite humanity’s current struggle against the novel coronavirus, and despite it taking up most of our attention, other threats still exist. The very real threat of a possible asteroid strike on Earth in the future is taking a backseat for now, but it’s still there.

Though an asteroid strike seems kind of ephemeral right now, it’s a real threat, and one that—unlike a coronavirus—has the potential to end humanity. Agencies like NASA and the ESA are still working on their plans to protect us from that threat.

Continue reading “This Powerful Ion Engine Will Be Flying on NASA’s DART Mission to Try and Redirect an Asteroid”

Apollo 15 Astronaut Al Worden has Passed Away

Apollo Astronaut Alfred Worden (1932-2020). Credit: NASA

Last Wednesday (March 18th), the world was saddened to hear of the death of Apollo astronaut Alfred “Al” Worden, who passed away after suffering a stroke at an assisted living facility in Texas. A former Colonel in the US Marine Corps who obtained his Bachelor of Science from West Point Academy in 1955 and his Master of Science at the University of Michigan in 1963, Worden went on to join NASA.

Continue reading “Apollo 15 Astronaut Al Worden has Passed Away”

NASA Chooses 4 New Astronomy Space Missions for Additional Study

Hot stars burn brightly in this image from NASA's Galaxy Evolution Explorer, showing the ultraviolet side of a familiar face. At approximately 2.5 million light-years away, the Andromeda galaxy, or M31, is our Milky Way's largest galactic neighbor. The entire galaxy spans 260,000 light-years across -- a distance so large, it took 11 different image segments stitched together to produce this view of the galaxy next door. The bands of blue-white making up the galaxy's striking rings are neighborhoods that harbor hot, young, massive stars. Dark blue-grey lanes of cooler dust show up starkly against these bright rings, tracing the regions where star formation is currently taking place in dense cloudy cocoons. Eventually, these dusty lanes will be blown away by strong stellar winds, as the forming stars ignite nuclear fusion in their cores. Meanwhile, the central orange-white ball reveals a congregation of cooler, old stars that formed long ago. When observed in visible light, Andromeda's rings look more like spiral arms. The ultraviolet view shows that these arms more closely resemble the ring-like structure previously observed in infrared wavelengths with NASA's Spitzer Space Telescope. Astronomers using Spitzer interpreted these rings as evidence that the galaxy was involved in a direct collision with its neighbor, M32, more than 200 million years ago. Andromeda is so bright and close to us that it is one of only ten galaxies that can be spotted from Earth with the naked eye. This view is two-color composite, where blue represents far-ultraviolet light, and orange is near-ultraviolet light.

Since 1958, the NASA Explorer Program has conducted low-cost missions that were deemed relevant to the goals of the Science Mission Directorate (SMD), particularly where the study of our Sun and the deeper cosmic mysteries are concerned. Recently, the Explorer Program selected four missions that they considered to be well-suited to these goals, two of which will be selected for launch in the coming years.

Consisting of two astrophysics Small Explorer (SMEX) and two Missions of Opportunity (MO) proposals, these missions are designed to study cosmic explosions and the debris they leave behind, as well as monitor how nearby stellar flares may affect the atmospheres of orbiting planets. After detailed evaluations, two of these missions will be selected next year and will take to space sometime in 2025.

Continue reading “NASA Chooses 4 New Astronomy Space Missions for Additional Study”