The Inner and Outer Planets in Our Solar System

The Solar System. Credit: spaceplace.nasa.gov

In our Solar System, astronomers often divide the planets into two groups — the inner planets and the outer planets. The inner planets are closer to the Sun and are smaller and rockier. The outer planets are further away, larger and made up mostly of gas.

The inner planets (in order of distance from the sun, closest to furthest) are Mercury, Venus, Earth and Mars. After an asteroid belt comes the outer planets, Jupiter, Saturn, Uranus and Neptune. The interesting thing is, in some other planetary systems discovered, the gas giants are actually quite close to the sun.

This makes predicting how our Solar System formed an interesting exercise for astronomers. Conventional wisdom is that the young Sun blew the gases into the outer fringes of the Solar System and that is why there are such large gas giants there. However, some extrasolar systems have “hot Jupiters” that orbit close to their Sun.

The Inner Planets:

The four inner planets are called terrestrial planets because their surfaces are solid (and, as the name implies, somewhat similar to Earth — although the term can be misleading because each of the four has vastly different environments). They’re made up mostly of heavy metals such as iron and nickel, and have either no moons or few moons. Below are brief descriptions of each of these planets based on this information from NASA.

Mercury: Mercury is the smallest planet in our Solar System and also the closest. It rotates slowly (59 Earth days) relative to the time it takes to rotate around the sun (88 days). The planet has no moons, but has a tenuous atmosphere (exosphere) containing oxygen, sodium, hydrogen, helium and potassium. The NASA MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft is currently orbiting the planet.

The terrestrial planets of our Solar System at approximately relative sizes. From left, Mercury, Venus, Earth and Mars. Credit: Lunar and Planetary Institute
The terrestrial planets of our Solar System at approximately relative sizes. From left, Mercury, Venus, Earth and Mars. Credit: Lunar and Planetary Institute

Venus: Venus was once considered a twin planet to Earth, until astronomers discovered its surface is at a lead-melting temperature of 900 degrees Fahrenheit (480 degrees Celsius). The planet is also a slow rotator, with a 243-day long Venusian day and an orbit around the sun at 225 days. Its atmosphere is thick and contains carbon dioxide and nitrogen. The planet has no rings or moons and is currently being visited by the European Space Agency’s Venus Express spacecraft.

Earth: Earth is the only planet with life as we know it, but astronomers have found some nearly Earth-sized planets outside of our solar system in what could be habitable regions of their respective stars. It contains an atmosphere of nitrogen and oxygen, and has one moon and no rings. Many spacecraft circle our planet to provide telecommunications, weather information and other services.

Mars: Mars is a planet under intense study because it shows signs of liquid water flowing on its surface in the ancient past. Today, however, its atmosphere is a wispy mix of carbon dioxide, nitrogen and argon. It has two tiny moons (Phobos and Deimos) and no rings. A Mars day is slightly longer than 24 Earth hours and it takes the planet about 687 Earth days to circle the Sun. There’s a small fleet of orbiters  and rovers at Mars right now, including the large NASA Curiosity rover that landed in 2012.

The outer planets of our Solar System at approximately relative sizes. From left, Jupiter, Saturn, Uranus and Neptune. Credit: Lunar and Planetary Institute
The outer planets of our Solar System at approximately relative sizes. From left, Jupiter, Saturn, Uranus and Neptune. Credit: Lunar and Planetary Institute

The Outer Planets:

The outer planets (sometimes called Jovian planets or gas giants) are huge planets swaddled in gas. They all have rings and all of plenty of moons each. Despite their size, only two of them are visible without telescopes: Jupiter and Saturn. Uranus and Neptune were the first planets discovered since antiquity, and showed astronomers the solar system was bigger than previously thought. Below are brief descriptions of each of these planets based on this information from NASA.

Jupiter: Jupiter is the largest planet in our Solar System and spins very rapidly (10 Earth hours) relative to its orbit of the sun (12 Earth years). Its thick atmosphere is mostly made up of hydrogen and helium, perhaps surrounding a terrestrial core that is about Earth’s size. The planet has dozens of moons, some faint rings and a Great Red Spot — a raging storm happening for the past 400 years at least (since we were able to view it through telescopes). NASA’s Juno spacecraft is en route and will visit there in 2016.

Saturn: Saturn is best known for its prominent ring system — seven known rings with well-defined divisions and gaps between them. How the rings got there is one subject under investigation. It also has dozens of moons. Its atmosphere is mostly hydrogen and helium, and it also rotates quickly (10.7 Earth hours) relative to its time to circle the Sun (29 Earth years). Saturn is currently being visited by the Cassini spacecraft, which will fly closer to the planet’s rings in the coming years.

Near-infrared views of Uranus reveal its otherwise faint ring system, highlighting the extent to which it is tilted. Credit: Lawrence Sromovsky, (Univ. Wisconsin-Madison), Keck Observatory.
Near-infrared views of Uranus reveal its otherwise faint ring system, highlighting the extent to which it is tilted. Credit: Lawrence Sromovsky, (Univ. Wisconsin-Madison), Keck Observatory.

Uranus: Uranus was first discovered by William Herschel in 1781. The planet’s day takes about 17 Earth hours and one orbit around the Sun takes 84 Earth years. Its mass contains water, methane, ammonia, hydrogen and helium surrounding a rocky core. It has dozens of moons and a faint ring system. There are no spacecraft slated to visit Uranus right now; the last visitor was Voyager 2 in 1986.

Neptune: Neptune is a distant planet that contains water, ammmonia, methane, hydrogen and helium and a possible Earth-sized core. It has more than a dozen moons and six rings. The only spacecraft to ever visit it was NASA’s Voyager 2 in 1989.

To learn more about the planets and missions, check out these links:

Solar System Exploration: Planets (NASA)
NASA Photojournal (NASA)
Missions (NASA)
Space Science (European Space Agency)
USGS Astrogeology (U.S. Geological Survey)
The Solar System And Its Planets (European Space Agency)

How Far Are The Planets From The Sun?

Artist's impression of the planets in our solar system, along with the Sun (at bottom). Credit: NASA

The eight planets in our solar system each occupy their own orbits around the Sun. They orbit the star in ellipses, which means their distance to the sun varies depending on where they are in their orbits. When they get closest to the Sun, it’s called perihelion, and when it’s farthest away, it’s called aphelion.

So to talk about how far the planets are from the sun is a difficult question, not only because their distances constantly change, but also because the spans are so immense — making it hard for a human to grasp. For this reason, astronomers often use a term called astronomical unit, representing the distance from the Earth to the Sun.

The table below (first created by Universe Today founder Fraser Cain in 2008) shows all the planets and their distance to the Sun, as well as how close these planets get to Earth.

Mercury:

Closest: 46 million km / 29 million miles (.307 AU)
Farthest: 70 million km / 43 million miles (.466 AU)
Average: 57 million km / 35 million miles (.387 AU)
Closest to Mercury from Earth: 77.3 million km / 48 million miles

Venus:

Closest: 107 million km / 66 million miles (.718 AU)
Farthest: 109 million km / 68 million miles (.728 AU)
Average: 108 million km / 67 million miles (.722 AU)
Closest to Venus from Earth: 40 million km / 25 million miles

The planet Venus, as imaged by the Magellan 10 mission. Credit: NASA/JPL
The planet Venus, as imaged by the Magellan 10 mission. Credit: NASA/JPL

Earth:

Closest: 147 million km / 91 million miles (.98 AU)
Farthest: 152 million km / 94 million miles (1.01 AU)
Average: 150 million km / 93 million miles (1 AU)

Mars:

Closest: 205 million km / 127 million miles (1.38 AU)
Farthest: 249 million km / 155 million miles (1.66 AU)
Average: 228 million km / 142 million miles (1.52 AU)
Closest to Mars from Earth: 55 million km / 34 million miles

Jupiter:

Closest: 741 million km /460 million miles (4.95 AU)
Farthest: 817 million km / 508 million miles (5.46 AU)
Average: 779 million km / 484 million miles (5.20 AU)
Closest to Jupiter from Earth: 588 million km / 346 million miles

Jupiter and Io. Image Credit: NASA/JPL
Artist’s impression of Jupiter and Io. Credit: NASA/JPL

Saturn:

Closest: 1.35 billion km / 839 million miles (9.05 AU)
Farthest: 1.51 billion km / 938 million miles (10.12 AU)
Average: 1.43 billion km / 889 million miles (9.58 AU)
Closest to Saturn from Earth: 1.2 billion km /746 million miles

Uranus:

Closest: 2.75 billion km / 1.71 billion miles (18.4 AU)
Farthest: 3.00 billion km / 1.86 billion miles (20.1 AU)
Average: 2.88 billion km / 1.79 billion miles (19.2 AU)
Closest to Uranus from Earth: 2.57 billion km / 1.6 billion miles

Neptune:

Closest: 4.45 billion km /2.77 billion miles (29.8 AU)
Farthest: 4.55 billion km / 2.83 billion miles (30.4 AU)
Average: 4.50 billion km / 2.8 billion miles (30.1 AU)
Closest to Neptune from Earth: 4.3 billion km / 2.7 billion miles

As a special bonus, we’ll include Pluto too, even though Pluto is not a planet anymore.

Uranus and Neptune, the Solar System’s ice giant planets. (Images from Wikipedia.)
Uranus and Neptune, the Solar System’s ice giant planets. Credit: Wikipedia Commons

Pluto:

Closest: 4.44 billion km / 2.76 billion miles (29.7 AU)
Farthest: 7.38 billion km / 4.59 billion miles (49.3 AU)
Average: 5.91 billion km / 3.67 billion miles (39.5 AU)
Closest to Pluto from Earth: 4.28 billion km / 2.66 billion miles

To learn more:

Online resources demonstrating the scale of the Solar System:

If The Moon Were Only A Pixel (Josh Worth Art & Design)
Scale Model Of Our Solar System (University of Manitoba)
Build A Solar System (Exploratorium)
Scale Solar System (Josh Wetenkamp)

Many cities and countries have also installed scale models of the Solar System, such as:

Voyage Scale Solar System (Washington, D.C.)
Sagan Planet Walk (Ithaca, N.Y.)
Maine Solar System Model
Sweden Solar System
Planet Walk (Munich, Germany)
The Solar System (Brittany, France; website in French only)
Solar System Drive (Australia)

The Planets in Our Solar System in Order of Size

Planets in our Solar system size comparison. Largest to smallest are pictured left to right, top to bottom: Jupiter, Saturn, Uranus, Neptune, Earth, Venus, Mars, Mercury. Via Wikimedia Commons.

If you’re interested in planets, the good news is there’s plenty of variety to choose from in our own Solar System. From the ringed beauty of Saturn, to the massive hulk of Jupiter, to the lead-melting temperatures on Venus, each planet in our solar system is unique — with its own environment and own story to tell about the history of our Solar System.

What also is amazing is the sheer size difference of planets. While humans think of Earth as a large planet, in reality it is dwarfed by the massive gas giants lurking at the outer edges of our Solar System. This article explores the planets in order of size, with a bit of context as to how they got that way.

A Short History of the Solar System:

No human was around 4.5 billion years ago when the Solar System was formed, so what we know about its birth comes from several sources: examining rocks on Earth and other places, looking at other solar systems in formation and doing computer models, among other methods. As more information comes in, some of our theories of the Solar System must change to suit the new evidence.

Today, scientists believe the Solar System began with a spinning gas and dust cloud. Gravitational attraction at its center eventually collapsed to form the Sun. Some theories say that the young Sun’s energy began pushing the lighter particles of gas away, while larger, more solid particles such as dust remained closer in.

Artist's conception of a solar system in formation. Credit: NASA/FUSE/Lynette Cook
Artist’s conception of a solar system in formation. Credit: NASA/FUSE/Lynette Cook

Over millions and millions of years, the gas and dust particles became attracted to each other by their mutual gravities and began to combine or crash. As larger balls of matter formed, they swept the smaller particles away and eventually cleared their orbits. That led to the birth of Earth and the other eight planets in our Solar System. Since much of the gas ended up in the outer parts of the system, this may explain why there are gas giants — although this presumption may not be true for other solar systems discovered in the universe.

Until the 1990s, scientists only knew of planets in our own Solar System and at that point accepted there were nine planets. As telescope technology improved, however, two things happened. Scientists discovered exoplanets, or planets that are outside of our solar system. This began with finding massive planets many times larger than Jupiter, and then eventually finding planets that are rocky — even a few that are close to Earth’s size itself.

The other change was finding worlds similar to Pluto, then considered the Solar System’s furthest planet, far out in our own Solar System. At first astronomers began treating these new worlds like planets, but as more information came in, the International Astronomical Union held a meeting to better figure out the definition.

Hubble image of Pluto and some of its moons, Charon, Nix and Hydra. Image Credit: NASA, ESA, H. Weaver (JHU/APL), A. Stern (SwRI), and the HST Pluto Companion Search Team
Hubble image of Pluto and some of its moons, Charon, Nix and Hydra. Image Credit: NASA, ESA, H. Weaver (JHU/APL), A. Stern (SwRI), and the HST Pluto Companion Search Team

The result was redefining Pluto and worlds like it as a dwarf planet. This is the current IAU planet definition:

“A celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the neighborhood around its orbit.”

Size of the Eight Planets:

According to NASA, this is the estimated radii of the eight planets in our solar system, in order of size. We also have included the radii sizes relative to Earth to help you picture them better.

  • Jupiter (69,911 km / 43,441 miles) – 1,120% the size of Earth
  • Saturn (58,232 km / 36,184 miles) – 945% the size of Earth
  • Uranus (25,362 km / 15,759 miles) – 400% the size of Earth
  • Neptune (24,622 km / 15,299 miles) – 388% the size of Earth
  • Earth (6,371 km / 3,959 miles)
  • Venus (6,052 km / 3,761 miles) – 95% the size of Earth
  • Mars (3,390 km / 2,460 miles) – 53% the size of Earth
  • Mercury (2,440 km / 1,516 miles) – 38% the size of Earth
Eight planets and a dwarf planet in our Solar System, approximately to scale. Pluto is a dwarf planet at far right. At far left is the Sun. The planets are, from left, Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune. Credit: Lunar and Planetary Institute
Eight planets and a dwarf planet in our Solar System, approximately to scale. Pluto is a dwarf planet at far right. At far left is the Sun. The planets are, from left, Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune. Credit: Lunar and Planetary Institute

Jupiter is the behemoth of the Solar System and is believed to be responsible for influencing the path of smaller objects that drift by its massive bulk. Sometimes it will send comets or asteroids into the inner solar system, and sometimes it will divert those away.

Saturn, most famous for its rings, also hosts dozens of moons — including Titan, which has its own atmosphere. Joining it in the outer solar system are Uranus and Neptune, which both have atmospheres of hydrogen, helium and methane. Uranus also rotates opposite to other planets in the solar system.

The inner planets include Venus (once considered Earth’s twin, at least until its hot surface was discovered); Mars (a planet where liquid water could have flowed in the past); Mercury (which despite being close to the sun, has ice at its poles) and Earth, the only planet known so far to have life.

To learn more about the Solar System, check out these resources:

Planets (NASA)
Solar System (USGS)
Exploring the Planets (National Air and Space Museum)
Windows to the Universe (National Earth Science Teachers Association)
Solar System (National Geographic, requires free registration)

Can Moons Have Moons?

Can Moons Have Moons?

The Earth has a single moon, while Saturn has more than 60, with new moons being discovered all the time. But here’s a question, can a moon have a moon? Can that moon’s moon have its own moon? Can it be moons all the way down?

First, consider that we have a completely subjective idea of what a moon is. The Moon orbits the Earth, and the Earth orbits the Sun, and the Sun orbits the center of the Milky Way, which orbits within the Local Group, which is a part of the Virgo Supercluster. The motions of objects in the cosmos act like a set of Russian nesting dolls, with things orbiting things, which orbit other things. So maybe a better question is: could any of the moons in the Solar System have moons of their own? Well actually, one does.

Right now, NASA’s Lunar Reconnaissance Orbiter is happily orbiting around the Moon, photographing the place in high resolution. But humans sent it to the Moon, and just like all the artificial satellites sent there in the past, it’s doomed. No satellite we’ve sent to the Moon has ever orbited for longer than a few years before crashing down into the lunar surface. In theory, you could probably get a satellite to last a few hundred years around the Moon.

But why? How come we can’t make moons for our moon to have a moon of it’s own for all time? It all comes down to gravity and tidal forces. Every object in the Universe is surrounded by an invisible sphere of gravity. Anything within this volume, which astronomers call the “Hill Sphere”, will tend to orbit the object.

So, if you had the Moon out in the middle of space, without any interactions, it could easily have multiple moons orbiting around it. But you get problems when you have these overlapping spheres of influence. The strength of gravity from the Earth tangles with the force of gravity from the Moon.

How many moons are there in the Solar System? Image credit: NASA
How many moons are there in the Solar System? Image credit: NASA

Although a spacecraft can orbit the Moon for a while, it’s just not stable. The tidal forces will cause the spacecraft’s orbit to decay until it crashes. But further out in the Solar System, there are tiny asteroids with even tinier moons. This is possible because they’re so far away from the Sun. Bring these asteroids closer to the Sun, and someone’s losing a moon.

The object with the largest Hill Sphere in the Solar System is Neptune. Because it’s so far away from the Sun, and it’s so massive, it can truly influence its environment. You could imagine a massive moon distantly orbiting Neptune, and around that moon, there could be a moon of its own. But this doesn’t appear to be the case.

NASA is considering a mission to capture an asteroid and put it into orbit around the Moon. This would be safer than having it orbit the Earth, but still keep it close enough to extract resources. But without any kind of orbital boost, those tidal forces will eventually crash it onto the Moon. So no, in our Solar System, we don’t know of any moons with moons of their own. In fact, we don’t even have a name for them. What would you suggest?

Weekly Space Hangout – July 19, 2013

Here’s our Weekly Space Hangout for July 19, 2013. Watch as a team of space and astronomy journalists discuss the big space stories of the week. We do this every Friday at 12:00 pm Pacific Time / 3:00 pm Eastern Time. You can join us live, or watch the archive here or on Google+.

Host: Fraser Cain

Participants: Sondy Springmann, Amy Shira Teitel, Jason Major, David Dickenson, Dr. Matthew Francis

And here are the stories that we covered.

Researcher Finds a New Moon Around Neptune in Hubble Data

This composite Hubble Space Telescope picture shows the location of a newly discovered moon, designated S/2004 N 1, orbiting the giant planet Neptune, nearly 4.8 billion km (3 billion miles) from Earth. Credit: NASA, ESA, and M. Showalter (SETI Institute).

It took sharp and patient eyes, but researcher Mark Showalter of the SETI Institute has found a tiny moon orbiting Neptune that’s never been seen before. Showalter used archival data from the Hubble Space Telescope to find the moon, designated S/2004 N 1, which is estimated to be no more than 19 km (12 miles) across, making it the smallest known moon in the Neptunian system. This is the 14th known moon of Neptune.

S/2004 N 1 is so small and dim that it is roughly 100 million times fainter than the faintest star that can be seen with the naked eye, NASA said. Even Voyager 2 –which flew past Neptune in 1989 to survey planet’s system of moons and rings – didn’t catch a view of this moon, even though data from Voyager 2 revealed several other moons.

Neptune photographed by Voyage. Image credit: NASA/JPL
Neptune photographed by Voyager 2. Image credit: NASA/JPL

Showalter was studying the faint arcs, or segments of rings, around Neptune earlier this month.

“The moons and arcs orbit very quickly, so we had to devise a way to follow their motion in order to bring out the details of the system,” he said. “It’s the same reason a sports photographer tracks a running athlete — the athlete stays in focus, but the background blurs.”

The method involved tracking the movement of a white dot that appears over and over again in more than 150 archival Neptune photographs taken by Hubble from 2004 to 2009.

Showalter noticed the white dot about 100,000 km (65,400 miles) from Neptune, located between the orbits of the Neptunian moons Larissa and Proteus. Showalter plotted a circular orbit for the moon, which completes one revolution around Neptune every 23 hours.

Showalter should get the “Eagle Eyes” award for 2013!

Source: HubbleSite

Saturn Storm’s ‘Suck Zone’ Shown In Spectacular Cassini Shots

A false-color image, taken by the Cassini spacecraft, of a huge hurricane at Saturn's north pole. Credit: NASA/JPL-Caltech/SSI

Checking out the above pictures of a Saturn hurricane, one can’t help but wonder: how close was the Cassini spacecraft to spiralling down into gassy nothingness?

These dizzying images of a hurricane on Saturn, of course, came as the spacecraft zoomed overhead at a safe distance. NASA’s goal in examining this huge hurricane is to figure out its mechanisms and to compare it to what happens on our home planet.

Hurricanes on Earth munch on water vapor to keep spinning. On Saturn, there’s no vast pool of water to draw from, but there’s still enough water vapor in the clouds to help scientists understand more about how hurricanes on Earth begin, and continue.

“We did a double take when we saw this vortex because it looks so much like a hurricane on Earth,” stated Andrew Ingersoll, a Cassini imaging team member at the California Institute of Technology in Pasadena. “But there it is at Saturn, on a much larger scale, and it is somehow getting by on the small amounts of water vapor in Saturn’s hydrogen atmosphere.”

A false-color view of Saturn's storm, as seen through Cassini's wide-angle camera. The blue bands at the edge are Saturn's rings. Credit: NASA/JPL-Caltech/SSI
A false-color view of Saturn’s storm, as seen through Cassini’s wide-angle camera. You can see the eye in dark red, the jet stream in yellowish-green, and low-lying clouds in orange. The blue bands at the edge are Saturn’s rings. Credit: NASA/JPL-Caltech/SSI

There’s one big change in hurricane activity you’d observe if suddenly shifted from Earth to Saturn: this behemoth — 1,250 miles (2,000 kilometers) wide, about 20 times its Earthly counterparts — spins a heckuva lot faster.

In the eye, winds in the wall speed more than four times faster than what you’d find on Earth. The hurricane also sticks around at the north pole. On Earth, hurricanes head north (and eventually dissipate) due to wind forces generated by the planet’s rotation.

“The polar hurricane has nowhere else to go, and that’s likely why it’s stuck at the pole,” stated Kunio Sayanagi, a Cassini imaging team associate at Hampton University in Hampton, Va.

Cassini initially spotted the storm in 2004 through its heat-seeking infrared camera, when the north pole was shrouded in darkness during winter.

The spacecraft first caught the storm in visible light in 2009, when NASA controllers altered Cassini’s orbit so that it could view the poles.

Saturn, of course, is not the only gas giant in the solar system with massive hurricanes. Jupiter’s Great Red Spot has been raging since before humans first spotted it in the 1600s. It appears to be shrinking, and could become circular by 2040.

Neptune also has hurricanes that can reach speeds of 1,300 miles (2,100 kilometers) an hour despite its cold nature; it even had a Great Dark Spot spotted during Voyager’s flypast in 1989 that later faded from view. Uranus, which scientists previously believed was quiet, is a pretty stormy place as well.

Check out this YouTube video for more details on how Saturn’s storm works.

Source: Jet Propulsion Laboratory

Is Triton Hiding an Underground Ocean?

Voyager 2 mosaic of Neptune’s largest moon, Triton (NASA)

At 1,680 miles (2,700 km) across, the frigid and wrinkled Triton is Neptune’s largest moon and the seventh largest in the Solar System. It orbits the planet backwards – that is, in the opposite direction that Neptune rotates – and is the only large moon to do so, leading astronomers to believe that Triton is actually a captured Kuiper Belt Object that fell into orbit around Neptune at some point in our solar system’s nearly 4.7-billion-year history.

Briefly visited by Voyager 2 in late August 1989, Triton was found to have a curiously mottled and rather reflective surface nearly half-covered with a bumpy “cantaloupe terrain” and a crust made up of mostly water ice, wrapped around a dense core of metallic rock. But researchers from the University of Maryland are suggesting that between the ice and rock may lie a hidden ocean of water, kept liquid despite estimated temperatures of  -97°C (-143°F), making Triton yet another moon that could have a subsurface sea.

How could such a chilly world maintain an ocean of liquid water for any length of time? For one thing, the presence of ammonia inside Triton would help to significantly lower the freezing point of water, making for a very cold — not to mention nasty-tasting — subsurface ocean that refrains from freezing solid.

In addition to this, Triton may have a source of internal heat — if not several. When Triton was first captured by Neptune’s gravity its orbit would have initially been highly elliptical, subjecting the new moon to intense tidal flexing that would have generated quite a bit of heat due to friction (not unlike what happens on Jupiter’s volcanic moon Io.) Although over time Triton’s orbit has become very nearly circular around Neptune due to the energy loss caused by such tidal forces, the heat could have been enough to melt a considerable amount of water ice trapped beneath Triton’s crust.

Related: Titan’s Tides Suggest a Subsurface Sea

Another possible source of heat is the decay of radioactive isotopes, an ongoing process which can heat a planet internally for billions of years. Although not alone enough to defrost an entire ocean, combine this radiogenic heating with tidal heating and Triton could very well have enough warmth to harbor a thin, ammonia-rich ocean beneath an insulating “blanket” of frozen crust for a very long time — although eventually it too will cool and freeze solid like the rest of the moon. Whether this has already happened or still has yet to happen remains to be seen, as several unknowns are still part of the equation.

“I think it is extremely likely that a subsurface ammonia-rich ocean exists in Triton,” said Saswata Hier-Majumder at the University of Maryland’s Department of Geology, whose team’s paper was recently published in the August edition of the journal Icarus. “[Yet] there are a number of uncertainties in our knowledge of Triton’s interior and past which makes it difficult to predict with absolute certainty.”

Still, any promise of liquid water existing elsewhere in large amounts should make us take notice, as it’s within such environments that scientists believe lie our best chances of locating any extraterrestrial life. Even in the farthest reaches of the Solar System, from the planets to their moons, into the Kuiper Belt and even beyond, if there’s heat, liquid water and the right elements — all of which seem to be popping up in the most surprising of places — the stage can be set for life to take hold.

Read more about this here on Astrobiology.net.

Inset image: Voyager 2 portrait of Neptune and Triton taken on August 28, 1989. (NASA)

Weekly SkyWatcher’s Forecast: April 30-May 6, 2012

Large Magellanic Cloud - Image Courtesy of NASA

[/caption]

Greetings, fellow SkyWatchers! Are you ready for another week filled with bright planets, a meteor shower, challenging lunar features, interesting stars and astronomy history? Then you have come to the right place! Bring along your telescopes and binoculars and meet me in the backyard…

Monday, April 30 – Karl Frederich Gauss was born on this day in 1777. Known as the “Prince of Mathematics,” Gauss contributed to the field of astronomy in many ways – from computing asteroid orbits to inventing the heliotrope. Out of Gauss’ many endeavors, he is most recognized for his work in magnetism. We understand the term “gauss” as a magnetic unit – a refrigerator magnet carries about 100 gauss while an average sunspot might go up to 4000. On the most extreme ends of the magnetic scale, the Earth produces about 0.5 gauss at its poles, while a magnetar can produce as much as 10 to the 15th power in gauss units!

While we cannot directly observe a magnetar, those living in the Southern Hemisphere can view a region of the sky where magnetars are known to exist – the Large Magellanic Cloud – or you can use the projection method to view a sunspot! If you have a proper solar filter, magnetism distorts sunspots as they near the limb – called the “Wilson Effect”

Tuesday, May 1 – On this day in 1949 Gerard Kuiper discovered Nereid, a satellite of Neptune. If you’re game, you can find Neptune – usually hanging around in Capricornus – about an hour before dawn. While it can be seen in binoculars as a bluish “star,” it takes around a 6″ telescope and some magnification to resolve its disc. Today’s imaging technology can even reveal its moons!

While you’re out this morning, keep an eye on the sky for the peak of the Phi Bootid meteor shower, whose radiant is near the constellation of Hercules. While the best time to view a meteor shower is around 2:00 a.m. local time, you will have best success watching for these meteors when the Moon is as far west as possible. The average fall rate is about 6 per hour.

Our lunar mission for tonight is to move south, past the crater rings of Ptolemaeus, Alphonsus, Arzachel, and Purbach, until we end up at the spectacular crater Walter.

Named for Dutch astronomer Bernhard Walter, this 132- by 140-kilometer-wide lunar feature offers up amazing details at high power. It is worthwhile to take the time to study the differing levels, which drop to a maximum of 4,130 meters below the surface. Multiple interior strikes abound, but the most fascinating of all is the wall crater Nonius. Spanning 70 kilometers, Nonius would also appear to have a double strike of its own—one that’s 2,990 meters deep!

Wednesday, May 2 – On the lunar surface, we can enjoy a strange, thin feature. If you used last night’s map, you’re well acquainted with this area! Look toward the lunar south where you will note the prominent rings of craters Ptolemaeus, Alphonsus, Arzachel, Purbach, and Walter descending from north to south. Just west of them, you’ll see the emerging Mare Nubium. Between Purbach and Walter you will see the small, bright ring of Thebit with a crater caught on its edge. Look further west and you will see a long, thin, dark feature cutting across the mare. Its name? Rupes Recta – better known as The Straight Wall, or sometimes Rima Birt. It is one of the steepest known lunar slopes rising around 366 meters from the surface at a 41 degree angle.

Be sure to mark your lunar challenge notes and we’ll visit this feature again!

Another great target for a bright night is Delta Corvi. 125 light-years away, it displays a yellowish color primary and slightly blue secondary that’s an easily split star in any telescope, and a nice visual double with Eta in binoculars. Use low power and see if you can frame this bright grouping of stars in the same eyepiece field.

Before you put the telescope away for the evening, be sure to visit with Mars. If you’ve been keeping track, the red planet is slowly moving away from us and dimming even more. Tonight it should have reached an apparent -0.0 magnitude. Compare it to other nearby stars and gauge its brightness for yourself. How has its apparent position against the background stars changed over the weeks? Have you noted features like Syrtis Major or Amazonis Planitia? How have the polar caps changed?

Thursday, May 3 – Tonight we’ll use what we learned previously to locate another unusual feature – Montes Recti or the “Straight Range.” You’ll find this curiosity tucked between Plato and Sinus Iridum on the north shore of Mare Imbrium.

To binoculars or small scopes at low power, this isolated strip of mountains will appear as a white line drawn across the grey mare. It is believed this feature may be all that is left of a crater wall from the Imbrium impact. It runs for a distance of around 90 kilometers, and is approximately 15 kilometers wide. The Straight Range and some of its peaks reach up to 2072 meters! Although this doesn’t sound particularly impressive, that’s over twice as tall as the Vosges Mountains in central western Europe, and on the average very comparable to the Appalachian Mountains in the eastern United States.

Friday, May 4 – Tonight you are on your own without a map. Lunar features are easy when you become acquainted with them! Return to the Moon and explore with binoculars or telescopes the area to the south around another easy and delightful lunar feature you should recognize, the crater Gassendi. At around 110 kilometers in diameter and 2010 meters deep, this ancient crater contains a triple mountain peak in its center. As one of the most “perfect circles” on the Moon, the south wall of Gassendi has been eroded by lava flows over a 48 kilometer expanse and offers a great amount of detail to telescopic observers on its ridge- and rille-covered floor. For those observing with binoculars? Gassendi’s bright ring stands on the north shore of Mare Humorum…an area about the size of the state of Arkansas!

Northeast of Regulus by about a fistwidth is 2.61 magnitude Gamma Leonis – also known as Algieba. This is one of the finest double stars in the sky, but a little difficult at low power since the pair is both bright and close. Separated by about twice the diameter of our own solar system, this 90 light-year distant pair is slowly widening.

Another two fingerwidths north is 3.44 magnitude Zeta Leonis – also named Aldhafera. Located about 130 light-years away, this excellent star has an optical companion which is viewable in binoculars – 35 Leonis. Remember this pair, because it will lead you to galaxies later!

Saturday, May 5 – In 1961 Alan Shepard became the first American in “space” (as we now refer to that region above the sky), taking a 15 minute suborbital ride aboard the Mercury craft Freedom 7.

Return to the Moon tonight to have a look on the terminator near the southern cusp for two outstanding features. The easiest is crater Schickard – a class V mountain-walled plain that spans 227 kilometers. Named for German astronomer Wilhelm Schickard, this beautiful old crater with the subtle interior details has another crater caught on its northern wall named Lehmann.

Look further south for one of the Moon’s most incredible features – Wargentin. Among the many strange things on the lunar surface, Wargentin is unique. Once upon a time, it was a very normal crater and had been that way for hundreds of millions of years – then it happened. Either a fissure opened in its interior, or the meteoric impact that formed it caused molten lava to begin to rise. Oddly enough, Wargentin’s walls were without large enough breaks to allow the lava to escape and it continued to fill the crater to the rim. Often referred to as “the Cheese,” enjoy Wargentin tonight for its unusual appearance and be sure to note Nasmyth and Phocylides as well!

Before we leave, let’s have a look east at 3.34 magnitude Theta Leonis. Also known as Chort, mark this one in your memory, as well as 3.94 magnitude Iota to the south as markers for a galaxy hop. Last is easternmost 2.14 magnitude Beta. Denebola is the “Lion’s Tail” and has several faint optical companions.

Sunday, May 6 – Earlier we learned about awesome magnetic energy, but what happens when you find magnetism in a very unlikely place? Tonight might be Full Moon, but we can still have a look at the lunar surface just a little southeast of the grey oval of Grimaldi. The area we are looking for is called the Sirsalis Rille and on an orb devoid of magnetic fields – it’s magnetic! Like a dry river bed, this ancient “crack” on the surface runs 480 kilometers along the surface and branches in many areas.

For those who like curiosities, our target for tonight will be 1.4 degrees northwest of 59 Leonis, which is itself about a degree southwest of Xi. While this type of observation may not be for everyone, what we are looking for is a very special star – a red dwarf named Wolf 359 (RA 10 56 28.99 Dec +07 00 52.0).

Discovered photographically by Max Wolf in 1959, charts from that time period will no longer be accurate because of the star’s large proper motion. It is one of the least luminous stars known, and we probably wouldn’t even know it was there except for the fact that it is the third closest star to our solar system. Located only 7.5 light-years away, this miniature star is about 8% the size of our Sun – making it roughly the size of Jupiter. Oddly enough, it is also a “flare star” – capable of jumping another magnitude brighter at random intervals. It might be faint and difficult to spot in mid-sized scopes, but Wolf 359 is definitely one of the most unusual things you will ever observe!

Until next week? Ask for the Moon, but keep on reaching for the stars!