Solved: The Mystery of Earth’s Theta Aurora

From the ground, aurora have mystified humans since we began to question the world. The space age revealed more mystery - the Theta Auroral Oval (inset) and the challenge of understanding the phenomena. (Photo Credit: NASA/APOD)

The mystery of the northern lights – aurora – spans time beyond history and to cultures of both the southern and northern hemispheres. The mystery involves the lights, fantastic patterns and mystical changes. Ancient men and women stood huddled under them wondering what it meant. Was it messages from the gods, the spirits of loved ones, warnings or messages to comfort their souls?

Aurora reside literally at the edge of space. While we know the basics and even more, we are still learning. A new published work has just added to our understanding by explaining how one type of aurora – the Theta Aurora – is created from the interaction of the charged particles, electric and magnetic fields surrounding the Earth. Their conclusions required the coordination of simultaneous observations of two missions.

The Theta Auroral Oval as observed by the NASA IMAGE FUV camera on September 15, 2005. (Credit: NASA/SWRI)
The Theta Auroral Oval as observed by the NASA IMAGE FUV camera on September 15, 2005 and anlayzed using Cluster data in the paper by Fear et al. (Credit: NASA/SWRI)

We were not aware of Thetas until the advent of the space age and our peering back at Earth. They cannot be recognized from the ground. The auroras that bystanders see from locales such as Norway or New Zealand are just arcs and subsets of the bigger picture which is the auroral ovals atop the polar regions of the Earth. Ground based all-sky cameras and polar orbiting probes had seen what were deemed “polar cap arcs.” However, it was a spacecraft Dynamics Explorer I (DE-1) that was the first to make global images of the auroral ovals and observed the first “transpolar arcs”, that is, the Theta aurora.

They are named Theta after the Greek letter that they resemble. Thetas are uncommon and do not persist long. Early on in the exploration of this phenomenon, researchers have been aware that they occur when the Sun’s magnetic field, called the Interplanetary Magnetic Field (IMF) turns northward. Most of the time the IMF in the vicinity of the Earth points south. It is a critical aspect of the Sun-Earth interaction. The southerly pointing field is able to dovetail readily with the normal direction of the Earth’s magnetic field. The northward IMF interacting with the Earth’s field is similar to two bar magnets turned head to head, repelling each other. When the IMF flips northward locally, a convolution takes place that will, at times, but not always, produce a Theta aurora.

A group of researchers led by Dr. Robert Fear from the Department of Physics & Astronomy, University of Leicester, through analysis of simultaneous spacecraft observations, has identified how the particles and fields interact to produce Theta aurora. Their study, “Direct observation of closed magnetic flux trapped in the high-latitude magnetosphere” in the Journal Science (December 19, 2014, Vol 346) utilized a combination of data from ESA’s Cluster spacecraft mission and the IMAGE spacecraft of NASA. The specific event in the Earth’s magnetosphere on September 15, 2005 was observed simultaneously by the spacecraft of both missions.

Illustrations of the Cluster II spacecraft in orbit and formation around the Earth and the NASA IMAGE spacecraft vehicle design. The two mission's observations were combined to correlate numerous auroral and magnetospheric events. Cluster II remains in operation as of December 2014 (14 yr lifespan). (Credit: ESA, NASA)
Illustrations of the Cluster II spacecraft in orbit and formation around the Earth and the NASA IMAGE spacecraft vehicle design. The two mission’s observations were combined to correlate numerous auroral and magnetospheric events. Cluster II remains in operation as of December 2014 (14 yr lifespan). (Credit: ESA, NASA)

Due to the complexity of the Sun-Earth relationship involving neutral and charged particles and electric and magnetic fields, space scientists have long attempted to make simultaneous measurements with multiple spacecraft. ISEE-1, 2 and 3 were one early attempt. Another was the Dynamics Explorer 1 & 2 spacecraft. DE-2 was in a low orbit while DE-1 was in an elongated orbit taking it deeper into the magnetosphere. At times, the pair would align on the same magnetic field lines. The field lines are like rails that guide the charged particles from far out in the magneto-tail to all the way down to the upper atmosphere – the ionosphere. Placing two or more spacecraft on the same field lines presented the means of making coordinated observations of the same event. Dr. Fear and colleagues analyzed data when ESA’s Cluster resided in the southern lobe of the magnetotail and NASA’s IMAGE (Imager for Magnetopause-to-Aurora Global Exploration) spacecraft resided above the south polar region of the Earth.

Cluster is a set of four spacecraft, still in operation after 14 years. Together with IMAGE, five craft were observing the event. Fear, et al utilized ESA spacecraft Cluster 1 (of four) and NASA’s IMAGE. On that fateful day, the IMF turned north. As described in Dr. Fear’s paper, on that day, the north and south lobes of the magnetosphere were closed. The magnetic field lines of the lobes were separated from the Solar wind and IMF due to what is called magnetic reconnection. The following diagram shows how complex Earth’s magnetosphere is; with regions such as the bow shock, magnetopause, cusps, magnetotail, particle belts and the lobes.

Illustration of the Earth's magnetosphere showing it complexity. The Theta Aurora are now confidently linked to magnetic reconnection events in the lobes of the magnetotail. (Credit: NASA)
Illustration of the Earth’s magnetosphere showing it complexity. The Theta Aurora are now confidently linked to magnetic reconnection events in the lobes of the magnetotail. (Credit: NASA)

The science paper explains that what was previously observed by only lower altitude spacecraft was captured by Cluster within the magnetotail lobes. The southerly lobe’s plasma – ionized particles – was very energetic. The measurements revealed that the southern lobe of the magnetotail was acting as a bottle and the particles were bouncing between two magnetic mirrors, that is, the lobes were close due to reconnection. The particles were highly energetic.

The presence of what is called a double loss cone signature in the electron energy distribution was a clear indicator that the particles were trapped and oscillating between mirror points. The consequences for the Earth’s ionosphere was that highly energetic particles flooded down the field lines from the lobes and impacted the upper atmosphere transferring their energy and causing the magnificent light show that we know as the Northern Lights (or Southern) in the form of a Theta Auroral Oval. This strong evidence supports the theory that Theta aurora are produced by energized particles from within closed field lines and not by energetic particles directly from the Solar Wind that find a path into the magnetosphere and reach the upper atmosphere of the Earth.

A video of an observed major geomagnetic storm (July 15, 2000) taken by the Far Ultraviolet Imaging System (FUV) on IMAGE. IMAGE operated from 2000 to December 2005 when communications were lost. (Credit: NASA/SWRI)  [click to view the animated gif]
A video of an observed major geomagnetic storm (July 15, 2000, southward IMF) taken by the Far Ultraviolet Imaging System (FUV) on the spacecraft IMAGE. IMAGE operated from 2000 until December 2005 when communications were inexplicably lost. (Credit: NASA/SWRI) [click to view the animated gif]
Without the coordination of the observations and the collective analysis, the Theta aurora phenomenon would continue to be debated. The analysis by Dr. Fear, while not definitive, is strong proof that Theta aurora are generated from particles trapped within closed field lines.

The analysis of the Cluster mission data as well as that of many other missions takes years. Years after observations are made researchers can achieve new understanding through study of arduous details or sometimes by a ha-ha moment. Aurora represent the signature of the interaction of two magnetic fields and two populations of particles – the Sun’s field and energetic particles streaming at millions of miles per hour from its surface reaching the Earth’s magnetic field. The Earth’s field is transformed by the interaction and receives energetic particles that it bottles up and energizes further. Ultimately, the Earth’s magnetic field directs some of these particles to the topside of our atmosphere. For thousands and likely tens of thousands of years, humans have questioned what it all means. Now another piece of the puzzle has been laid down with a good degree of certainty; one that explains the Theta aurora.

Reference:

Direct observation of closed magnetic flux trapped in the high-latitude magnetosphere

Transpolar arc evolution and associated potential patterns

Transpolar aurora: time evolution, associated convection patterns, and a possible cause

Related articles at Universe Today:

Guide to Space –

Earth’s Magnetic Field,

Aurora Borealis

Soar with the Aurora in this Breathtaking Real-time Video

Scene from "Soaring". Credit: Ole Salomonsen

“Soaring” by Ole Salomonsen

We’ve posted many beautiful aurora photos and videos over the years here at Universe Today, but this one about stopped my heart. Titled “Soaring”, it was all shot in real time by Ole Salomonsen, a landscape photographer based in Tromsø, Norway. Salomonsen has been shooting spectacular stills and videos of the northern lights for years. While not the first aurora video done in real time, it’s probably the most successful, high definition effort to date. Ole used a Sony A7S, which he calls “the best low light camera ever”.

It was shot from late August to mid-November in and around the city of Tromsø, as well as on the island of Senja, Norway’s second largest island and a three-hour drive from the city. But what sets this video apart from many is that it shows the aurora unfolding live as if you’re standing right there. No time lapse.

Coronal aurora scene from "Soaring". Credit: Ole Salomonsen
Coronal aurora scene from “Soaring”. Credit: Ole Salomonsen

Having witnessed the northern lights many times over the years from my home in northern Minnesota, I can vouch for how close to reality this work truly is. There’s a little more color saturation than what the naked eye would pick up, but the aurora’s changing rhythms are beautifully captured. Ole also mixes in dramatic pan shots taken as if you were running to find a clearing to get the best view. Honestly, that blew me away.

“Although auroras mostly move slowly and majestic, they can also move really fast,” wrote Salomonsen. After seeing the slow undulations of curtains and rays early in the film, you’ll really appreciate the aurora’s other side – its dazzling speed.

Scene from "Soaring". Credit: Ole Salomonsen
The human perspective – another scene from “Soaring”. Credit: Ole Salomonsen

“The corona I captured and the lightning fast sequences at the end are some of the most amazing shows I have witnessed in my many years of hunting and filming the lights,” added Ole.

And now for the most amazing part. What you just watched is only a fraction of what Salomonsen has shot during the season. Expect more soon!

Will Aurora Strike Tonight? Here’s What to Expect

A bright arc and pink-topped rays stipple the northern sky and cross the Bowl of the Big Dipper last night around 11:30 p.m. CDT over Caribou Lake north of Duluth, Minn. Credit: Guy Sander

(Scroll down for latest update)

Auroras showed up as forecast last night beginning around nightfall and lasting until about 1 a.m. CDT this morning. Then the action stopped. At peak, the Kp index dinged the bell at “5” (minor geogmagnetic storm) for about 6 hours as the incoming shock from the arrival of the solar blast rattled Earth’s magnetosphere. It wasn’t a particularly bright aurora and had to compete with moonlight, so many of you may not have seen it. You needn’t worry. A much stronger G3 geomagnetic storm from the second Earth-directed coronal mass ejection (CME) remains in the forecast for tonight. 

 

Plot showing the Kp index of magnetic activity high in the Earth's magnetic domain called the magnetosphere. The two red bars show the Kp at '5' last night and early this morning (dotted line represents 0 UT or 7 p.m. CDT). Inset is the current detailed forecast in 3-hour increments. Credit: NOAA
Plot showing the Kp index of magnetic activity high in the Earth’s magnetic domain called the magnetosphere. The two red bars show the Kp at ‘5’ last night and early this morning (dotted line represents 0 UT or 7 p.m. CDT). Inset is the current detailed forecast in Universal Time (Greenwich Time) in 3-hour increments. Credit: NOAA

Activity should begin right at nightfall and peak between 10 p.m. and 1 a.m. Central Daylight Time. The best place to observe the show is from a location well away from city lights with a good view of the northern sky. Auroras are notoriously fickle, but if the NOAA space forecasting crew is on the money, flickering lights should be visible as far south as Illinois and Kansas. The storm also has the potential to heat and expand the outer limits of Earth’s atmosphere enough to cause additional drag on low-Earth-orbiting (LEO) satellites. High-frequency radio transmissions like shortwave radio may be reduced to static particularly on paths crossing through the polar regions.

Earth’s magnetic bubble, generated by motions within its iron-nickel core and shaped by the solar wind, is called the magnetosphere. It extends some 40,000 miles forward of the planet and more than 3.9 million miles in the tailward direction. Credit: NASA
Earth’s magnetic bubble, generated by motions within its iron-nickel core and shaped by the solar wind, is called the magnetosphere. It extends some 40,000 miles forward of the planet and more than 3.9 million miles in the tailward direction. Most of the time it sheds particle blasts from the sun called coronal mass ejections, but occasionally one makes it past our defenses and we get an auroral treat. Credit: NASA

If you study the inset box in the illustration above, you can see that from 21-00UT (4 -7 p.m. Central time) the index jumps quickly form “3” to “6” as the blast from that second, stronger X-class flare (September 10) slams into our magnetosphere. Assuming the magnetic field it carries points southward, it should link into our planet’s northward-pointing field and wreak beautiful havoc. A G2 storm continues through 10 p.m. and then elevates to Kp 7 or G3 storm between 10 p.m. and 1 a.m. before subsiding slightly in the wee hours before dawn. The Kp index measures how disturbed Earth’s magnetic field is on a 9-point scale and is compiled every 3 hours by a network of magnetic observatories on the planet.

A lovely rayed arc reflected in Caribou Lake north of Duluth, Minn. on September 11, 2014. Credit: Guy Sander
A lovely rayed arc reflected in Caribou Lake north of Duluth, Minn. on September 11, 2014. Tonight the moon rises around 9:30 p.m. The lower in the sky it is, the brighter the aurora will appear. Hopefully tonight’s lights will outdo what the moon can dish out. Credit: Guy Sander

All the numbers are lined up. Now, will the weather and solar wind cooperate?  Stop back this evening as I’ll be updating with news as the storm happens. For tips on taking pictures of the aurora, please see this related story  “How  to Take Great Pictures of the Northern Lights”.

The auroral oval around 2:30 p.m. CDT this afternoon September 12 shows a southward expansion into the Scandinavian countries and Russia and Iceland. Where the sky is dark, auroras are typically seen anywhere under or along the edge of the oval. Click for current map. Credit: NOAA
The auroral oval at 11:15 p.m. CDT tonight September 12 shows a temporary pullback into northern Canada. Where the sky is dark, auroras are typically seen anywhere under or along the edge of the oval. Click for current map. Credit: NOAA

* UPDATE 8:15 a.m. Saturday September 13: Well, well, well. Yes, the effects of the solar blast did arrive and we did experience a G3 storm, only the best part happened before nightfall had settled over the U.S. and southern Canada. The peak was also fairly brief. All those arriving protons and electrons connected for a time with Earth’s magnetic field but then disconnected, leaving us with a weak storm for much of the rest of the night. More activity is expected tonight, but the forecast calls for a lesser G1 level geomagnetic storm.

* UPDATE 11 p.m. CDT: After a big surge late this afternoon and early evening, activity has temporarily dropped off. The ACE plot has “gone north” (see below). Though we’re in a lull, the latest NOAA forecast still calls for strong storms overnight.

Definite aurora seen through breaks in the clouds low in the northern sky here in Duluth, Minn. After a big surge late this afternoon and during early evening, activity's temporarily dropped off. The ACE plot has "gone north".
Definite aurora seen through breaks in the clouds low in the northern sky here in Duluth, Minn. After a big surge late this afternoon and during early evening, activity’s temporarily dropped off. The ACE plot has “gone north”.

* UPDATE 9 p.m. CDT: Aurora a bright greenish glow low in the northern sky from Duluth, Minn.

* UPDATE 7:45 p.m. CDT September 12: Wow! Kp=7 (G3 storm) at the moment. Auroras should be visible now over the far eastern seaboard of Canada including New Brunswick and the Gaspe Peninsula. I suspect that skywatchers in Maine and upstate New York should be seeing something as well. Still dusk here in the Midwest.

 

Clear Skies Tonight? Go Out and See the Aurora

A low arc, glowing green from excited oxygen, spans the northern sky around 10:30 p.m Central Daylight Time from Duluth, Minn. The Big Dipper is off to the left. Credit: Bob King

Talk of aurora is in the air.  Our earlier story today by Elizabeth Howell alerted you to the possibility of northern lights. Well, it’s showtime!  As of 9:30 p.m. Central Daylight Time, the aurora has been active low in the northern sky.

Subtle pink rays stand above the green arc at 9:35 p.m. CDT. Credit: Bob King
Subtle pink rays stand above the green arc at 9:35 p.m. CDT. Credit: Bob King

From Duluth, Minn. U.S.,  a classic green arc low in the northern sky competed with the light of the rising gibbous moon. Once my eyes were dark-adapted, faint parallel rays stood streaked the sky above the arc. NOAA space weather forecasters expect this storm to peak between 1 a.m. CDT and sunrise Friday morning September 12 at a G2 or moderate level. Skywatchers across the northern tier of states and southern Canada should see activity across the northern sky. Moonlight will compromise the show, but it rises later each night and dims through the weekend.

The approximate extent of the auroral oval forecast for 11:30 p.m. CDT from Ovation. Credit: NOAA
The approximate extent of the auroral oval forecast for 11:30 p.m. CDT from Ovation. Credit: NOAA

This is only the start. Things really kick into gear Friday night and Saturday morning when a G3 strong geomagnetic storm is expected from the more direct blast sent our way by the September 10 X1.6 flare. Auroras might be visible as far south as Illinois and Kansas.

We’ll keep you in touch with storm activity by posting regular updates over the next couple days. Including odd hours. Here are some links to check during the night as you wait for the aurora to put in an appearance at your house:

* Ovation oval – shows the approximate extent of the auroral oval that looks like a cap centered on Earth’s geomagnetic pole. During storms, the oval extends south into the northern U.S. and farther.

* Kp index – indicator of magnetic activity high overhead and updated every three hours. A Kp index of “5” means the onset of a minor storm; a Kp of “6”, a moderate storm.

* NOAA space weather forecast

* Advanced Composition Explorer (ACE) satellite plots – The magnetic field direction of the arriving wind from the sun. The topmost graph, plotting Bz, is your friend. When the curve drops into the negative zone that’s good! A prolonged stay at -10 or lower increases the chance of seeing the aurora. Negative numbers indicate a south-pointing magnetic field, which has a greater chance of  linking into Earth’s northward-pointing field and wriggling its way past our magnetic defenses and sparking auroras.

Spectacular Aurora Sneaks in Quietly, Rages All Night

Auroral arcs are topped by red rays light up the northeast while the moon and Jupiter shine off to the west in this photo taken last night over a small lake north of Duluth, Minn. Both moon and aurora light are reflected in puddles on the ice. Credit: Bob King

Expect the unexpected when it comes to northern lights. Last night beautifully illustrated nature’s penchant for surprise. A change in the “magnetic direction” of the wind of particles from the sun called the solar wind made all the difference. Minor chances for auroras blossomed into a spectacular, night-long storm for observers at mid-northern latitudes.

 

6-hours of data from NASA's Advanced Composition Explorer spacecraft, which measures energetic particles from the sun and other sources from a spot 1.5 million kilometers ahead of Earth toward the sun. By watching the Bz graph, you'll get advance notice of the potential for auroras. Click to visit the site. Credit: NOAA
6-hours of data from NASA’s Advanced Composition Explorer spacecraft, which measures energetic particles from the sun and other sources from a spot 1.5 million kilometers ahead of Earth toward the sun. By watching the Bz graph, you’ll get advance notice of the potential for auroras. Click to visit the site. Credit: NOAA

Packaged with the sun’s wind are portions of its magnetic field. As that material – called the interplanetary magnetic field (IMF) – sweeps past Earth, it normally glides by, deflected by our protective magnetic field, and we’re no worse for the wear. But when the solar magnetic field points south – called a southward Bz – it can cancel Earth’s northward-pointing field at the point of contact, opening a portal. Once linked, the IMF dumps high-speed particles into our atmosphere to light up the sky with northern lights. 

A large red patch briefly glowed above the bright green arc around 11:15 p.m. CDT last night May 3. The color was faintly visible with the naked eye. Credit: Bob King
A large red patch briefly glowed above the bright green arc around 11:15 p.m. CDT last night May 3. The color was faintly visible with the naked eye. Credit: Bob King

Spiraling down magnetic field lines like firefighters on firepoles, billions of tiny solar electrons strike oxygen and nitrogen molecules in the thin air 60-125 miles up. When the excited atoms return back to their normal rest states, they shoot off niblets of green and red light that together wash the sky in multicolor arcs and rays. Early yesterday evening, the Bz plot in the ACE satellite data dipped sharply southward (above), setting the stage for a potential auroral display.

After an intial flurry of bright rays, the aurora scaled back to two bright, diffuse arcs before erupting again around 11:30 p.m. Credit: Bob King
After an initial flurry of bright rays, the aurora scaled back to two bright, diffuse arcs with subtle rayed textures before erupting again around 11:30 p.m. Credit: Bob King

Nothing in the space weather forecast would have led you to believe northern lights were in the offing for mid-latitude skywatchers last night. Maybe a small possibility of a glow very low on the northern horizon. Instead we got the full-blown show. Nearly every form of aurora put in an appearance from multi-layered arcs spanning the northern sky to glowing red patches, crisp green rays and the bizarre flaming aurora. “Flames” look like waves or ripples of light rapidly fluttering from the bottom to the top of an auroral display. Absolutely unearthly in appearance and yet only 100 miles away.


VLF Auroral Chorus by Mark Dennison

I even broke out a hand-held VLF (very low frequency) radio and listened to the faint but crazy cosmic sounds of electrons diving through Earth’s magnetosphere. When my electron-jazzed brain finally hit the wall at 4 a.m., flames of moderately bright aurora still rippled across the north.

Just when you thought it was over, the whole northern sky burst into rays around 1 a.m. CDT. The whole northern sky lit up with green and red rays earlier this morning. While the green color was easy to see, the red was very pale. The human eye is much more sensitive to green light than red, one of the reasons why the aurora rarely appears red except in a camera during a time exposure. Credit: Bob King
Just when you thought it was over, the whole northern sky burst into rays around 1 a.m. CDT this morning. The human eye is much more sensitive to green light than red, one of the reasons why the aurora rarely appears red except in time exposures made with a camera. Credit: Bob King
Around 2 o'clock the northern lights displayed flaming when ripples of light pulse from top to bottom. It's very difficult to photograph, but here it is anyway! Credit: Bob King
Around 2 o’clock, flames pulsed from bottom to top in patchy aurora. It’s very difficult to photograph, but here it is anyway! Credit: Bob King

So what about tonight? Just like last night, there’s only a 5% chance of a minor storm. Take a look anyway –  nature always has a surprise or two up her sleeve.

This Aurora Video Shows How High The Lights Were Whizzing

Images of aurora in Alaska captured by two digital SLRs. Differences in the left and right pictures allow researchers to measure at what altitude the electrons were. Credit: Kataoka et al., 2013

Ever stood outside looking at the aurora and felt as though it was swirling just a short distance above your head? It’s hard to judge altitude when looking at sky phenomena because there are few landmarks above us. (The moon effect at the horizon is an example.) But it turns out there is a way to measure aurora altitude.

The eerie, green glow of the Northern Lights swirls about in the video you see above. A group of researchers used a unique but simple technique to measure how high the electrons were during the dazzling light display: they mounted two digital SLRs eight kilometers (five miles) apart in Alaska, and used that old astronomical friend, parallax, to measure distances.

“Using the parallax of the left-eye and the right-eye images, we can calculate the distance to the aurora using a [triangulation] method that is similar to the way the human brain comprehends the distance to an object,” stated Ryuho Kataoka, an associate professor at the National Institute of Polar Research in Japan. “Parallax is the difference in the apparent position of an object when observed at different angles.”

Altitude measurements have been done before using this technique, but it’s the first time digital SLRs were employed, the research team said. A typical aurora has electrons that are between 90 kilometers and 400 kilometers (55 miles and 249 miles) high.

By the way, for all the amateur astronomy photographers, there’s a potential chance for you to get involved with future research activities.

“Commercially available GPS units for digital SLR cameras have become popular and relatively inexpensive, and it is easy and very useful for photographers to record the accurate time and position in photographic files,” said Kataoka. “I am thinking of developing a website with a submission system to collect many interesting photographs from night-sky photographers over the world via the Internet.”

Read the entire paper in Annales Geophysicae.

Source: European Geophysical Union

Overnight Aurora Sets Sky On Fire, More Possible Tonight

At around 10 p.m. last night, the northern sky was alive with colorful auroral patches and arcs. Details: 15mm lens at f/2.8, ISO 800 and 25 second exposure. Credit: Bob King

I’m writing this at 1:30 a.m. running on what’s powering the sky over northern Minnesota right now – auroral energy. Even at this hour, rays are still sprouting in the southern sky and the entire north is milky blue-white with aurora borealis. Frankly, it’s almost impossible to resist going out again for another look.

Now updated with additional images.

An erupting filament and sharp, southward turn in the interplanetary magnetic field (IMF) was responsible for last night's northern lights show. This image was taken with the Solar and Heliospheric Observatory sun-blocking coronagraph in progress on Sept. 30. Credit: NASA/ESA
An erupting filament and sharp, southward dip in the interplanetary magnetic field (IMF) was responsible for last night’s northern lights show. This image was taken with the Solar and Heliospheric Observatory’s sun-blocking coronagraph on Sept. 30. Credit: NASA/ESA

The arrival of a powerful solar wind in excess of 375 miles per second (600 km/second) from a coronal mass ejection shocked the Earth’s magnetic sheath last night beginning around 9 p.m. CDT. The sun’s magnetic field, embedded in the wind, pointed sharply southward, allowing eager electrons and protons to worm their way past our magnetic defenses and excite the atoms in the upper atmosphere to glow. Voila! Northern lights.

A classic quiet start to Tuesday night's northern lights - a low green arc below the Big Dipper topped by a very faint red border. Credit: Bob King
A classic quiet start to Tuesday night’s northern lights – a low green arc below the Big Dipper topped by a very faint red border. Credit: Bob King

Sure, it started innocently enough. A little glow low in the northern sky. But within half an hour the aurora had intensified into a dense bar of light so and green and bright it cast shadows. This bar or swath grew and grew like some atomic amoeba until it swelled beyond the zenith into the southern sky. Meanwhile, an isolated patch of aurora glowed like an green ember beneath the Pleiades in the northeastern sky. The camera captured its eerie appearance as well as spectacular curtains of red aurora dancing above the dipper-shaped cluster.

A single patch of aurora glows beneath the Pleiades star cluster at center. Beautiful red rays as seen in the time exposure were only faintly visible with the naked eye. Credit: Bob King
A single patch of aurora glows beneath the Pleiades star cluster at center. Beautiful red rays as seen in the time exposure were only faintly visible with the naked eye. Credit: Bob King

Soft patches, oval glows and multiple arcs lit up the north, east and west, but in the first two hours of the display I never saw a ray or feature with any definition. The camera recorded a few but all was diffuse and pillowy to the eye. Rays finally made their appearance later – after midnight and later – when they massed and surged to the zenith and beyond.

A thick wall of green aurora surges upward in the northern sky headed for the zenith. Credit: Bob King
Looks a little scary. A thick wall of green aurora surges upward in the northern sky headed for the zenith. Credit: Bob King

Then came the flickering, flame-like patches and snaky shapes writhing lifelike across the constellation Pegasus during the phase called the coronal aurora. That’s when all the curtains and rays gather around the local magnetic zenith. As they flicker and flame, their shapes transform into eagle wings and snakes wriggling across the stars.

A large comet-like auroral form topped with red rays took up residence in the southeastern sky in Cetus around 10:30 p.m. last night. Credit: Bob King
A large comet-like auroral form accented with red rays took up residence in the southeastern sky in Cetus from about 10:15 until 11 p.m. last night. around 10:30 p.m. Credit: Bob King

Funny, the space weather forecast called for quiet conditions last night and for the next two nights. But the eruption of a large filament, a tubelike region of dense hydrogen gas held aloft in the sun’s atmosphere by magnetic fields, sent a bundle of subatomic joy in Earth’s direction a bit earlier than expected. More auroras are possible tonight and tomorrow night as the effect of the shock wave continues. Despite the U.S. government shutdown, the Space Weather Prediction Center remains open.

There are so many ways to appreciate the aurora but my favorite is simply to stand there dumbfounded and try to take it all in. Few phenomena in nature are more deeply moving.

Opposite Cetus in the Aquila Milky Way, a huge ghostly patch resembling breath on a mirror lingered for some 20 minutes before fading away. Credit: Bob King
Opposite Cetus in the Aquila Milky Way, a huge ghostly patch resembling breath on a mirror lingered for some 20 minutes before fading away. Credit: Bob King
This comet-like wisp next to Alpha Andromeda east of the Square of Pegasus appeared to flutter in the wind as it constantly dimmed, brightened and shape-shifted. Credit: Bob King
This comet-like wisp next to Alpha Andromeda east of the Square of Pegasus appeared to flutter in the wind as it constantly dimmed, brightened and shape-shifted. Click photo to learn more about when to expect the next auroral display. Credit: Bob King
Finally - a mighty show of rays around 3 a.m. this morning. What you don't see in the photo  are the rhythmic pulsations fluttering through the entire display, a phenomenon known as "flaming". Credit: Bob King
Finally – a mighty show of rays around 3 a.m. this morning. What you don’t see in the photo are the rhythmic pulsations fluttering through the entire display, a phenomenon known as “flaming”. Credit: Bob King

 

Magnetic and auroral activity indicators shot up to high levels last night and this morning. Left image from the POES satellite shows the extent of the auroral oval shortly after midnight CDT. At right, the Kp index shot up to 6 - a G2 or moderate geomagnetic storm - by the early morning. Click to see the current oval. Credit: NOAA
Magnetic and auroral activity indicators shot up to high levels last night and this morning. Left image from the POES satellite shows the extent of the auroral oval shortly after midnight CDT. At right, the Kp index shot up to 6 – a G2 or moderate geomagnetic storm – by the early morning. Click to see the current oval. Credit: NOAA

UPDATE: Other astrophotographers in the US also were able to capture some aurora images. John Chumack, whose images we frequently feature here on UT got this shot early on the morning of October 2:

Aurora Borealis, 'The Northern Lights, as seen near Dayton, Ohio on October 2, 2013. Credit and copyright: John Chumack/Galactic Images.
Aurora Borealis, ‘The Northern Lights, as seen near Dayton, Ohio on October 2, 2013. Credit and copyright: John Chumack/Galactic Images.

And Alan Dyer in Canada got this amazing “fiery” shot:

A red and green aurora, from southern Alberta, Canada on Oct 1, 2013. Credit and copyright: Alan Dyer/Amazing Sky Photography.
A red and green aurora, from southern Alberta, Canada on Oct 1, 2013. Credit and copyright: Alan Dyer/Amazing Sky Photography.

This timelapse from Arthur, Ontario was shot on Oct. 2 as well:

Your Guide To When, Where and How To See The Aurora Borealis

A beautiful display of the aurora borealis on June 6 this year. The line of light is the International Space Station; an airplane is off to the left. Credit: Bob King

As an amateur astronomer, two of the most frequently questions I’m asked are “When is the best time to see the aurora borealis and where is the best place?” In terms of place, two locations comes to mind: Churchill, Manitoba and Tromso, Norway. But until such time as the transporter is invented, most of us will be staying closer to home. The simple answer is north and the farther north the better.

As for the time, in the northern border states of the US, auroras occur fairly regularly around the time of solar maximum, when the sun peaks in storm activity. The current solar cycle tops out this summer and fall, so your chances at seeing northern lights are far better now than a year and a half ago when solar activity saw a steep decline during a protracted minimum.

Continue reading “Your Guide To When, Where and How To See The Aurora Borealis”

Auroras Dance Over Northern U.S. Last Night, May Return Tonight

A thick green arc of aurora settled in for the night last night. It was about 5 degrees thick and some 10 degrees high. A faint but colorful diffuse aurora glowed above it. All photos taken with a 16-35 mm lens at f/2.8 and 30-second time exposure. Credit: Bob King

A burst of energetic particles from the Sun called a coronal mass ejection peppered Earth’s magnetic field yesterday afternoon sparking a modest but beautiful all-night display of the aurora borealis. Another light show may be in the offing tonight for skywatchers living in the northern U.S.,  Canada and northern Europe.

Around 1 a.m. the arc became more active, sending up occasional rays that lasted from about a minute before fading away and being replaced by another. Credit: Bob King
Around 1 a.m. the arc became more active, sending up occasional rays that lasted from about a minute before fading away and being replaced by another. Credit: Bob King

Pale green fingers of light splayed across the northern sky at twilight’s end came as a surprise. NOAA space weather forecasters had predicted little activity. These soon faded but a thick, fuzzy arc persisted throughout the night. It arched from horizon to horizon across the northern sky like a pallid, monochromatic rainbow. Such arcs are common. Often the aurora never gets past this stage and simmers quietly or even fades away during the night.

Not this one. Around local midnight (1 a.m. CDT) here in Duluth, Minn. small bright spots and a series of tall, faint rays punctuated the arc and over the span of a half-hour completely reshaped it into loopy rayed arcs resembling a crown.

I wasn't alone when the northern lights peaked about 1:20-2 a.m. At upper left you'll see the trails of a couple of fireflies. Credit: Bob King
I wasn’t alone when the northern lights peaked about 1:20-2 a.m. At upper left you’ll see the trails of a couple of fireflies. Credit: Bob King

To the eye, the brightest parts of the aurora appeared green, but the taffy-stretched rays were colorless. The camera’s sensitivity coupled with a 30-second time exposure revealed striking pinks and hints of blue. Both pink and green colors are caused by the emission of light from oxygen atoms.

An especially beautiful ray sticks up above the arc. Shorter exposures coupled with shorter shutter speeds are the best way to capture fine details of a northern lights display. Credit: Bob King
An especially beautiful ray sticks up above the arc. Shorter exposures coupled with shorter shutter speeds are the best way to capture fine details of a northern lights display. Credit: Bob King

Bombarded by high-speed solar wind electrons and protons, they get jazzed into higher energy states. When the atoms return to rest, each spits out a photon of green or red light. All those tiny flashes add up. Multiplied by the billions of atoms that exist even in the rarefied air at the aurora’s typical 60-150 mile (100-250 km) altitude and you get heavenly eye candy.

When we see an auroral arc - and associated rays - we really seeing a small section of the much larger, permanent aurora called the auroral oval. The northern oval is centered over the geomagnetic north pole located in northern Canada. Credit: NASA
When we see an auroral arc – and associated rays – we really seeing a small section of the much larger, permanent aurora called the auroral oval. The northern oval is centered over the geomagnetic north pole located in northern Canada. Credit: NASA

I started watching the northern lights at 11 from home then took a drive to darker skies. Even at dawn’s 3 a.m. start, the green arc held its own shot through with rays that occasionally towered halfway up the northern sky. While this display wasn’t a grand spectacle like some auroras, it possessed a certain majesty the same way a long, slow movement concludes a great symphony.

Chances for more of the same continues through tonight and possibly into tomorrow, so keep a watch on the northern sky before you hit the hay tonight. If you see something green and glowing it you might be in for a treat.

In another installment, I’ll share tips on how best to see the northern lights and share several excellent tools you can use for predicting when they might occur.

Stunning Aurora Video: Polar Spirits

Polar Lights by Ole Salomonsen

This year, there have been some epic auroral displays, and astrophotographer Ole C. Salomonsen has just released this new video which includes real-time recordings of these “polar spirits.”

“My main focus is on getting the auroras [to] show as close as possible to real-time speed given the time available in a short video,” Salomonsen wrote on Vimeo. “In the film I have tried to show the slower majestic dancing lights, as well as the more faster, dramatic and abstract shows, and finally the auroras in combination with city lights and urban elements.”

Simply stunning, and if you watch closely on the opening sequence you can actually see some whales breaching out in the fjord!

POLAR SPIRITS from Ole C. Salomonsen on Vimeo.