InSight Uses its Seismometer to “Hear” the Sound of Wind on Mars

One of two Mars InSight's 7-foot (2.2 meter) wide solar panels was imaged by the lander's Instrument Deployment Camera, which is fixed to the elbow of its robotic arm. Credits: NASA/JPL-Caltech

Just two weeks ago, NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander touched down on the surface of Mars. In the hours that followed, mission controllers at NASA-JPL received confirmation that the lander had deployed its solar arrays and was commencing scientific operations.

And in what was sure to be a treat for space exploration enthusiasts, the lander recently provided the first ever experience of what it “sounds” like to be on Mars. The sounds were caught by an air pressure sensor inside the lander and the seismometer instrument that is awaiting deployment to the surface. Together, they recorded the low rumble caused by Martian winds that blew around the lander’s location on Dec. 1st.

Continue reading “InSight Uses its Seismometer to “Hear” the Sound of Wind on Mars”

OSIRIS-REx Has Already Found Water on Bennu

The asteroid Bennu from a distance of 24 km (15) miles captured by the PolyCam on OSIRIS-REx. The spacecraft has detected water on Bennu. On the bottom right in the termination line is the large boulder. The image is a mosaic constructed of 12 images. Image Credit: NASA/Goddard/University of Arizona.

NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) has found water on the asteroid Bennu. Bennu is OSIRIS-REx’s only target, and though the spacecraft arrived at the asteroid on December 3rd, some of its instruments have been trained on the asteroid since mid-August. And two of those instruments detected water on Bennu.

OSIRIS-REx wasn’t sent to Bennu just to find water. The mission is NASA’s first asteroid sample-return mission. The presence of water on Bennu confirms what the science team hoped would be true when they selected the asteroid as the spacecraft’s destination: Bennu is an excellent target for scientific inquiry into the early Solar System.

“The presence of hydrated minerals across the asteroid confirms that Bennu, a remnant from early in the formation of the solar system, is an excellent specimen for the OSIRIS-REx mission to study the composition of primitive volatiles and organics.” – Amy Simon, OVIRS deputy instrument scientist, NASA’s Goddard Space Flight Center.

Continue reading “OSIRIS-REx Has Already Found Water on Bennu”

InSight’s Robot Arm is Ready to go to Work

This image was taken by the InSight Lander's Instrument Deployment Camera mounted on the lander's robotic arm. The stowed grapple on the end of the arm is folded in, but it will unfold and be used to deploy the lander's science instrument. The copper-colored hexagonal object is the protective cover for the seismometer, and the grey dome behind it is a wind and thermal shield, which will be placed over the seismometer after its deployed. The black cyliner on the left is the heat probe, which will drill up to 5 meters into the Martian surface. Image: NASA/JPL-Caltech
This image was taken by the InSight Lander's Instrument Deployment Camera mounted on the lander's robotic arm. The stowed grapple on the end of the arm is folded in, but it will unfold and be used to deploy the lander's science instrument. The copper-colored hexagonal object is the protective cover for the seismometer, and the grey dome behind it is a wind and thermal shield, which will be placed over the seismometer after its deployed. The black cyliner on the left is the heat probe, which will drill up to 5 meters into the Martian surface. Image: NASA/JPL-Caltech

Some new images sent home by the InSight Lander show the robotic arm and the craft’s instruments waiting on deck, on the surface of Mars. The lander is still having its systems tested, and isn’t quite ready to get to work. It’ll use its arm to deploy its science instruments, including a drill that will penetrate up to 5 meters (16 ft.) deep into the Martian surface.

Continue reading “InSight’s Robot Arm is Ready to go to Work”

OSIRIS-REx has Finally Caught up with Asteroid Bennu. Let the Analysis and Sample Collection Commence!

The asteroid Bennu, as imaged by OSIRIS-REx from a distance of about 80 km. Image Credit: NASA/University of Arizona
The asteroid Bennu, as imaged by OSIRIS-REx from a distance of about 80 km. Image Credit: NASA/University of Arizona

NASA’s OSIRIS-REx spacecraft has reached its destination and is now in orbit around asteroid Bennu. The spacecraft travelled for over two years and covered more than 2 billion kms. It will spend a year in orbit, surveying the surface of the Potentially Hazardous Object (PHO) before settling on a location for the key phase of its mission: a sample return to Earth.

Continue reading “OSIRIS-REx has Finally Caught up with Asteroid Bennu. Let the Analysis and Sample Collection Commence!”

Antibiotic Resistant Bacteria has been Found on the Space Station’s Toilet

The International Space Station (ISS), seen here with Earth as a backdrop. Credit: NASA
The International Space Station (ISS), seen here with Earth as a backdrop. Credit: NASA

NASA keeps a close eye on the bacteria inhabiting the International Space Station with a program called the Microbial Observatory (M.O.) The ISS is home to a variety of microbes, some of which pose a threat to the health of astronauts. As part of their monitoring, the M.O. has discovered antibiotic resistant bacteria on the toilet seat on the ISS.
Continue reading “Antibiotic Resistant Bacteria has been Found on the Space Station’s Toilet”

Hubble’s First Picture After Returning to Service. The Telescope is Fully Operational Again with Three Working Gyros

Hubble's first image after returning to service is of a field of galaxies in the constellation Pegasus. Image Credit: NASA, ESA, and A. Shapley (UCLA)
Hubble's first image after returning to service is of a field of galaxies in the constellation Pegasus. Image Credit: NASA, ESA, and A. Shapley (UCLA)

The Hubble Space Telescope is a hero in the astronomy world. And when it suffered a malfunctioning gyro on October 5th, it took a heroic effort on the part of the Hubble team to get it working again. Now we have Hubble’s first picture after its return to service.
Continue reading “Hubble’s First Picture After Returning to Service. The Telescope is Fully Operational Again with Three Working Gyros”

InSight Deploys its Solar Cells, Prepared for Surface Operations on Mars!

The Instrument Deployment Camera (IDC), located on the robotic arm of NASA's InSight lander, took this picture of the Martian surface on Nov. 26, 2018. Credit: NASA/JPL-Caltech.

Yesterday, NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander reached Mars after a seven months journey. NASA broadcast the landing live, showing the mission control team eagerly watching as the spacecraft entered the Martian atmosphere and began the nail-biting entry, descent and landing (EDL) process.

At exactly 11:52:29 am PST (2:52:59 pm EST) mission controllers received a signal via the Mars Cube One (MarCO) satellites that the lander had successfully touched down. About a minute later, InSight began to conduct surface operations, which involved the deployment of its solar arrays and prepping its instruments for research.

Continue reading “InSight Deploys its Solar Cells, Prepared for Surface Operations on Mars!”

InSight Lander Touches Down! Begins Mission to Unlock the Secrets of Mars

Artist's impression of the InSight Lander commencing its entry, descent and landing (EDL) phase to Mars. Credit: NASA
Artist's impression of the InSight Lander commencing its entry, descent and landing (EDL) phase to Mars. Credit: NASA

On of May 5th, 2018, NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander launched from Vandenburg Air Force Base atop an Atlas V rocket. Over the next seven months, the mission traveled some 458 million km (300 mi) to Mars for the sake of studying its deep interior and learn how this planet – and all the other terrestrial planets of the Solar System (like Earth) – formed.

At 11:47 am PST (2:47 pm EST), after a seven month journey, NASA’s InSight Lander entered the Martian atmosphere to begin the entry, descent and landing (EDL) phase of its mission. Over the course of the next five minutes, the mission controllers at NASA-JPL watched eagerly as the spacecraft went through the careful process of conducting a textbook landing.

Continue reading “InSight Lander Touches Down! Begins Mission to Unlock the Secrets of Mars”

It’s Decided, the Mars 2020 Rover Will Land in Jezero Crater

After 5 years and 60 candidates, NASA has chosen Jezero crater as the landing site for the Mars 2020 rover. Image Credit: NASA/JPL/JHUAPL/MSSS/Brown University
After 5 years and 60 candidates, NASA has chosen Jezero crater as the landing site for the Mars 2020 rover. Image Credit: NASA/JPL/JHUAPL/MSSS/Brown University

Jezero crater is the landing spot for NASA’s upcoming 2020 rover. The crater is a rich geological site, and the 45 km wide (28 mile) impact crater contains at least five different types of rock that the rover will sample. Some of the landform features in the crater are 3.6 billion years old, making the site an ideal place to look for signs of ancient habitability.

Continue reading “It’s Decided, the Mars 2020 Rover Will Land in Jezero Crater”

Astronomers Finally Spot the Type of Star That Leads to Type 1C Supernovae

Artist's impression of the blue supergiant that underwent a Type Ic supernova in 2017. Credits: NASA, ESA, and J. Olmsted (STScI)

As astronomical phenomena go, supernovae are among the most fascinating and spectacular. This process occurs when certain types of stars reach the end of their lifespan, where they explode and throw off their outer layers. Thanks to generations of study, astronomers have been able to classify most observed supernovae into one of two categories (Type I and Type II) and determine which kinds of stars are the progenitors for each.

However, to date, astronomers have been unable to determine which type of star eventually leads to a Type Ic supernova – a special of class where a star undergoes core collapse after being stripped of its hydrogen and helium. But thanks to the efforts of two teams of astronomers that pored over archival data from the Hubble Space Telescope, scientists have now found the long sought-after star that causes this type of supernova.

Continue reading “Astronomers Finally Spot the Type of Star That Leads to Type 1C Supernovae”