Last Look At Mimas For A Long Time

Mosaic view of Mimas, created using images taken by the Cassini probe (and illuminated to show the full surface). Credit: NASA/JPL-Caltech/Space Science Institute

Since the Cassini mission arrived in the Saturn system in 2004, it has provided some stunning images of the gas giant and its many moons. And in the course of capturing new views of Titan’s dense atmosphere, Iapetus’ curious “yin-yang” coloration, and the water plumes and “tiger stripes” of Enceladus, it snapped the most richly-detailed images of Mimas ever seen.

But like all good things, Cassini’s days of capturing close-up images of Mimas are coming to an end. As of January 30th, 2017, the probe made its final close approach to the moon, and took the last of it’s close-up pictures in the process. In the future, all observations (and pictures) of Mimas will take place at roughly twice this distance – and will therefore be less detailed.

To be fair, these close approaches were a pretty rare event during the Cassini mission. Over the course of the thirteen years that the probe has been in the Saturn system, only seven flybys have taken place, occurring at distances of less 50,000 km (31,000 mi). At its closest approach, Cassini passed within 41,230 km (25,620 mi) of Mimas.

Second mosaic view of Mimas, showing illumination on only the Sun-facing side. Credit: NASA/JPL-Caltech/Space Science Institute

During this time, the probe managed to take a series of images that allowed for the creation of a beautiful mosaic. This mosaic was made from ten combined narrow-angle camera images, and is one of the highest resolution views ever captured of the icy moon. It also comes in two versions. In one, the left side of Mimas is illuminated by the Sun and the picture is enhanced to show the full moon (seen at top).

In the second version (shown above), natural illumination shows only the Sun-facing side of the moon. They also created an animation that allows viewers to switch between mosaics, showing the contrast. And as you can see, these mosaics provide a very detailed look at Mimas heavily-cratered surface, a well as the large surface fractures that are believed to have been caused by the same impact that created the Herschel Crater.

This famous crater, from which Mimas gets it’s “Death Star” appearance, was photographed during Cassini’s first flyby – which occurred on February 13th, 2010. Named in honor of William Herschel (the discoverer of Uranus, its moons Oberon, and Titania, and Saturn’s moons Enceladus and Mimas), this crater measures 130 km (81 mi) across, almost a third of Mimas’ diameter.

This mosaic, created from images taken by NASA’s Cassini spacecraft during its closest flyby of Saturn’s moon Mimas, looks straight at the moon’s huge Herschel Crater Credit: NASA/JPL

Its is also quite deep, as craters go, with walls that are approximately 5 km (3.1 mi) high. Parts of its floor reach as deep as 10 km (6.2 mi), and it’s central peak rises 6 km (3.7 mi) above the crater floor. The impact that created this crater is believed to have nearly shattered Mimas, and also caused the fractures visible on the opposite side of the moon.

It’s a shame we won’t be getting any more close ups of the moon’s many interesting features. However, we can expect a plethora of intriguing images of Saturn’s rings, which it will be exploring in depth as part of the final phase of its mission. The mission is scheduled to end on September 15th, 2017, which will culminate with the crash of the probe in Saturn’s atmosphere.

Further Reading: NASA

Flawless SpaceX Falcon 9 Takes Rousing Night Flight Delivery of EchoStar TV Sat to Orbit

SpaceX Falcon 9 rocket streaks to orbit in this long exposure photo taken in front of NASA’s countdown clock under moonlit skies at the Kennedy Space Center in Florida on March 16 at 2:00 a.m. EDT. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket streaks to orbit in this long exposure photo taken in front of NASA’s countdown clock under moonlit skies at the Kennedy Space Center in Florida on March 16 at 2:00 a.m. EDT. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – Under stellar moonlit Florida skies, a private SpaceX Falcon 9 took flight overnight and flawlessly delivered the commercial EchoStar 23 television satellite to geosynchronous orbit after high winds delayed the rockets roar to orbit by two days from Tuesday. Breaking News: Check back for updates

The post midnight spectacle thrilled spectators who braved the wee hours this morning and were richly rewarded with a rousing rush as the 229 foot tall Falcon 9 rocket thundered to life at 2:00 a.m. EDT Thursday, March 16 from historic Launch Complex 39A on NASA’s Kennedy Space Center and sped to orbit.

Rising on the power of 1.7 million pounds of liftoff thrust generated by nine Marlin 1D first stage engines, the two stage Falcon 9 rocket successfully delivered the commercial EchoStar 23 telecommunications satellite to a Geostationary Transfer Orbit (GTO) for EchoStar Corporation.

The satellite was deployed approximately 34 minutes after launch.

Thus began March Launch Madness !!

If all goes well, March features a triple header of launches with launch competitor and arch rival United Launch Alliance (ULA) planning a duo of nighttime blastoffs from their Delta and Atlas rocket families. The exact dates are in flux due to the earlier postponement of the SpaceX Falcon 9. They have been rescheduled for March 18 and 24 respectively.

The SpaceX Falcon 9 launches the EchoStar 23 telecomsat from historic Launch Complex 39A with countdown clock in foreground at NASA’s Kennedy Space Center as display shows liftoff progress to geosynchronous orbit after post midnight blastoff on March 16 at 2:oo a.m. EDT. Credit: Ken Kremer/Kenkremer.com

EchoStar 23 will be stationed over Brazil for direct to home television broadcasts and high speed voice, video and data communications to millions of customers for EchoStar.

It was designed and built by Space Systems Loral (SSL).

“EchoStar XXIII is a highly flexible, Ku-band broadcast satellite services (BSS) satellite with four main reflectors and multiple sub-reflectors supporting multiple mission profiles,” according to a description from EchoStar Corporation.

EchoStar XXIII will initially be deployed in geosynchronous orbit at 45° West. The Satellite End of Life (EOL) Power is 20 kilowatts (kW).

Blastoff of SpaceX Falcon 9 with EchoStar 23 TV satellite from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on March 16 at 2:00 a.m. EDT. Photo from camera inside the pad perimeter. Credit: Ken Kremer/Kenkremer.com

The entire launch sequence was broadcast live on a SpaceX hosted webcast that began about 20 minutes before the revised liftoff time of 2:00 a.m. from the prelaunch countdown, blastoff and continued through the dramatic separation of the EchoStar 23 private payload from the second stage.

The EchoStar 23 launch counts as only the second Falcon 9 ever to blast off from pad 39A.

Liftoff of SpaceX Falcon 9 with EchoStar 23 TV satellite from pad 39A at the Kennedy Space Center in Florida on March 16 at 2:00 a.m. EDT. Credit: Julian Leek

SpaceX’s billionaire CEO Elon Musk leased historic pad 39A from NASA back in April 2014 for launches of the firms Falcon 9 and Falcon Heavy carrying both robotic vehicles as well as humans on missions to low Earth orbit, the Moon and ultimately the Red Planet.

Composite panoramic view of seaside Launch Complex 39A with SpaceX hangar and Falcon 9 rocket raised vertical to deliver the EchoStar 23 telecom satellite to geostationary orbit overnight March 16, 2017. Pad 39B at center. Credit: Ken Kremer/Kenkremer.com

The inaugural Falcon 9 blastoff successfully took place last month on Feb. 19, as I reported here.

However unlike most recent SpaceX missions, the legless Falcon 9 first stage will not be recovered via a pinpoint propulsive landing either on land or on a barge at sea.

SpaceX Falcon 9 rocket carrying EchoStar 23 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad on March 13, 2017 ahead of liftoff slated for 16 Mar 2017 at 1:35 a.m. Credit: Ken Kremer/Kenkremer.com

Because of the satellite delivery to GTO, there are insufficient fuel reserves to carry out the booster landing.

“SpaceX will not attempt to land Falcon 9’s first stage after launch due to mission requirements,” officials said.

Therefore the first stage is not outfitted with either landing legs or grid fins to maneuver it back to a touchdown.

SpaceX announced that this was the last launch of an expendable Falcon 9.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

NASA Brings Trappist-1 Into Focus… Kinda Sorta

TRAPPIST-1 is probably the most well-known ultra-cool, or red dwarf, star. It is host to several rocky, roughly Earth-sized planets. Astronomers think it's no accident that ultra-cool stars and red dwarfs are host to so many smaller, rocky planets, and they hope that SPECULOOS will find them. Credit: NASA/JPL-Caltech
TRAPPIST-1 is probably the most well-known ultra-cool, or red dwarf, star. It is host to several rocky, roughly Earth-sized planets. Astronomers think it's no accident that ultra-cool stars and red dwarfs are host to so many smaller, rocky planets, and they hope that SPECULOOS will find them. Credit: NASA/JPL-Caltech

On February 22nd, 2017, NASA announced the discovery of a seven-planet system around the red dwarf star known as TRAPPIST-1. Since that time, a number of interesting revelations have been made. For starters, the Search for Extra-Terrestrial Intelligence (SETI) recently announced that it was already monitoring this system for signs of advanced life (sadly, the results were not encouraging).

In their latest news release about this nearby star system, NASA announced the release of the first images taken of this system by the Kepler mission. As humanity’s premier planet-hunting mission, Kepler has been observing this system since December 2016, a few months after the existence of the first three of its exoplanets was announced.

Continue reading “NASA Brings Trappist-1 Into Focus… Kinda Sorta”

Trump’s NASA Authorization Act In All Its Glory

NASA's Journey to Mars. NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Credit: NASA/JPL

It’s no secret that NASA has had its share of worries with the Trump administration. In addition to being forced to wait several months to get a sense of the administration’s priorities, the space agency has also had to contend with proposed cuts to its Earth Observation and climate monitoring programs. But one thing which does not appear to be threatened is NASA’s “Journey to Mars“.

In accordance with the National Aeronautics and Space Administration Transition Authorization Act of 2017, the Trump administration has finally committed to funding NASA’s plans for deep space human exploration in the coming decades, and to the tune of $19.5 billion. Central to these plans is the proposed crewed mission to Mars, which is scheduled to take place by 2033.

The Act was introduced to Congress back in February and presented to President Trump for approval on Tuesday, March. 9th. Consistent with the Space Administration Authorization Act of 2010 and the NASA Transition Authorization Act of 2016, this bill approved of $19.5 billion in funding for NASA for fiscal year 2017, much of which was earmarked for the continuation of NASA’s “Journey to Mars”.

NASA has unveiled a new exercise device that will be used by Orion crews to stay healthy on their mission to Mars. Credit: NASA

In addition to maintaining the US government’s commitment “to extend humanity’s reach into deep space, including cis-lunar space, the Moon, the surface and moons of Mars, and beyond”, the Act also expressed the need for a continued commitment to the International Space Station and the utilization of Low Earth Orbit, and other related space ventures.

However, it is Section. 431, Subtitle C – Journey to Mars, that contains all the articles that are of particular interest to space enthusiasts – as these deal with the planned missions to Mars. Article 432, titled “Human Exploration Roadmap”, specifically states that:

“The Administrator shall develop a human exploration roadmap, including a critical decision plan, to expand human presence beyond low-Earth orbit to the surface of Mars and beyond, considering potential interim destinations such as cis-lunar space and the moons of Mars.

This roadmap, according to the Act, will include all the science and exploration goals that were outlined in the 2014 report, “Pathways to Exploration: Rationales and Approaches for a U.S. Program of Human Space Exploration”, which was prepared by the National Academies of Sciences, Engineering, and Medicine’s Committee on Human Spaceflight.

Artist concept of NASA’s Space Launch System (SLS) 70-metric-ton configuration launching to space. Credit: NASA/MSFC

In addition, they cite the many plans prepared by NASA and other advocates for Mars exploration over the years. These include “The Global Exploration Roadmap” (2013), “NASA’s Journey to Mars – Pioneering Next Steps in Space Exploration” (2015), the JPL’s “Minimal Architecture for Human Journeys to Mars” (2015), and Explore Mars’ “The Humans to Mars Report 2016“.

The Space Launch System (SLS), the Orion Space Capsule, a deep space habitat, and other capabilities are cited as crucial technologies. Other technologies that are identified are “space suits, solar electric propulsion, deep space habitats, environmental control life support systems, Mars lander and ascent vehicle, entry, descent, landing, ascent, Mars surface systems, and in-situ resource utilization.”

And last, but not least, is the need to pursue robotic and crewed missions that are intended to test these technologies – aka. Exploration Mission-1 (EM-1) and Exploration Mission-2 (EM-2). The former mission (which is scheduled for launch on September 30th, 2018) will be the first launch of the SLS with the Orion Capsule on-board, and will involve an uncrewed Orion being sent on a translunar mission.

Exploration Mission-2 (which is expected to launch in August of 2021) will be consists of a crew of four astronauts conducting another flight around the Moon and returning to Earth. Other crewed explorations are expected to follow during the 2020s, which may or may not include the crewed exploration of an asteroid towed into lunar orbit (as part of the Asteroid Redirect Mission, or ARM).

Here too, the Act was consistent with the NASA Transition Authorization Act of 2016. Based on growing budget assessments and the judgement that the benefits of “the Asteroid Robotic Redirect Mission have not been demonstrated to Congress to be commensurate with the cost”, the Act recommends that NASA select a more “cost-effective” option for testing the Orion capsule.

Aside from testing the components and developing the expertise necessary for a crewed mission to Mars, these mission will also establish an all-important “launch cadence”. In other words, NASA hopes to begin conducting regular launches using the SLS between 2021 and 2023, which will be key to restarting crewed exploration of the Solar System.

Of course, the Act also emphasizes the need for continued research into the potential health risks, which are currently being performed aboard the ISS. These include the dangers of exposure to radiation, the long-term effects of time spent in microgravity environments (i.e. muscle degeneration, loss of bone density, organ degeneration, and loss of eyesight), and efforts to mitigate them.

Of course, critics of the Act cite the adjustments made to spending on Earth sciences and heliophysics. In addition, this funding is only for the coming year, and future commitments will need to be made to ensure that the “Journey to Mars” can happen in the time frame provided. But the Act passed with almost unanimous support, and seems to have confirmed what many observers claimed about the space priorities of a Trump administration.

Proponents of space exploration and a mission to Mars can therefore rest easy, as it seems that both are safe for another year. As for Earth science and research, which are intrinsic to helping us predict the effects of climate change, that’s another battle!

Further Reading: congress.gov

Are You Ready For The NanoSWARM?

CubeSats NODes 1 & 2 and STMSat-1 are deployed from the International Space Station during Expedition 47. Image: NASA

We’re accustomed to the ‘large craft’ approach to exploring our Solar System. Probes like the Voyagers, the Mariners, and the Pioneers have written their place in the history of space exploration. Missions like Cassini and Juno are carrying on that work. But advances in technology mean that Nanosats and Cubesats might write the next chapter in the exploration of our Solar System.

Nanosats and Cubesats are different than the probes of the past. They’re much smaller and cheaper, and they offer some flexibility in our approach to exploring the Solar System. A Nanosat is defined as a satellite with a mass between 1 and 10 kg. A CubeSat is made up of multiple cubes of roughly 10cm³ (10cm x 10cm x 11.35cm). Together, they hold the promise of rapidly expanding our understanding of the Solar System in a much more flexible way.

A cubesat structure, made by ClydeSpace, 1U in size. Credit: Wikipedia Commons/Svobodat

NASA has been working on smaller satellites for a few years, and the work is starting to bear some serious fruit. A group of scientists at JPL predicts that by 2020 there will be 10 deep space CubeSats exploring our Solar System, and by 2030 there will be 100 of them. NASA, as usual, is developing NanoSat and CubeSat technologies, but so are private companies like Scotland’s Clyde Space.

Clyde Space from Clyde Space on Vimeo.

INSPIRE and MarCO

NASA has built 2 Interplanetary NanoSpacecraft Pathfinder In Relevant Environment (INSPIRE) CubeSats to be launched in 2017. They will demonstrate what NASA calls the “revolutionary capability of deep space CubeSats.” They’ll be placed in earth-escape orbit to show that they can withstand the rigors of space, and can operate, navigate, and communicate effectively.

Following in INSPIRE’s footsteps will be the Mars Cube One (MarCO) CubeSats. MarCO will demonstrate one of the most attractive aspects of CubeSats and NanoSats: their ability to hitch a ride with larger missions and to augment the capabilities of those missions.

In 2018, NASA plans to send a stationary lander to Mars, called Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight). The MarCO CubeSats will be along for the ride, and will act as communications relays, though they aren’t needed for mission success. They will be the first CubeSats to be sent into deep space.

So what are some specific targets for this new class of small probes? The applications for NanoSats and CubeSats are abundant.

Other NanoSat and CubeSat Missions

NASA’s Europa Clipper Mission, planned for the 2020’s, will likely have CubeSats along for the ride as it scrutinizes Europa for conditions favorable for life. NASA has contracted 10 academic institutes to study CubeSats that would allow the mission to get closer to Europa’s frozen surface.

The ESA’s AIM asteroid probe will launch in 2020 to study a binary asteroid system called the Didymos system. AIM will consist of the main spacecraft, a small lander, and at least two CubeSats. The CubeSats will act as part of a deep space communications network.

ESA’s Asteroid Impact Mission is joined by two triple-unit CubeSats to observe the impact of the NASA-led Demonstration of Autonomous Rendezvous Technology (DART) probe with the secondary Didymos asteroid, planned for late 2022. Image: ESA

The challenging environment of Venus is also another world where CubeSats and NanoSats can play a prominent role. Many missions make use of a gravity assist from Venus as they head to their main objective. The small size of NanoSats means that one or more of them could be released at Venus. The thick atmosphere at Venus gives us a chance to demonstrate aerocapture and to place NanoSats in orbit around our neighbor planet. These NanoSats could take study the Venusian atmosphere and send the results back to Earth.

NanoSWARM

But the proposed NanoSWARM might be the most effective demonstration of the power of NanoSats yet. The NanoSWARM mission would have a fleet of small satellites sent to the Moon with a specific set of objectives. Unlike other missions, where NanoSats and CubeSats would be part of a mission centered around larger payloads, NanoSWARM would be only small satellites.

NanoSWARM is a forward thinking mission that is so far only a concept. It would be a fleet of CubeSats orbiting the Moon and addressing questions around planetary magnetism, surface water on airless bodies, space weathering, and the physics of small-scale magnetospheres. NanoSWARM would target features on the Moon called “swirls“, which are high-albedo features correlated with strong magnetic fields and low surficial water. NanoSWARM CubeSats will make the first near-surface measurements of solar wind flux and magnetic fields at swirls.

This is an image of the Reiner Gamma lunar swirl from NASA’s Lunar Reconnaissance Orbiter.
Credits: NASA LRO WAC science team

NanoSWARM would have a mission architecture referred to as “mother with many children.” The mother ship would release two sets of CubeSats. One set would be released with impact trajectories and would gather data on magnetism and proton fluxes right up until impact. A second set would orbit the Moon to measure neutron fluxes. NanoSWARM’s results would tell us a lot about the geophysics, volatile distribution, and plasma physics of other bodies, including terrestrial planets and asteroids.

Space enthusiasts know that the Voyager probes had less computing power than our mobile phones. It’s common knowledge that our electronics are getting smaller and smaller. We’re also getting better at all the other technologies necessary for CubeSats and NanoSats, like batteries, solar arrays, and electrospray thrusters. As this trend continues, expect nanosatellites and cubesats to play a larger and more prominent role in space exploration.

And get ready for the NanoSTORM.

March Launch Madness: Triple Headed Space Spectacular Starts Overnight with SpaceX March 14 – Watch Live

SpaceX Falcon 9 rocket carrying EchoStar 23 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad on March 13, 2017 ahead of liftoff slated for 14 Mar 2017 at 1:34 a.m. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying EchoStar 23 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad on March 13, 2017 ahead of liftoff slated for 14 Mar 2017 at 1:34 a.m. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – It’s March Madness for Space fans worldwide! A triple header of space spectaculars starts overnight with a SpaceX Falcon 9 launching in the wee hours of Tuesday, March 14 from the Florida Space Coast.

Indeed a trio of launches is planned in the next week as launch competitor and arch rival United Launch Alliance (ULA) plans a duo of nighttime blastoffs from their Delta and Atlas rocket families – following closely on the heels of the SpaceX Falcon 9 launching a commercial telecommunications satellite.

Of course it’s all dependent on everything happening like clockwork!

And there is no guarantee of that given the unpredictable nature of the fast changing weather on the Florida Space Coast and unknown encounters with technical gremlins which have already plagued all 3 rockets this month.

Each liftoff has already been postponed by several days this month. And the rocket launch order has swapped positions.

At any rate, SpaceX is now the first on tap after midnight tonight on Tuesday, March 14.

The Delta IV and Atlas V will follow on March 17 and March 21 respectively – if all goes well.

So to paraphrase moon walker Buzz Aldrin;

‘Get Your Ass to the Florida Space Coast – Fast !’

The potential for a grand slam also exists at the very end of the month. But let’s get through at least the first launch of Falcon first.

SpaceX Falcon 9 rocket stands at launch pad 39a poised to liftoff with EchoStar 23 TV sat on the Kennedy Space Center ahead of liftoff slated for 14 Mar 2017 at 1:34 a.m. Credit: Julian Leek

Liftoff of the two stage SpaceX Falcon 9 carrying the EchoStar 23 telecommunications satellite is now slated for a post midnight spectacle next Tuesday, Mar. 14 from launch pad 39A on the Kennedy Space Center at the opening of the launch window at 1:34 a.m. EDT.

The two and a half hour launch window closes at 4:04 a.m. EDT.

You can watch the launch live on a SpaceX dedicated webcast starting about 20 minutes prior to the 1:34 a.m. liftoff time.

The SpaceX webcast will be available starting at about 20 minutes before liftoff, at approximately 1:14 a.m. EDT.

Watch at: SpaceX.com/webcast

SpaceX Falcon 9 rocket carrying EchoStar 23 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad on March 13, 2017 ahead of liftoff slated for 14 Mar 2017 at 1:34 a.m. Credit: Ken Kremer/Kenkremer.com

Following a successful static fire test last week on Mar. 9 of the first stage boosters engines, the SpaceX Falcon 9 was integrated with the EchoStar 23 direct to home TV satellite and rolled back out to pad 39A

The Falcon 9 rocket was raised erect into launch position by the time I visited the pad this afternoon, Monday March 13, to set up my cameras.

The weather outlook is not great at this moment, with rain and thick clouds smothering the coastline and central Florida.

The planned Mar. 14 launch comes barely three weeks after the Falcon’s successful debut on Feb. 19 on the NASA contracted Dragon CRS-10 mission that delivered over 2.5 tons of cargo to the six person crew living and working aboard the International Space Station (ISS).

Raindrops keep falling on the lens, as inaugural SpaceX Falcon 9/Dragon disappears into the low hanging rain clouds at NASA’s Kennedy Space Center after liftoff from pad 39A on Feb. 19, 2017. Dragon CRS-10 resupply mission is delivering over 5000 pounds of science and supplies to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Launch Complex 39A was repurposed by SpaceX from launching Shuttles to Falcons. It had lain dormant for launches for nearly six years since Space Shuttle Atlantis launched on the final shuttle mission STS 135 in July 2011.

SpaceX bilionaire CEO Elon Musk announced last week that he wants to launch a manned Moonshot from pad 39A by the end of next year using his triple barreled Falcon Heavy heavy lift rocket – derived from the Falcon 9.

The second launch of the trio on tap is a United Launch Alliance Delta 4 rocket carrying the WGS-9 high speed military communications satellite for the U.S. Air Force.

Liftoff of the ULA Delta is slated for March 17 from Space Launch Complex-37 at 7: 44 p.m. EDT.

A United Launch Alliance (ULA) Delta IV rocket carrying the WGS-8 mission lifts off from Space Launch Complex-37 at 6:53 p.m EDT on Dec. 7, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

The S.S. John Glenn is scheduled to as the Orbital ATK Cygnus OA-7 spacecraft for NASA on a United Launch Alliance (ULA) Atlas V rocket launch no earlier than March 21 from Space launch Complex-41 (SLC-41) on Cape Canaveral Air Force Station, Florida.

Orbital ATK Cygnus OA-7 spacecraft named the SS John Glenn for Original 7 Mercury astronaut and Sen. John Glenn, undergoes processing inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida on March 9, 2017 for launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 EchoStar 23 mission patch. Credit: SpaceX

………….

Learn more about SpaceX EchoStar 23 and CRS-10 launch to ISS, ULA SBIRS GEO 3 launch, EchoStar launch GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Mar 13-15: “SpaceX EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, EchoStar 19 comsat launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX conducts successful static hot fire test of Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on Mar 9, 2017 as seen from Space View Park, Titusville, FL. Liftoff with EchoStar 23 comsat is planned for 14 March 2017. Credit: Ken Kremer/Kenkremer.com

Next Cygnus Cargo Ship Christened the SS John Glenn to Honor First American in Orbit

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA's original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. It launched on April 18, 2017 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com
The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – The next Cygnus cargo ship launching to the International Space Station (ISS) has been christened the ‘S.S. John Glenn’ to honor legendary NASA astronaut John Glenn – the first American to orbit the Earth back in February 1962.

John Glenn was selected as one of NASA’s original seven Mercury astronauts chosen at the dawn of the space age in 1959. He recently passed away on December 8, 2016 at age 95.

The naming announcement was made by spacecraft builder Orbital ATK during a ceremony with the ‘S.S. John Glenn’, held inside the Kennedy Space Center (KSC) clean room facility where the cargo freighter is in the final stages of flight processing – and attended by media including Universe Today on Thursday, March 9.

“It is my humble duty and our great honor to name this spacecraft the S.S. John Glenn,” said Frank DeMauro, vice president and general manager of Orbital ATK’s Advanced Programs division, during the clean room ceremony in the inside the Payload Hazardous Servicing Facility high bay at NASA’s Kennedy Space Center in Florida.

The next Orbital ATK Cygnus supply ship was christened the SS John Glenn in honor of Sen. John Glenn, one of NASA’s original seven astronauts as it stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

The S.S. John Glenn is scheduled to liftoff as the Orbital ATK Cygnus OA-7 spacecraft for NASA on a United Launch Alliance (ULA) Atlas V rocket launch no earlier than March 21 from Space launch Complex-41 (SLC-41) on Cape Canaveral Air Force Station, Florida.

The space station resupply mission dubbed Cygnus OA-7 is dedicated to Glenn and his landmark achievement as the first American to orbit the Earth on Feb. 20, 1962 and his life promoting science, human spaceflight and education.

“John Glenn was probably responsible for more students studying math and science and being interested in space than anyone,” said former astronaut Brian Duffy, Orbital ATK’s vice president of Exploration Systems, during the clean room ceremony on March 9.

“When he flew into space in 1962, there was not a child then who didn’t know his name. He’s the one that opened up space for all of us.”

The Orbital ATK Cygnus OA-7 supply ship named in honor of Sen. John Glenn, one of NASA’s original seven astronauts stands inside the Payload Hazardous Servicing Facility at KSC. Launch slated for March 21 on a ULA Atlas V. Credit: Julian Leek

Glenn’s 3 orbit mission played a pivotal role in the space race with the Soviet Union at the height of the Cold War era.

“He has paved the way for so many people to follow in his footsteps,” said DeMauro.

All of Orbital ATK’s Cygnus freighters have been named after deceased American astronauts.

Glenn is probably America’s most famous astronaut in addition to Neil Armstrong, the first man to walk on the moon during Apollo 11 in 1969.

John Glenn went on to become a distinguished U.S. Senator from his home state of Ohio on 1974. He served for 24 years during 4 terms.

He later flew a second mission to space aboard the Space Shuttle Discovery in 1998 as part of the STS-95 crew at age 77. Glenn remains the oldest person ever to fly in space.

“Glenn paved the way for America’s space program, from moon missions, to the space shuttle and the International Space Station. His commitment to America’s human space flight program and his distinguished military and political career make him an ideal honoree for the OA-7 mission,” Orbital ATK said in a statement.

Orbital ATK Cygnus OA-7 spacecraft named the SS John Glenn for Original 7 Mercury astronaut and Sen. John Glenn, undergoes processing inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida on March 9, 2017 for launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

“The OA-7 mission is using the Enhanced Cygnus Pressurized Cargo Module (PCM) to deliver cargo to the International Space Station,” said DeMauro.

Cygnus will carry 7,700 pounds (3500 kg) of cargo to the station with a total volumetric capacity of 27 cubic meters.

“All these teams have worked extremely hard to get this mission to this point and we are looking forward to a great launch.”

Orbital ATK Cygnus OA-7 supply ship named the SS John Glenn undergoes processing inside the Payload Hazardous Servicing Facility at KSC on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

This is the third Cygnus to launch on an Atlas V rocket from the Cape. The last one launched a year ago on March 24, 2016 during the OA-6 mission. The first one launched in December 2015 during the OA-4 mission.

“We’re building the bridge to history with these missions,” said Vernon Thorp, ULA’s program manager for Commercial Missions.

“Every mission is fantastic and every mission is unique. At the end of the day every one of these missions is critical.”

The Orbital ATK Cygnus OA-7 supply ship named in honor of Sen. John Glenn, one of NASA’s original seven astronauts stands inside the Payload Hazardous Servicing Facility at KSC. Launch slated for March 21 on a ULA Atlas V. Credit: Julian Leek

The other Cygnus spacecraft have launched on the Orbital ATK commercial Antares rocket from NASA Wallops Flight Facility on Virginia’s eastern shore.

A United Launch Alliance (ULA) Atlas V rocket carrying the Orbital ATK Cygnus OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

Overall this is Orbital ATK’s seventh commercial resupply services mission (CRS) to the space station under contract to NASA.

OA-7 also counts as NASA’s second supply mission of the year to the station following last month’s launch of the SpaceX Dragon CRS-10 capsule on Feb. 19 and which is currently berthed to the station at a Earth facing port on the Harmony module.

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

The Cygnus OA-8 mission will launch again from NASA Wallops in the summer of 2017, DeMauro told me.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Posing with the newly christened SS John Glenn for the Cygnus OA-7 resupply mission to the ISS are Vern Thorp, United Launch Alliance Program program manager for Commercial Missions, Ken Kremer, Universe Today and Frank DeMauro, Orbital ATK vice president and general manager of Orbital ATK’s Advanced Programs division inside the Payload Hazardous Servicing Facility cleanroom at NASA’s Kennedy Space Center on March 9, 2017. Credit: Ken Kremer/Kenkremer.com

………….

Learn more about SpaceX EchoStar 23 and CRS-10 launch to ISS, ULA SBIRS GEO 3 launch, EchoStar launch GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Mar 13-15: “SpaceX EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, EchoStar 19 comsat launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Earth’s Twisted Sister: How Will We Reveal Venus’ Secrets?

A radar view of Venus taken by the Magellan spacecraft, with some gaps filled in by the Pioneer Venus orbiter. Credit: NASA/JPL

Venus is known as Earth’s Sister Planet. It’s roughly the same size and mass as Earth, it’s our closest planetary neighbor, and Venus and Earth grew up together.

When you grow up with something, and it’s always been there, you kind of take it for granted. As a species, we occasionally glance over at Venus and go “Huh. Look at Venus.” Mars, exotic exoplanets in distant solar systems, and the strange gas giants and their moons in our own Solar System attract much more of our attention.

If a distant civilization searched our Solar System for potentially habitable planets, using the same criteria we do, then Venus would be front page news for them. It’s on the edge of the habitable zone and it has an atmosphere. But we know better. Venus is a hellish world, hot enough to melt lead, with crushing atmospheric pressure and acid rain falling from the sky. Even so, Venus still holds secrets we need to reveal.

Chief among those secrets is, “Why did Venus develop so differently?

Conditions on Venus pose unique challenges. The history of Venus exploration is littered with melted Soviet Venera Landers. Orbital probes like Pioneer 12 and Magellan have had more success recently, but Venus’ dense atmosphere still limits their effectiveness. Advances in materials, and especially in electronic circuitry that can withstand Venus’ heat, have buoyed our hopes of exploring the surface of Venus in greater detail.

At the Planetary Science Vision 2050 Workshop 2017, put on by the Lunar and Planetary Institute (LPI) a team from the Southwest Research Institute (SWRI) examined the future of Venus exploration. The team was led by James Cutts from JPL.

The group acknowledged several over-arching questions we have about Venus:

  • How can we understand the atmospheric formation, evolution, and climate history?
  • How can we determine the evolution of the surface and interior?
  • How can we understand the nature of interior-surface-atmosphere interactions over time, including whether liquid water was ever present?

Since the Vision 2050 Workshop is all about the next 50 years, Cutts and his team looked at the challenges posed by Venus’ unique conditions, and how they could answer questions in the near-term, mid-term, and long-term.

Near Term Exploration (Present to 2019)

Near-Term goals for the exploration of Venus include improved remote-sensing from orbital probes. This will tell us more about the gravity and topography of Venus. Improved radar imaging and infrared imaging will fill in more blanks. The team also promoted the idea of a sustained aerial platform, a deep probe, and a short duration lander. Multiple probes/dropsondes are also part of the plan.

Dropsondes are small devices that are released into the atmosphere to measure winds, temperature, and humidity. They’re used on Earth to understand the weather, and extreme phenomena like hurricanes, and can fulfill the same purpose at Venus.

Dropsondes are released into the atmosphere, and their descent is slowed by a small parachute. As they descend, they gather data on temperature, wind, and humidity. Image By Staff Sgt. Randy Redman of the US Air Force

In the near-term, missions whose final destination is not Venus can also answer questions. Fly-bys by craft such as Bepi-Colombo, Solar Probe Plus, and the Solar Orbiter missions can give us good information on their way to Mercury and the Sun respectively. These missions will launch in 2018.

Bepi-Colombo, a joint mission of the ESA and JAXA, will perform two fly-bys of Venus on its way to Mercury. Image: ESA/JAXA

The ESO’s Venus Express and Japan’s Akatsuki, (Venus Climate Orbiter), have studied Venus’ climate in detail, especially its chemistry and the interactions between the atmosphere and the surface. Venus Express ended in 2015, while Akatsuki is still there.

Mid-Term Exploration (2020-2024)

The mid-term goals are more ambitious. They include a long-term lander to study Venus’ geophysical properties, a short-duration tessera lander, and two balloons.

The tesserae lander would land in a type of terrain found on Venus known as tesserae. We think that at one time, Venus had liquid water on it. The fundamental evidence for this may lie in the tesserae regions, but the terrain is extremely rough. A short duration lander that could land and operate in the tesserae regions would help us answer Venus’ liquid water question.

Thanks to the continued development of heat-hardy electronics, a long-term duration lander (months or more) is becoming more feasible in the mid-term. Ideally, any long-term mobile lander would be able to travel tens to hundreds of kilometers, in order to acquire a regional sample of Venus’ surface. This is the only way to take geochemistry and mineralogy measurements at multiple sites.

On Mars the landers are solar-powered. Venus’ thick atmosphere makes that impossible. But the same dense atmosphere that prohibits solar power might offer another solution: a sail-powered rover. Old-fashioned sail power might hold the key to moving around on the surface of Venus. Because the atmosphere is so dense, only a small sail would be necessary.

A simple sail-powered rover may solve the problem of mobility on the Venusian surface. Image: NASA

Long-Term Exploration (2025 and Beyond)

The long-term goals from Cutts and his team are where things get really interesting. A long-lived surface rover is still on the list, or possibly a near-surface craft like a balloon. Also on there is a long-lived seismic network.

A seismic network would really start to reveal the secrets behind Venus’ geophysical life. Whereas a lander would give us estimates of seismic activity, they would be crude compared to what a network of seismic sensors would reveal about Venus’ inner workings. A more thorough understanding of quake mechanisms and locations would really get the theorists buzzing. But it’s the final thing on the list that would be the end-goal. A sample-return mission.

We’re getting good at in situ measurements on other worlds. But for Venus, and for all the other worlds we have visited or want to visit, a sample return is the holy grail. The Apollo missions brought back hundreds of kilograms of lunar samples. Other sample-return missions have been sent to Phobos, which failed, and to asteroids, with varying degrees of success.

Subjecting a sample to the kind of deep analysis that can only be done on labs here on Earth is the end-game. We can keep analyzing samples as we develop new technologies to examine them with. Science is iterative, after all.

An artist’s image of Hayabusa leaving Earth. Hayabusa was a Japanese sample return mission to the asteroid 25143 Itokawa. The mission was a partial success. A sample mission to Earth’s sister planet is the holy-grail for the exploration of Venus. Image credit: JAXA

The 2003 Planetary Science Decadal Survey identified the importance of a sample return mission to Venus’ atmosphere. A balloon would float aloft in the clouds, and an ascending rocket would launch a collected sample back to Earth. According to Cutts and his team, this kind of sample-return mission could act as a stepping stone to a surface sample mission.

A surface sample would likely be the pinnacle of achievement when it comes to understanding Venus. But like most of the proposed goals for Venus, we’ll have to wait awhile.

The Changing Future

Cutts and the team acknowledge that the technology to enable exploration of Venus is in flux. No more missions to Venus are planned before 2020. There’ve been proposals for things like sail powered landers, but we’re not there yet. We’re developing heat-resistant electronics, but so far they’re very simple. There’s a lot of work to do.

On the other hand, some things may happen sooner. It may turn out that we can learn about Venusian seismic activity from balloon-borne or orbital sensors. The team says that “Due to strong mechanical coupling between the atmosphere and ground, seismic waves are launched into the atmosphere, where they may be detected by infrasound on a balloon or infrared or ultraviolet signatures from orbit.” That’s thanks to Venus’ dense atmosphere. That means that the far-term goal of seismic sensing of the interior of Venus could be shifted to the near-term or mid-term.

Japan’s Akatsuki orbiter captured this image of a gravity wave in Venus’ upper cloud layer. Could orbiter sensors remove the need for a network of seismic sensors on the surface? Image credit: JAXA

As work on nanosatellites and cubesats continues, they may play a larger role at Venus, and shift the timelines. NASA wants to include these small satellites on every launch where there is a few kilograms of excess capacity. A group of these nanosatellites could form a network of seismic sensors much more easily and much sooner than an established network of surface sensors. A network of nanosatellites could also serve as a communications relay for other missions.

Venus doesn’t generate a lot of buzz these days. The discovery of Earth-like worlds in distant solar systems generates headline after headline. And the always popular search for life is centered on Mars, and the icy/sub-surface moons of our Solar System’s gas giants. But Venus is still a tantalizing target, and understanding Venus’ evolution will help us understand what we’re seeing in distant solar systems.

How Will NASA Find Life On Other Worlds?

Is Earth in the range of normal when it comes to habitable planets? Or is it an outlier, with both large land masses, and large oceans? Image: Reto Stöckli, Nazmi El Saleous, and Marit Jentoft-Nilsen, NASA GSFC
Is Earth in the range of normal when it comes to habitable planets? Or is it an outlier, with both large land masses, and large oceans? Image: Reto Stöckli, Nazmi El Saleous, and Marit Jentoft-Nilsen, NASA GSFC

For a long time, the idea of finding life on other worlds was just a science fiction dream. But in our modern times, the search for life is rapidly becoming a practical endeavour. Now, some minds at NASA are looking ahead to the search for life on other worlds, and figuring out how to search more effectively and efficiently. Their approach is centered around two things: nano-satellites and microfluidics.

Life is obvious on Earth. But it’s a different story for the other worlds in our Solar System. Mars is our main target right now, with the work that MSL Curiosity is doing. But Curiosity is investigating Mars to find out if conditions on that planet were ever favorable for life. A more exciting possibility is finding extant life on another world: that is, life that exists right now.

MSL Curiosity is busy investigating the surface of Mars, to see if that planet could have harbored life. Image: NASA/JPL/Cal-Tech
MSL Curiosity is busy investigating the surface of Mars, to see if that planet could have harbored life. Image: NASA/JPL/Cal-Tech

At the Planetary Science Vision 2050 Workshop, experts in Planetary Science and related disciplines gathered to present ideas about the next 50 years of exploration in the Solar System. A team led by Richard Quinn at the NASA Ames Research Center (ARC) presented their ideas on the search for extant life in the next few decades.

Their work is based on the decadal survey “Vision and Voyages for Planetary Science in the Decade 2013-2022.” That source confirms what most of us are already aware of: that our search for life should be focussed on Mars and the so-called “Ocean Worlds” of our Solar System like Enceladus and Europa. The question is, what will that search look like?

The North Polar Region of Saturn’s moon, Enceladus. Could there be an ocean world full of life under its frozen surface? Credit: NASA/JPL/Space Science Institute

Quinn and his team outlined two technologies that we could center our search around.

Nanosatellites

A nanosatellite is classified as something with a mass between 1-10 kg. They offer several advantages over larger designs.

Firstly, their small mass keeps the cost of launching them very low. In many cases, nanosatellites can be piggy-backed onto the launch of a larger payload, just to use up any excess capacity. Nanosatellites can be made cheaply, and multiples of them can be designed and built the same. This would allow a fleet of nanosatellites to be sent to the same destination.

Most of the discussion around the search for life centers around large craft or landers that land in one location, and have limited mobility. The Mars rovers are doing great work, but they can only investigate very specific locations. In a way, this creates kind of a sampling error. It’s difficult to generalize about the conditions for life on other worlds when we’ve only sampled a small handful of locations.

In 2010, NASA successfully deployed the nanosatellite NANO-Sail D from a larger, microsatellite. Image: NASA

On Earth, life is everywhere. But Earth is also the home to extremophiles, organisms that exist only in extreme, hard-to-reach locations. Think of thermal vents on the ocean floor, or deep dark caves. If that is the kind of life that exists on the target worlds in our Solar System, then there’s a strong possibility that we’ll need to sample many locations before we find them. That is something that is beyond the capabilities of our rovers. Nanosatellites could be part of the solution. A fleet of them investigating a world like Enceladus or Europa could speed up our search for extant life.

NASA has designed and built nanosatellites to perform a variety of tasks, like performing biology experiments, and testing advanced propulsion and communications technologies. In 2010 they successfully deployed a nanosatellite from a larger, microsatellite. If you expand on that idea, you can see how a small fleet of nanosatellites could be deployed at another world, after arriving there on another larger craft.

Microfluidics

Microfluidics deals with systems that manipulate very small amounts of fluid, usually on the sub-millimeter scale. The idea is to build microchips which handle very small sample sizes, and test them in-situ. NASA has done work with microfluidics to try to develop ways of monitoring astronauts’ health on long space voyages, where there is no access to a lab. Microfluidic chips can be manufactured which have only one or two functions, and produce only one or two results.

In terms of the search for extant life in our Solar System, microfluidics is a natural fit with nanosatellites. Replace the medical diagnostic capabilities of a microfluidic chip with a biomarker diagnostic, and you have a tiny device that can be mounted on a tiny satellite. Since functioning microfluidic chips can be as small as microprocessors, multiples of them could be mounted.

” Technical constraints will inevitably limit robotic missions that search for evidence of life to a few selected experiments.” – Richard.C.Quinn, et. al.

When combined with nanosatellites, microfluidics offers the possibility of the same few tests for life being repeated over and over in multiple locations. This is obviously very attractive when it comes to the search for life. The team behind the idea stresses that their approach would involve the search for simple building blocks, the complex biomolecules involved in basic biochemistry, and also the structures that cellular life requires in order to exist. Performing these tests in multiple locations would be a boon in the search.

Some of the technologies for the microfluidic search for life have already been developed. The team points out that several of them have already had successful demonstrations in micro-gravity missions like the GeneSat, the PharmaSat, and the SporeSat.

“The combination of microfluidic systems with chemical and biochemical sensors and sensor arrays offer some of the most promising approaches for extant life detection using small-payload platforms.” – Richard.C.Quinn, et. al.

Putting It All Together

We’re a ways away from a mission to Europa or Enceladus. But this paper was about the future vision of the search for extant life. It’s never too soon to start thinking about that.

There are some obvious obstacles to using nanosatellites to search for life on Enceladus or Europa. Those worlds are frozen, and it’s the oceans under those thick ice caps that we need to investigate. Somehow, our tiny nanosatellites would need to get through that ice.

Also, the nanosatellites we have now are just that: satellites. They are designed to be in orbit around a body. How could they be transformed into tiny, ocean-going submersible explorers?
There’s no doubt that somebody, somewhere at NASA, is already thinking about that.

The over-arching vision of a fleet of small craft, each with the ability to repeat basic experiments searching for life in multiple locations, is a sound one. As for how it actually turns out, we’ll have to wait and see.

Rise of the Super Telescopes: The James Webb Space Telescope

A full-scale model of the JWST went on a bit of a World Tour. Here it is in Munich, Germany. Image Credit: EADS Astrium

We humans have an insatiable hunger to understand the Universe. As Carl Sagan said, “Understanding is Ecstasy.” But to understand the Universe, we need better and better ways to observe it. And that means one thing: big, huge, enormous telescopes.
In this series we’ll look at 6 of the world’s Super Telescopes:

The James Webb Space Telescope

The James Webb Space Telescope“>James Webb Space Telescope (JWST, or the Webb) may be the most eagerly anticipated of the Super Telescopes. Maybe because it has endured a tortured path on its way to being built. Or maybe because it’s different than the other Super Telescopes, what with it being 1.5 million km (1 million miles) away from Earth once it’s operating.

The JWST will do its observing while in what’s called a halo orbit at L2, a sort of gravitationally neutral point 1.5 million km from Earth. Image: NASA/JWST

If you’ve been following the drama behind the Webb, you’ll know that cost overruns almost caused it to be cancelled. That would’ve been a real shame.

The JWST has been brewing since 1996, but has suffered some bumps along the road. That road and its bumps have been discussed elsewhere, so what follows is a brief rundown.

Initial estimates for the JWST were a $1.6 billion price tag and a launch date of 2011. But the costs ballooned, and there were other problems. This caused the House of Representatives in the US to move to cancel the project in 2011. However, later that same year, US Congress reversed the cancellation. Eventually, the final cost of the Webb came to $8.8 billion, with a launch date set for October, 2018. That means the JWST’s first light will be much sooner than the other Super Telescopes.

The business end of the James Webb Space Telescope is its 18-segment primary mirror. The gleaming, gold-coated beryllium mirror has a collecting area of 25 square meters. Image: NASA/Chris Gunn

The Webb was envisioned as a successor to the Hubble Space Telescope, which has been in operation since 1990. But the Hubble is in Low Earth Orbit, and has a primary mirror of 2.4 meters. The JWST will be located in orbit at the LaGrange 2 point, and its primary mirror will be 6.5 meters. The Hubble observes in the near ultraviolet, visible, and near infrared spectra, while the Webb will observe in long-wavelength (orange-red) visible light, through near-infrared to the mid-infrared. This has some important implications for the science yielded by the Webb.

The Webb’s Instruments

The James Webb is built around four instruments:

  • The Near-Infrared Camera (NIRCam)
  • The Near-Infrared Spectrograph (NIRSpec)
  • The Mid-Infrared Instrument(MIRI)
  • The Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS/NIRISS)
This image shows the wavelengths of the infrared spectrum that Webb’s instruments can observe. Image: NASA/JWST

The NIRCam is Webb’s primary imager. It will observe the formation of the earliest stars and galaxies, the population of stars in nearby galaxies, Kuiper Belt Objects, and young stars in the Milky Way. NIRCam is equipped with coronagraphs, which block out the light from bright objects in order to observe dimmer objects nearby.

NIRSpec will operate in a range from 0 to 5 microns. Its spectrograph will split the light into a spectrum. The resulting spectrum tells us about an objects, temperature, mass, and chemical composition. NIRSpec will observe 100 objects at once.

MIRI is a camera and a spectrograph. It will see the redshifted light of distant galaxies, newly forming stars, objects in the Kuiper Belt, and faint comets. MIRI’s camera will provide wide-field, broadband imaging that will rank up there with the astonishing images that Hubble has given us a steady diet of. The spectrograph will provide physical details of the distant objects it will observe.

The Fine Guidance Sensor part of FGS/NIRISS will give the Webb the precision required to yield high-quality images. NIRISS is a specialized instrument operating in three modes. It will investigate first light detection, exoplanet detection and characterization, and exoplanet transit spectroscopy.

The Science

The over-arching goal of the JWST, along with many other telescopes, is to understand the Universe and our origins. The Webb will investigate four broad themes:

  • First Light and Re-ionization: In the early stages of the Universe, there was no light. The Universe was opaque. Eventually, as it cooled, photons were able to travel more freely. Then, probably hundreds of millions of years after the Big Bang, the first light sources formed: stars. But we don’t know when, or what types of stars.
  • How Galaxies Assemble: We’re accustomed to seeing stunning images of the grand spiral galaxies that exist in the Universe today. But galaxies weren’t always like that. Early galaxies were often small and clumpy. How did they form into the shapes we see today?
  • The Birth of Stars and Protoplanetary Systems: The Webb’s keen eye will peer straight through clouds of dust that ‘scopes like the Hubble can’t see through. Those clouds of dust are where stars are forming, and their protoplanetary systems. What we see there will tell us a lot about the formation of our own Solar System, as well as shedding light on many other questions.
  • Planets and the Origins of Life: We now know that exoplanets are common. We’ve found thousands of them orbiting all types of stars. But we still know very little about them, like how common atmospheres are, and if the building blocks of life are common.

These are all obviously fascinating topics. But in our current times, one of them stands out among the others: Planets and the Origins of Life.

The recent discovery the TRAPPIST 1 system has people excited about possibly discovering life in another solar system. TRAPPIST 1 has 7 terrestrial planets, and 3 of them are in the habitable zone. It was huge news in February 2017. The buzz is still palpable, and people are eagerly awaiting more news about the system. That’s where the JWST comes in.

One big question around the TRAPPIST system is “Do the planets have atmospheres?” The Webb can help us answer this.

The NIRSpec instrument on JWST will be able to detect any atmospheres around the planets. Maybe more importantly, it will be able to investigate the atmospheres, and tell us about their composition. We will know if the atmospheres, if they exist, contain greenhouse gases. The Webb may also detect chemicals like ozone and methane, which are biosignatures and can tell us if life might be present on those planets.

You could say that if the James Webb were able to detect atmospheres on the TRAPPIST 1 planets, and confirm the existence of biosignature chemicals there, it will have done its job already. Even if it stopped working after that. That’s probably far-fetched. But still, the possibility is there.

Launch and Deployment

The science that the JWST will provide is extremely intriguing. But we’re not there yet. There’s still the matter of JWST’s launch, and it’s tricky deployment.

The JWST’s primary mirror is much larger than the Hubble’s. It’s 6.5 meters in diameter, versus 2.4 meters for the Hubble. The Hubble was no problem launching, despite being as large as a school bus. It was placed inside a space shuttle, and deployed by the Canadarm in low earth orbit. That won’t work for the James Webb.

This image shows the Hubble Space Telescope being held above the shuttle’s cargo bay by the Canadian-built Remote Manipulator System (RMS) arm, or Canadarm. A complex operation, but not as complex as JWST’s deployment. Image: NASA

The Webb has to be launched aboard a rocket to be sent on its way to L2, it’s eventual home. And in order to be launched aboard its rocket, it has to fit into a cargo space in the rocket’s nose. That means it has to be folded up.

The mirror, which is made up of 18 segments, is folded into three inside the rocket, and unfolded on its way to L2. The antennae and the solar cells also need to unfold.

Unlike the Hubble, the Webb needs to be kept extremely cool to do its work. It has a cryo-cooler to help with that, but it also has an enormous sunshade. This sunshade is five layers, and very large.

We need all of these components to deploy for the Webb to do its thing. And nothing like this has been tried before.

The Webb’s launch is only 7 months away. That’s really close, considering the project almost got cancelled. There’s a cornucopia of science to be done once it’s working.

But we’re not there yet, and we’ll have to go through the nerve-wracking launch and deployment before we can really get excited.