New Horizons’ historic journey to Pluto and beyond continues to provide surprises. As data from the spacecraft’s close encounter with Pluto and its moons arrives at Earth, scientists are piecing together an increasingly intriguing picture of the dwarf planet. The latest discovery is centred around Pluto’s atmosphere, and what are called ‘atmospheric gravity waves.’
Atmospheric gravity waves are a different phenomenon than the gravity waves that were detected for the first time in February, 2016. Those gravity waves are ripples in the fabric of space time, first predicted by Albert Einstein back in 1916. After years of searching, the LIGO instrument detected gravity waves that resulted from two black holes colliding. The discovery of what you might call ‘Einsteinian Gravity Waves’ may end up revolutionizing astronomy.
New Horizons has revealed surprise after surprise in its study of Pluto. Its atmosphere has turned out to be much more complex than anybody expected. It’s composed of 90% nitrogen, with extensive haze layers. Scientists have discovered that Pluto’s atmosphere can vary in brightness depending on viewpoint and illumination, while the vertical structure of the layered haze remains unchanged.
Scientists studying the New Horizons’ data think that atmospheric gravity waves, also called buoyancy waves, are responsible. Atmospheric gravity waves are known to exist on only two other planets; Earth and Mars. They are typically caused by wind flowing over obstructions like mountain ranges.
The layers in Pluto’s atmosphere, and their varying brightness, are most easily seen when they are backlit by the Sun. This was the viewpoint New Horizons had when it captured these images on its departure from Pluto on July 14, 2015. The spacecraft’s Long Range Reconnaissance Imager (LORRI) captured them, using time intervals of 2 to 5 hours. What they show is the brightness of the layers changing by 30% without any change in their height above the surface of the planet.
LORRI, as its name suggests, is a long range image capture instrument. It also captures high resolution geologic data, and was used to map Pluto’s far side. The principal investigator for LORRI is Andy Cheng, from the Applied Physics Laboratory at Johns Hopkins University, in Maryland. “Pluto is simply amazing,” said Andy Cheng. “When I first saw these images and the haze structures that they reveal, I knew we had a new clue to the nature of Pluto’s hazes. The fact that we don’t see the haze layers moving up or down will be important to future modelling efforts.”
Overall, Pluto and its system of moons has turned out to be a much more dynamic place than previously thought. A geologically active landscape, possible ice volcanoes, eroding cliffs made of methane ice, and more, have woken us up to Pluto’s complexity. But its atmosphere has turned out to be just as complex and puzzling.
New Horizons has departed the Pluto system now, and is headed for the Kuiper Belt. The Kuiper Belt is considered a relic of the early Solar System. New Horizons will visit another icy world there, and hopefully continue on to the edge of the heliosphere, the same way the Voyage probes have. New Horizons has enough energy to last until approximately the mid-2030’s, if all goes well.
Every year, the NASA Innovative Advanced Concepts (NIAC) program puts out the call to the general public, hoping to find better or entirely new aerospace architectures, systems, or mission ideas. As part of the Space Technology Mission Directorate, this program has been in operation since 1998, serving as a high-level entry point to entrepreneurs, innovators and researchers who want to contribute to human space exploration.
This year, thirteen concepts were chosen for Phase I of the NIAC program, ranging from reprogrammed microorganisms for Mars, a two-dimensional spacecraft that could de-orbit space debris, an analog rover for extreme environments, a robot that turn asteroids into spacecraft, and a next-generation exoplanet hunter. These proposals were awarded $100,000 each for a nine month period to assess the feasibility of their concept.
Anybody with an ounce of intellectual curiosity (and an internet connection) has seen the images of Pluto and its system taken by the New Horizons probe. The images and data from New Horizons have opened the door to Pluto’s atmosphere, geology, and composition. But New Horizons wasn’t entirely dormant during its 9 year, billion-plus mile journey to Pluto.
New Horizons returned 3 years worth of data on the solar wind that sweeps through the near-emptiness of space. The solar wind is the stream of particles that is released from the upper atmosphere of the Sun, called the corona. The Sun’s solar wind is what creates space weather in our solar system, and the wind itself varies in temperature, speed, and density.
The solar wind data from New Horizons, which NASA calls an “unprecedented set of observations,” is filling in a gap in our knowledge. Observatories like the Solar Dynamics Observatory (SDO) and the Solar and Heliospheric Observatory (SOHO) are studying the Sun up close, and the Voyager probes have sampled the solar wind near the edge of the heliosphere, where the solar wind meets interstellar space, but New Horizons is giving us our first look at the solar wind in Pluto’s region of space.
This solar wind data should shed some light on a number of things, including the dangerous radiation astronauts face when in space. There is a type of particle with extreme energy levels called anomalous cosmic rays. When travelling close to Earth, these high-velocity rays can be a serious radiation hazard to astronauts.
The data from New Horizons reveals particles that pick up an acceleration boost, which makes them exceed their initial speed. It’s thought that these particles could be the precursors to anomalous cosmic rays. A better understanding of this might lead to a better way to protect astronauts.
These same rays have other effects further out in space. It looks like they are partly responsible for shaping the edge of the heliosphere; the region in space where the solar wind meets the interstellar medium.
New Horizons has also told us something about the structure of the solar wind the further it travels from the Sun. Close to the Sun, phenomena like coronal mass ejections (CMEs) have a clearly discernible structure. And the differences in the solar wind, in terms of velocity, density, and temperature, are also discernible. They’re determined by the region of the Sun they came from. New Horizons found that far out in the solar system, these structures have changed.
“At this distance, the scale size of discernible structures increases, since smaller structures are worn down or merge together,” said Heather Elliott, a space scientist at the Southwest Research Institute in San Antonio, Texas, and the lead author of a paper to be published in the Astrophysical Journal. “It’s hard to predict if the interaction between smaller structures will create a bigger structure, or if they will flatten out completely.”
The Voyager probes measured the solar wind as they travelled through our Solar System into the interstellar medium. They’ve told us a lot about the solar wind in the more distant parts of our system, but their instruments aren’t as sensitive and advanced as New Horizons’. This second data set from New Horizons is helping to fill in the blanks in our knowledge.
It’s time to whip out your 3-D glasses to enjoy and scrutinize the remarkable detail of spectacular terrain revealed in a new high resolution stereo image of Pluto – King of the Kuiper Belt! – taken by NASA’s New Horizons spacecraft.
The amazing new stereo Plutonian image focuses on an area dominated by a mysterious feature that geologists call ‘bladed’ terrain – seen above – and its unlike anything seen elsewhere in our solar system.
Its located in a broad region of rough highlands informally known as Tartarus Dorsa – situated to the east of the Pluto’s huge heart shaped feature called Tombaugh Regio. The best resolution is approximately 1,000 feet (310 meters).
The stereo view combines a pair of images captured by New Horizons Ralph/Multispectral Visible Imaging Camera (MVIC) science instruments. They were taken about 14 minutes apart on during history making first ever flyby of the Pluto planetary system on July 14, 2015.
The first was taken when New Horizons was 16,000 miles (25,000 kilometers) away from Pluto, the second when the spacecraft was 10,000 miles (about 17,000 kilometers) away.
The blades align from north to south, typically reach up to about 550 yards (500 meters) high and are spaced about 2-4 miles (3-5 kilometers). Thus they are among the planets steepest features. They are “perched on a much broader set of rounded ridges that are separated by flat valley floors,” according to descriptions from the New Horizons science team.
Mission scientists have also noted that the bladed terrain has the texture of “snakeskin” owing to their “scaly raised relief.”
In the companion global image from NASA (below), the bladed terrain is outlined in red and shown to extend quite far to the east of Tombaugh Regio.
The composite image was taken on July 13, 2015, the day before the closest approach flyby, when the probe was farther away thus shows lower resolution. It combines a pair of images from two of the science instruments – a Ralph/Multispectral Visible Imaging Camera (MVIC) color scan and an image from the Long Range Reconnaissance Imager (LORRI).
The MVIC scan was taken from a range of 1 million miles (1.6 million kilometers), at a resolution of 20 miles (32 kilometers) per pixel. The corresponding LORRI image was obtained from roughly the same range, but has a higher spatial resolution of 5 miles (8 kilometers) per pixel, say officials.
Scientists have developed several possible theories about the origins of the bladed terrain, including erosion from evaporating ices or deposition of methane ices.
Measurements from the Linear Etalon Imaging Spectral Array (LEISA) instrument reveal that that this region “is composed of methane (CH4) ice with a smattering of water,” reports New Horizons researcher Orkan Umurhan.
He speculates that “the material making up the bladed terrain is a methane clathrate. A clathrate is a structure in which a primary molecular species (say water, or H2O) forms a crystalline ‘cage’ to contain a guest molecule (methane or CH4, for example).”
But the question of whether that methane ice is strong enough to maintain the steep walled snakeskin features, will take much more research to determine a conclusive answer.
Umurhan suggests that more research could help determine if the “methane clathrates in the icy moons of the outer solar system and also in the Kuiper Belt were formed way back before the solar system formed – i.e., within the protosolar nebula – potentially making them probably some of the oldest materials in our solar system.”
Pluto continues to amaze and surprise us as the data streams back to eagerly waiting scientists on Earth over many more months to come – followed by years and decades of painstaking analysis.
During New Horizons flyby on July 14, 2015, it discovered that Pluto is the biggest object in the outer solar system and thus the ‘King of the Kuiper Belt.”
The Kuiper Belt comprises the third and outermost region of worlds in our solar system.
Pluto is the last planet in our solar system to be visited in the initial reconnaissance of planets by spacecraft from Earth since the dawn of the Space Age.
New Horizons remains on target to fly by a second Kuiper Belt Object (KBO) on Jan. 1, 2019 – tentatively named PT1, for Potential Target 1. It is much smaller than Pluto and was recently selected based on images taken by NASA’s Hubble Space Telescope.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Learn more about NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, SpaceX, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:
Apr 9/10: “NASA and the Road to Mars Human Spaceflight programs” and “Curiosity explores Mars” at NEAF (NorthEast Astronomy and Space Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club – http://rocklandastronomy.com/neaf.html
Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/
Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html
The high albedo (reflectivity) of some of Pluto’s moons supports the theory that those moons were formed as a result of a collision, rather than being Kuiper Belt Objects (KBOs) that wandered too close and were captured by Pluto’s gravity. Data supporting the collision theory came from NASA’s New Horizons spacecraft as it flew by Pluto in July 2015.
The Pluto system is a complex one. Pluto has 5 moons: Charon, Styx, Nix, Kerberos, and Hydra. Charon is the only moon that is tidally locked with Pluto, and the two are sometimes called a double dwarf planet. The system’s barycenter lies between Pluto and Charon, though much closer to Pluto. The objects in the system move in near-circular orbits, rather than ellipses.
Pluto and Charon were thought to have formed the same way the other planets formed in the Solar System; by coalescing out of a ring of debris left over after the Sun formed. Then, it was thought, the other Plutonian moons were captured from the Kuiper Belt. Pluto resides in the Kuiper Belt, so this made sense. Some of the other moons in our Solar System, like Neptune’s Triton and Saturn’s Phoebe, are also thought to be captured Kuiper Belt Objects (KBOs).
A competing theory for the formation of the Pluto system is the collision theory. This theory states that Pluto and Charon did indeed coalesce out of the ring of debris around the Sun, and that Charon was itself a dwarf planet. But a collision occurred after that, about 4 or 4.5 billion years ago, between Pluto and an object about the same size as Pluto.
This collision left Pluto and Charon in their binary state, but created a circumbinary disk of debris out of which the other 4 moons formed. There are competing versions of these theories, one of which suggests that all of Pluto’s 5 moons were formed by this collision, and none coalesced out of the circumstellar disk of debris that the other planets were formed from.
New Horizons has delivered measurements and data showing that the albedo of Pluto’s 4 smallest moons is much too high for captured KBOs. Their surface reflectivity is highly suggestive of a water-ice composition. Measured KBOs have a geometric albedo of less than .20, while Styx, Nix, Hydra, and Kerberos have values of .40, .57, .56, and .45 respectively. This points to the idea that the object that collided with Pluto 4 to 4.5 billion years ago had at least some icy surface layers.
Pluto’s 4 small moons, Styx, Nix, Kerberos, and Hydra, are all non-spheroidal. This also points to their origins as conglomerated objects which formed from a collision-induced debris disk, rather than as captured Kuiper Belt objects.
These results were published in the journal Science, on March 18th, 2016. They were gathered using the Long-Range Reconnaissance Imager (LORRI), and the Multispectral Visible Imaging Camera (MVIC) instruments on board New Horizons.
Half of the data from New Horizons’ visit to Pluto is yet to arrive, including data from the Linear Etalon Imaging Spectral Array (LEISA). Scientists are hopeful that this data, and all the existing data which together will take years to analyze, will answer some of the questions surrounding the formation of the Pluto system.
The New Horizons probe revealed the surface features of Pluto in rich detail when it reached the dwarf planet in July 2015. Some of the features look like snapshots of rivers and lakes that are locked firmly in place by Pluto’s frigid temperatures. But now scientists studying the data coming back from New Horizons think that those frozen lakes and rivers could once have been liquid nitrogen.
Pluto has turned out be a surprisingly active place. New Horizons has shown us what might be clouds in Pluto’s atmosphere, mountains that might be ice volcanoes, and cliffs made of methane ice that melt away into the plains. If there were oceans and rivers of liquid nitrogen on the surface of Pluto, that would fit in with our evolving understanding of Pluto as a much more active planet than we thought.
Richard Binzel, a New Horizons team member from MIT, thinks that lakes of liquid nitrogen could have existed some 800 or 900 million years ago. It all stems from Pluto’s axial tilt, which at 120 degrees is much more pronounced than Earth’s relatively mild 23 degree tilt. And computer modelling suggests that this tilt could have even been more extreme many millions of years ago.
The result of this extreme tilt is that much more of Pluto’s surface would have been exposed to sunlight. That may have warmed Pluto enough to allow liquid nitrogen to flow over the planet’s surface. These kinds of changes to a planet’s axial tilt, (and precession and eccentricity) affect a planet’s climate in what are called Milankovitch cycles. The same cycles are thought to have a similar effect on Earth’s climate, though not as extreme as on Pluto.
According to Binzel, Pluto could be somewhere in between its temperature extremes, meaning that if Pluto will ever be warm enough for liquid nitrogen again, it could be hundreds of millions of years from now. “Right now, Pluto is between two extreme climate states,” Binzel says.
Alan Stern is a planetary scientist at the Southwest Research Institute, and New Horizons’ Principal Investigator. He thinks that these long-cycle climate changes could have a very pronounced effect on Pluto, which has a nitrogen-rich atmosphere. In ancient times, Pluto’s atmosphere could have been more dense than Mars’. “This opens up the possibility that liquid nitrogen may have once or even many times flowed on Pluto’s surface,” he said.
More data from New Horizons is still on its way. About half is yet to arrive. That data, and further analysis, might discredit the fledgling idea that Pluto had and will have again lakes of liquid nitrogen. “We are just beginning to understand the long-term climate of Pluto,” said Binzel.
This week is the 47th Lunar and Planetary Science Conference (LPSC) in Houston. Members of the New Horizons team will be presenting almost 40 reports on Pluto and its system of moons at this conference. Stern’s lecture, titled “The Exploration of Pluto,” will be archived online at http://livestream.com/viewnow/LPSC2016.
The New Horizons team is releasing their first set of five research papers on Pluto and its moons. What the team is calling a “comprehensive set of papers” is the result of the New Horizons spacecraft’s close encounter with Pluto and its moons last summer. New Horizons has been transmitting data from the encounter that time, and will be sending data back for months to come.
We can tell from images that Pluto is not what we thought it was. Images and data show that Pluto is a much more active planet than we thought, and its surface shows a diversity of landscapes and geological processes. There’s been a lot of discussion about Pluto and its moons, and a lot of educated guesses about what’s going on there, but the 5 papers released by the team will take the discussion to a new level.
“These five detailed papers completely transform our view of Pluto – revealing the former ‘astronomer’s planet’ to be a real world with diverse and active geology, exotic surface chemistry, a complex atmosphere, puzzling interaction with the sun and an intriguing system of small moons,” said Alan Stern, New Horizons principal investigator from the Southwest Research Institute (SwRI), Boulder, Colorado.
The surface of Pluto is a constantly changing palette, shaped by the interactions between the volatile compounds nitrogen, methane, and carbon monoxide ices with the much sturdier and more predictable water ice. The evaporation and condensation of these compounds shapes the surface of Pluto. “These cycles are a lot richer than those on Earth, where there’s really only one material that condenses and evaporates – water,” said Will Grundy of the Lowell Observatory, Flagstaff, Arizona.
Images from New Horizons showed that Pluto’s moons are highly reflective, much more reflective than other bodies in the Kuiper Belt. This led scientists to believe that rather than being captured from the Kuiper Belt and drawn into orbit around Pluto, the moons may have been a result of a collision that formed the Pluto system.
The New Horizons team has found evidence to support this, and evidence that the surface ages of some moons are at least 4 billion years old. “These latter two results reinforce the hypothesis that the small moons formed in the aftermath of a collision that produced the Pluto-Charon binary system,” said Hal Weaver, New Horizons project scientist from the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland.
There’s a lot of material in these papers, and I direct interested readers to a summary here: Top New Horizons Findings.
Images from the New Horizons spacecraft show a bite-mark shaped feature on the surface of Pluto. Scientists think that the feature is caused by the sublimation of methane ice, causing cliffs to erode and leaving a flat plain in their place. The images were captured just prior to New Horizon’s closest approach to Pluto on July 14th, 2015.
In the image above, which is of Pluto’s western hemisphere, three main features are shown. The first is Vega Terra, which as a raised plateau area. The second is the Piri Planitia, which is a flatter and lower area of plains. Piri Planitia shows an absence of craters, meaning it is geologically younger. Dividing Terra and Planitia are the Piri Rupes, the cliffs which have the bite-mark shaped feature that caught the interest of scientist.
The colored image on the right shows methane-rich areas in purple. Scientists think that as the methane ice of Piri Rupes is sublimated away into the atmosphere, the cliffs are removed and the flat plains of Piri Planitia take their place. The image also shows some methane mesas which have not sublimated away yet.
New Horizons’ data also shows that Piri Planitia has a higher content of water ice, which is shown in blue. Because of the frigid temperature on Pluto, it’s thought that this water ice is like bedrock. It is immobile, and as the methane ice is sublimated away, the water ice bedrock of Piri Planitia is left exposed.
Prior to New Horizons’ arrival at Pluto, it was generally thought that not much was happening at Pluto. But as these images show, and as New Horizons keeps proving, Pluto is far from an inactive place, and there’s a lot to hold the interest of planetary scientists.
I think we were all blown away when the New Horizons spacecraft looked back at Pluto’s dark side and returned the first photos of a surprisingly complex, layered atmosphere. Colorless nitrogen along with a small percentage of methane make up Pluto’s air. Layers of haze are likely created when the two gases react in sunlight to form tiny, soot-like particles called tholins. These can ultimately grow large enough to settle toward the surface and coat and color Pluto’s icy exterior.
Now it seems Pluto’s atmosphere is capable of doing even more — making clouds! In an e-mail exchange with New Scientist, Lowell Observatory astronomer Will Grundy discusses the possibility that streaks and small condensations within the hazes might be individual clouds. Grundy also tracked a feature as it passed over different parts of the Plutonian landscape below, strongly suggesting a cloud. If confirmed, they’d be the first-ever clouds seen on the dwarf planet, and a sign this small 1,473-mile-wide (2,370 km) orb possesses an even more complex atmosphere than imagined.
Given the onion-like layers of haze and potential clouds, perhaps we shouldn’t be surprise that it snows on Pluto. The New Horizons team announced the discovery this week of a chain of exotic snowcapped mountains stretching across the dark expanse of the informally named Cthulhu Regio. Cthulhu, pronounced kuh-THU-lu and named for a character in American horror writer H.P. Lovecraft’s books, stretches nearly halfway around Pluto’s equator, starting from the west of the vast nitrogen ice plain, Sputnik Planum. At 1,850 miles (3,000 km) long and 450 miles (750 km) wide, Cthulhu is a bit larger than the state of Alaska. But ever so much colder!
Cthulhu’s red color probably comes from a covering of dark tholins formed when methane interacts with sunlight. But new close-up images reveal that the region’s highest mountains appear coated with a much brighter material. Scientists think it’s methane, condensed as ice onto the peaks from Pluto’s atmosphere.
“That this material coats only the upper slopes of the peaks suggests methane ice may act like water in Earth’s atmosphere, condensing as frost at high altitude,” said John Stansberry, a New Horizons science team member.
Compositional data from the New Horizon’s Ralph/Multispectral Visible Imaging Camera (MVIC), shown in the right panel in the image above, shows that the location of the bright ice on the mountain peaks correlates almost exactly with the distribution of methane ice, shown in false color as purple.
New Horizons still has plenty of images stored on its hard drive, so we’re likely to see more clouds, frosty peaks and gosh-knows-what-else as the probe speeds ever deeper into space while returning daily postcards from its historic encounter.
Pluto’s frozen nitrogen custard “heart” has certainly received its share of attention. Dozens of wide and close-up photos homing on this fascinating region rimmed by mountains and badlands have been relayed back to Earth by NASA’s New Horizons probe after last July’s flyby. For being only 1,473 miles (2,370 km) in diameter, Pluto displays an incredible diversity of landscapes.
This week, the New Horizons team shifted its focus northward, re-releasing an enhanced color image of the north polar area that was originally part of a high-resolution full-disk photograph of Pluto. Inside of the widest canyon, you can trace the sinuous outline of a narrower valley similar in outward appearance to the Moon’s Alpine Valley, cut by a narrow, curvy rill that once served as a conduit for lava.
We see multiple canyons in Pluto’s polar region, their walls broken and degraded compared to canyons seen elsewhere on the planet. Signs that they may be older and made of weaker materials and likely formed in ancient times when Pluto was more tectonically active. Perhaps they’re related to that long-ago dance between Pluto and its largest moon Charon as the two transitioned into their current tidally-locked embrace.
In the lower right corner of the image, check out those funky-shaped pits that resemble the melting outlines of boot prints in the snow. They reach 45 miles (70 km) across and 2.5 miles (4 km) deep and may indicate locations where subsurface ice has melted or sublimated (vaporized) from below, causing the ground to collapse.
Notice the variation in color across the landscape from yellow-orange to pale blue. High elevations show up in a distinctive yellow, not seen elsewhere on Pluto, with lower elevations and latitudes a bluish gray. New Horizons’ infrared measurements show abundant methane ice across the Lowell Region, with relatively little nitrogen ice. The yellow terrains may be older methane deposits that have been more processed by solar UV light than the bluer terrain. The color variations are especially striking in the area of the collapse pits.
Pluto’s icy riches include not only methane and nitrogen but also water, which forms the planet’s bedrock. NASA poetically refers to the water ice as “the canvas on which (Pluto’s) more volatile ices paint their seasonally changing patterns”. Recent images made in infrared light shows little or no water ice in the informally named places called Sputnik Planum (the left or western region of Pluto’s “heart”) and Lowell Regio. This indicates that at least in these regions, Pluto’s bedrock remains well hidden beneath a thick blanket of other ices such as methane, nitrogen and carbon monoxide.
To delve more deeply into Pluto, visit the NASA’s photojournal archive, where you’ll find 130 photos (and counting!) of the dwarf planet and its satellites.