Here’s NASA’s New Plan to Get InSight’s Temperature Probe Into Mars

The mole with its wiring harness, and the scoop. Image Credit: NASA/JPL-Caltech

The mole is still stuck.

The mole is the name given to the Heat Flow and Physical Properties Package (HP3) instrument on NASA’s Mars InSight lander. It’s job is to penetrate into the Martian surface to a depth of 5 meters (16 ft) to measure how heat flows from the planet’s interior to the surface. It’s part of InSight’s mission to understand the interior structure of Mars, and how it formed.

But it’s stuck at about 35 centimers (14 inches.) The mole can do science shy of its maximum depth of 5 meters, but not this shallow. And NASA, and the DLR (German Aerospace Center) who provided the mole, have a new plan to fix it.

Continue reading “Here’s NASA’s New Plan to Get InSight’s Temperature Probe Into Mars”

InSight Has Already Detected 21 Marsquakes

NASA's SEIS instrument on the Martian surface. SEIS is protected by a dome. Image Credit: NASA/JPL-Caltech

The SEIS (Seismic Experiment for Interior Structure) instrument on NASA’s InSight lander has sensed 21 Marsquakes since it was deployed on December 19th, 2018. It actually sensed over 100 events to date, but only 21 of them have been identified as Marsquakes. SEIS is extremely sensitive so mission scientists expected these results.

SEIS is a key part of InSight, NASA’s mission to understand the interior of Mars. Along with other instruments, it’ll help scientists understand what’s going on inside Mars.

Continue reading “InSight Has Already Detected 21 Marsquakes”

WFIRST Gets its Coronagraph, to Block the Light of Stars and Reveal Their Planets

NASA's Wide Field Infrared Survey Telescope (WFIRST) will capture Hubble-quality images covering swaths of sky 100 times larger than Hubble does, enabling cosmic evolution studies. Its Coronagraph Instrument will directly image exoplanets and study their atmospheres. Credits: NASA/GSFC/Conceptual Image Lab
NASA's Wide Field Infrared Survey Telescope (WFIRST) will capture Hubble-quality images covering swaths of sky 100 times larger than Hubble does. These enormous images will allow astronomers to study the evolution of the cosmos. Its Coronagraph Instrument will directly image exoplanets and study their atmospheres. Credits: NASA/GSFC/Conceptual Image Lab

In the next decade, NASA will be sending some truly impressive facilities to space. These include the next-generation space telescopes like the James Webb Space Telescope (JWST) and the Wide-Field Infrared Space Telescope (WFIRST). Building on the foundation established by Hubble, WFIRST will use its advanced suite of instruments to investigate some of the deepest mysteries of the Universe.

One of these instruments is the coronagraph that will allow the telescope to get a clear look at extra-solar planets. This instrument recently completed a preliminary design review conducted by NASA, a major milestone in its development. This means that the instrument has met all design, schedule and budget requirements, and can now proceed to the next phase in development.

Continue reading “WFIRST Gets its Coronagraph, to Block the Light of Stars and Reveal Their Planets”

Shape-shifting Robots Like These Could Be Just What We Need to Explore Titan

A prototype of the transforming robot Shapeshifter is tested in the robotics yard at NASA's Jet Propulsion Laboratory. Image Credit: NASA/JPL-Caltech

When it comes to space exploration, it’s robots that do most of the work. That trend will continue as we send missions onto the surfaces of worlds further and further into the Solar System. But for robots to be effective in the challenging environments we need to explore—like Saturn’s moon Titan—we need more capable robots.

A new robot NASA is developing could be the next step in robotic exploration.

Continue reading “Shape-shifting Robots Like These Could Be Just What We Need to Explore Titan”

This Summer’s Asteroid Near-Miss Helped Greenlight NASA’s NEOCam Mission to Search the Skies for Killer Spacerocks

NEO asteroid
An artist's conception of an NEO asteroid orbiting the Sun. Credit: NASA/JPL.

Last July, a once-in-a-lifetime event happened. Not the good kind; the football-field-sized-asteroid near-miss kind. And that near miss is the catalyst for a renewed effort from NASA to detect more dangerous space-rocks that might threaten Earth.

Last summer’s near-miss asteroid was named 2019 OK, and it passed within about 77,000 km (48,000 miles) of Earth. It managed to slip past all of our detection methods and came within 0.19 lunar distances to Earth. In astronomical terms, that is remarkably close.

We only had 24 hours notice that the asteroid was coming, thanks to a small telescope in Brazil that spotted it. That near miss has sparked a renewed conversation on planetary defense and on NASA’s role in it.

It also left people wondering how this could happen.

Continue reading “This Summer’s Asteroid Near-Miss Helped Greenlight NASA’s NEOCam Mission to Search the Skies for Killer Spacerocks”

Venus Could Have Supported Life for Billions of Years

Artist's conception of a terraformed Venus, showing a surface largely covered in oceans. Credit: Wikipedia Commons/Ittiz

In 1978, NASA’s Pioneer Venus (aka. Pioneer 12) mission reached Venus (“Earth’s Sister”) and found indications that Venus may have once had oceans on its surface. Since then, several missions have been sent to Venus and gathered data on its surface and atmosphere. From this, a picture has emerged of how Venus made the transition from being an “Earth-like” planet to the hot and hellish place it is today.

It all started about 700 million years ago when a massive resurfacing event triggered a runaway Greenhouse Effect that caused Venus’s atmosphere to become incredibly dense and hot. This means that for 2 to 3 billion years after Venus formed, the planet could have maintained a habitable environment. According to a recent study, that would have been long enough for life to have emerged on “Earth’s Sister”.

Continue reading “Venus Could Have Supported Life for Billions of Years”

Astronauts Try Mixing Concrete in Space

International Space Station. Credit: NASA
International Space Station. Credit: NASA

What sounds like a slap-stick comedy shtick is actually solid science. With so much of humanity’s space-faring future involving habitats, other structures, and a permanent presence on the Moon and Mars, mixing concrete in space is serious business. NASA has a program of study called MICS, (Microgravity Investigation of Cement Solidification) which is examining how we might build habitats or other structures in microgravity.

Continue reading “Astronauts Try Mixing Concrete in Space”

NASA Tests Autonomous Lunar Landing Technology

NASA is testing autonomous lunar launch systems in the Mojave Desert in California. Pictured is a tethered test of Draper relative terrain navigation system on a Masten Space Systems Zodiac rocket. Image Credit: NASA/Masten Space Systems

In anticipation of many Moon landings to come, NASA is testing an autonomous lunar landing system in the Mojave Desert in California. The system is called a “terrain relative navigation system.” It’s being tested on a launch and landing of a Zodiac rocket, built by Masten Space Systems. The test will happen on Wednesday, September 11th.

Continue reading “NASA Tests Autonomous Lunar Landing Technology”

Europe and US are Going to Try and Deflect an Asteroid

Credit: ESA

Next week, asteroid researchers and spacecraft engineers from all around the world will gather in Rome to discuss the latest in asteroid defense. The three-day International AIDA Workshop, which will run from Sept. 11th to 13th, will focus on the development of the joint NASA-ESA Asteroid Impact Deflection Assessment (AIDA) mission.

The purpose of this two-spacecraft system is to deflect the orbit of one of the bodies that make up the binary asteroid Didymos, which orbits between Earth and Mars. While one spacecraft will collide with a binary Near-Earth Asteroid (NEA), the other will observe the impact and survey the crash site in order to gather as much data as possible about this method of asteroid defense.

Continue reading “Europe and US are Going to Try and Deflect an Asteroid”

Mars 2020 Rover Gets its Helicopter Sidekick

An engineer works on attaching NASA's Mars Helicopter to the belly of the Mars 2020 rover - which has been flipped over for that purpose - on Aug. 27, 2019, at the Jet Propulsion Laboratory in Pasadena, California. Credit: NASA/JPL-Caltech.

Work on the Mars 2020 Rover is heating up as the July/August 2020 launch date approaches. Mission engineers just attached the Mars Helicopter to the belly of the rover, where it will make the journey to Mars. Both the solar-powered helicopter and the Mars Helicopter Delivery System are now attached to the rover.

NASA’s Mars Helicopter will be the first aircraft to fly on another planet. The small rotor-craft only weighs 1.8 kg (4 lbs.) and is made of lightweight materials like carbon fiber and aluminum. It’s largely a technology demonstration mission, and is important to NASA. The overall mission for the Mars 2020 rover won’t depend on the helicopter, but NASA hopes to learn a lot about how to proceed with aircraft on future missions by putting the Mars helicopter through its paces on Mars.

Continue reading “Mars 2020 Rover Gets its Helicopter Sidekick”