Roughly two years and six months from now, as part of NASA’s Artemis III mission, astronauts will set foot on the lunar surface for the first time in over fifty years. Beyond this mission, NASA will deploy the elements of the Lunar Gateway, the Artemis Base Camp, and other infrastructure that will allow for a “sustained program of lunar exploration and development.” They will be joined by the European Space Agency (ESA), the China National Space Agency (CNSA), and Roscosmos, the latter two collaborating to build the International Lunar Research Station (ILRS).
Anticipating this process of lunar development (and looking to facilitate it), the Defense Advanced Research Projects Agency (DARPA) launched the 10-year Lunar Architecture (LunA-10) Capability Study in August last year. In recent news, the agency announced that it selected Northrop Grumman to develop a moon-based railroad network. This envisioned network could transport humans, supplies, and resources for space agencies and commercial ventures, facilitating exploration, scientific research, and the creation of a lunar economy.
According to the Union of Concerned Scientists (UCS), over 4,000 operational satellites are currently in orbit around Earth. According to some estimates, this number is expected to reach as high as 100,000 by the end of this decade, including telecommunication, internet, research, navigation, and Earth Observation satellites. As part of the “commercialization” of Low Earth Orbit (LEO) anticipated in this century, the presence of so many satellites will create new opportunities (as well as hazards).
The presence of these satellites will require a great deal of mitigation (to prevent collisions), servicing, and maintenance. For example, the San Francisco-based startup Orbit Fab is working to create all the necessary technology for orbital refueling services for satellites. To help realize this goal, industry giant Lockheed Martin recently announced that they are investing in Orbit Fab’s “Gas Stations in Space™” refueling technology.
Space Logistics LLC, a subsidiary of Northrop Grumman, has launched a satellite that can extend the life of other satellites. The satellite is called MEV-1, or Mission Extension Vehicle-1. MEV-1 is the first of its kind.
Once it is deployed to space, the James Webb Space Telescope (JWST) will be the most sophisticated and advanced space telescope in operation. Carrying on in the tradition ofHubble, Kepler, and Spitzer, the JWST will use its advanced suite of infrared imaging capabilities to study distant exoplanets, learn more about the Solar System, and study the earliest galaxies in the Universe.
After numerous delays, NASA announced last summer that the much-anticipated JWST would be ready to launch by 2021. And in what is admittedly a very nice change of pace, NASA recently indicated that this is still a go! According to their latest update, the JWST has just completed its final vacuum test and is on track for launch in March of 2021.
Once deployed, the James Webb Space Telescope (JWST) will be the most powerful telescope ever built. As the spiritual and scientific successor to the Hubble, Spitzer, and Kepler space telescopes, this space observatory will use its advanced suite of infrared instruments to the look back at the earliest stars and galaxies, study the Solar System in depth, and help characterize extra-solar planets (among other things).
Unfortunately, the launch of the JWST has been subject to multiple delays, with the launch date now set for some time in 2019. Luckily, on Thursday, March 8th, engineers at the Northrop Grumman company headquarters began the final step in the observatory’s integration and testing. Once complete, the JWST will be ready to ship to French Guiana, where it will be launched into space.
This final phase consisted of removing the combined optics and science instruments from their shipping containers – known as the Space Telescope Transporter for Air, Road and Sea (STTARS) – which recently arrived after being testing at NASA’s Johnson Space Center in Houston. This constitutes half the observatory, and includes the telescope’s 6.5 meter (21.3 foot) golden primary mirror.
The science payload was also tested at NASA’s Goddard Space Flight Center last year to ensure it could handle the vibrations associated with space launches and the temperatures and vacuum conditions of space. The other half of the observatory consists of the integrated spacecraft and sunshield, which is in the final phase of assembly at the Northrop Grumman company headquarters.
These will soon undergo a launch environment test to prove that they are ready to be combined with the science payload. Once both halves are finished being integrated, addition testing will be performed to guarantee the fully assembled observatory can operate at the L2 Earth-Sun Lagrange Point. As Eric Smith, the program director for the JWST at NASA Headquarters, said in a recent NASA press statement:
“Extensive and rigorous testing prior to launch has proven effective in ensuring that NASA’s missions achieve their goals in space. Webb is far along into its testing phase and has seen great success with the telescope and science instruments, which will deliver the spectacular results we anticipate.”
These final tests are crucial to ensuring that that the observatory deploys properly and can operate once it is in space. This is largely because of the telescope’s complicated design, which needs to be folded in order to fit inside the Ariane 5 rocket that it will carry it into space. Once it reaches its destination, the telescope will have to unfold again, deploying its sunshield, mirrors and primary mirror.
Not only does all of this represented a very technically-challenging feet, it is the first time that any space telescope has had to perform it. Beyond that, there are also the technical challenges of building a complex observatory that is designed to operate in space. While the JWST’s optics and science instruments were all built at room temperature here on Earth, they had to be designed to operate at cryogenic temperatures.
As such, its mirrors had to be precisely polished and formed that they would achieve the correct shape once they cool in space. Similarly, its sunshield will be operating in a zero gravity environment, but was built and tested here on Earth where the gravity is a hefty 9.8 m/s² (1 g). In short, the James Webb Space Telescope is the largest and most complex space telescope ever built, and is one of NASA’s highest priority science projects.
It is little wonder then why NASA has had to put the JWST through such a highly-rigorous testing process. As Smith put it:
“At NASA, we do the seemingly impossible every day, and it’s our job to do the hardest things humankind can think of for space exploration. The way we achieve success is to test, test and retest, so we understand the complex systems and verify they will work.”
Knowing that the JWST is now embarking on the final phase of its development – and that its engineers are confident it will perform up to task – is certainly good news. Especially in light of a recent report from the US Government Accountability Office (GAO), which stated that more delays were likely and that the project would probably exceed its original budget cap of $8 billion.
As the report indicated, it is the final phase of integration and testing where problems are most likely to be found and schedules revised. However, the report also stated that “Considering the investment NASA has made, and the good performance to date, we want to proceed very systematically through these tests to be ready for a Spring 2019 launch.”
In other words, there is no indication whatsoever that Congress is considering cancelling the project, regardless of further delays or cost overruns. And when the JWST is deployed, it will use its 6.5 meter (21-foot) infrared-optimized telescopes will search to a distance of over 13 billion light years, allow astronomers to study the atmospheres of Solar Planets, exoplanets, and other objects within our Solar System.
So while the JWST may not make its launch window in 2019, we can still expect that it will be taking to space in the near future. And when it does, we can also expect that what it reveals about our Universe will be mind-blowing!
KENNEDY SPACE CENTER, FL – Liftoff of the clandestine spy satellite codenamed ‘Zuma’ on a SpaceX Falcon 9 rocket has been postponed indefinitely to resolve a lingering issue with the testing of a payload fairing for another customer.
SpaceX announced today, Friday, Nov 17, that they will ‘stand down’ to allow engineers the additional time needed to carefully scrutinize all the pertinent data before proceeding with the top secret Zuma launch.
“We have decided to stand down and take a closer look at data from recent fairing testing for another customer,” said SpaceX spokesman John Taylor.
The super secret ‘Zuma’ spysat is a complete mystery and it has not been claimed by any U.S. government entity – not even the elusive NRO spy agency ! The NRO does claim ownership of a vast fleet of covert and hugely capable orbiting surveillance assets supporting US national security.
Zuma’s goals are veiled in virtually complete darkness. And as far as the taxpaying public is concerned its ownerless.
Originally scheduled for Wednesday evening at 8 p.m. EST Nov 15, the Zuma launch from the Florida Space Coast had already been postponed twice this week before today’s decision to called it off indefinitely.
The initial 24 hour delay to Thursday was to deal with unspecified ‘mission assurance’ issues.
The second days delay to Friday was pinned more specifically on the payload fairing or nose cone.
“Though we have preserved the range opportunity for tomorrow, we will take the time we need to complete the data review and will then confirm a new launch date,” Taylor stated.
Just exactly what the fairing problem is has not been disclosed. Its also not known if the two delays are related or not.
The fairing is jettisoned three minutes after liftoff. Any failure to deploy would result in a total loss of the mission.
Zuma was to roar off seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida during a lengthy two hour launch window that extended from 8 to 10 p.m. each targeted day this week.
The Eastern range had been reserved by SpaceX for a potential Saturday launch opportunity as well.
However all mention of the Zuma launch has now been deleted from the website of the 45th Space Wing at Patrick Air Force Base, FL.
Forecast weather conditions in central Florida were near perfect over the past few days and spectators would have witnessed a dazzling sky show as the two stage 229-foot-tall (70-meter-tall) Falcon 9 soared to orbit.
One of the few tidbits we can confirm is that the launch contract was arranged as a commercial enterprise under the auspices of Northrop Grumman Corporation – as a means to significantly slash launch costs for whatever U.S government entity is responsible for Zuma.
That goal is completely in line with SpaceX founder and CEO Elon Musk’s entire company-wide goal in developing the Falcon and Dragon family of rockets and spaceships.
“The U.S. Government assigned Northrop Grumman the responsibility of acquiring launch services for this mission,” Lon Rains, Northrop Grumman Director of Communications, told Universe Today.
“We have procured the Falcon 9 launch service from SpaceX.”
But the launch was only publicly announced 1 month ago in mid October and it suddenly appeared on the SpaceX launch manifest after an FAA launch license was granted.
We don’t know anything about the ‘Zuma’ payloads characteristics and vital statistics – despite the seemingly endless leaks streaming out of Washington these days.
“The Zuma payload is a restricted payload,” Rains told me.
“Northrop Grumman is proud to be a part of the Zuma launch,” Rains added. “This event represents a cost effective approach to space access for government missions.”
The only clue to its goals to be revealed is the intended orbit.
“It will be launched into Low Earth Orbit,” Rains informed me.
Low Earth Orbit extends to roughly 1200 miles altitude and includes the ISS orbit for example at approx. 250 miles.
“As a company, Northrop Grumman realizes this is a monumental responsibility and we have taken great care to ensure the most affordable and lowest risk scenario for Zuma.”
On Friday evening the rocket was lowered to the horizontal position on the transporter erector on pad 39A. It will be rolled back to the processing hangar outside the perimeter fence for further engineering evaluation.
Whenever the launch is rescheduled SpaceX will attempt to recover the 16 story tall first stage booster with a soft landing on the ground back at Cape Canaveral Air Force Station. So expect some extremely loud sonic booms to rock the space coast region about eight minutes after liftoff.
Watch for Ken’s continuing onsite coverage of SpaceX Zuma, KoreaSat-5A & SES-11, ULA NROL-52 and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – The super secret ‘Zuma’ spysat mission claimed by no U.S. government entity – not even the elusive NRO spy agency ! – and whose goals are veiled in virtually complete darkness– is poised for a dark of night blastoff on a SpaceX Falcon rocket Thursday evening, Nov. 16, from the Florida Space Coast. Update: Delayed to Friday 8 PM
An unclassified aspect of the mission codenamed ‘Zuma’ is that SpaceX will also attempt to recover the 16 story tall first stage booster with a soft landing on the ground back at Cape Canaveral Air Force Station. So expect some extremely loud sonic booms to rock the space coast region about eight minutes after liftoff.
Zuma is a total mystery, to the delight of the spymasters.
One of the very few tidbits of information we can absolutely confirm (and not deny) is that the clandestine and ownerless ‘Zuma’ Spysat is now targeted for a nighttime launch on a SpaceX Falcon 9 rocket from seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida during a lengthy 2 hour window.
We can also confirm that the launch contract was arranged as a commercial enterprise under the auspices of Northrop Grumman Corporation – as a means to significantly slash launch costs for whatever U.S government entity is responsible for Zuma.
That goal is completely in line with SpaceX founder and CEO Elon Musk’s entire company-wide goal in developing the Falcon and Dragon family of rockets and spaceships.
“The U.S. Government assigned Northrop Grumman the responsibility of acquiring launch services for this mission,” Lon Rains, Northrop Grumman Director of Communications, told Universe Today.
“We have procured the Falcon 9 launch service from SpaceX.”
The launch window at pad 39A opens at 8 p.m. EST (0100 GMT). It extends for two full hours until 10 p.m. EST (0300 GMT).
We can further confirm that the launch was postponed a day to Thursday from the originally slated Wednesday night target – ostensibly to deal with last minute ‘mission assurance issues to insure the rocket and payload are ready for a launch upon which SpaceX’s reputation is on the line for future high value national security payloads of the most critical importance to the US governments Defense and Spy agencies
“SpaceX is now targeting Thursday, Nov. 16 for launch of the Zuma mission,” said SpaceX spokesman John Taylor.
“Both Falcon 9 and the payload remain healthy; teams will use the extra day to conduct some additional mission assurance work in advance of launch.”
You can watch the launch live on a SpaceX dedicated webcast starting about 10 minutes prior to the 8 p.m. EDT (0100 GMT) liftoff time.
The launch window for the newly built booster extends for two hours until it closes at 10 p.m. EDT (0300 GMT).
The weather outlook is rather favorable along the Florida Space Coast with a 90% chance of favorable conditions at launch time according to U.S. Air Force meteorologists with the 45th Space Wing Weather Squadron at Patrick Air Force Base.
The primary concerns on Nov. 16 are only for the Cumulous Cloud Rule.
The odds get even high at greater than 90% favorable for the 24 hour scrub turnaround day Nov 17.
The launch window remains the same on Nov 17 at 8 to 10 p.m.
Furthermore the two stage 229-foot-tall (70-meter-tall) Falcon 9 rocket was raised to vertical launch position later today Wednesday afternoon Nov. 15 – so everything seems to be in place for a Thursday evening launch attempt.
However we don’t know anything about the ‘Zuma’ payloads characteristics and vital statistics – despite the seemingly endless leaks streaming out of Washington these days.
“The Zuma payload is a restricted payload,” Rains told me.
So quite naturally we’re all curious for any nugget of information from which we might draw some reasonable conclusions based on the scientific method of analysis.
The little bits we do know is that the launch services for the ownerless government payload are being procured by Northrop Grumman Corporation under a commercial contract with a stated goal to find a develop a “cost effective approach”
“Northrop Grumman is proud to be a part of the Zuma launch,” Rains added.
“This event represents a cost effective approach to space access for government missions.”
One juicy tidbit we do know is that it is intended for launch to low Earth orbit (LEO).
“It will be launched into Low Earth Orbit,” Rains informed me.
Low Earth Orbit extends upwards to roughly 1200 miles altitude and includes the ISS orbit for example at approx. 250 miles.
“As a company, Northrop Grumman realizes this is a monumental responsibility and we have taken great care to ensure the most affordable and lowest risk scenario for Zuma.”
In addition to launch services Northrop Grumman Corporation may have manufactured the Zuma payload – although that’s not even known.
SpaceX has successfully launched a pair of diverse national security payloads this year already with identified customers. Namely the NROL-76 surveillance satellite for the NRO on May 1, 2017 and the OTV-5 military spaceplane for the USAF on Sept. 7.
The long launch window should significantly increase the chance of launching Zuma and removing any errant or intentional boaters and flyers from the restricted airspace around the launch pads.
That’s increasingly important these days given that a pair of critical NASA science mission this week and in the past 3 days were scrubbed near T Zero on both US East and West coast launch pads in Virginia for the Orbital ATK Antares rocket and in California for the ULA Delta II rocket.
‘Homeless’ government satellites not even claimed by the NRO are rather rare.
A recent example is Clio, an unclaimed mission from Lockheed Martin.
Clio launched at night on a ULA Atlas V on September 16, 2014 from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fl.
Watch for Ken’s continuing onsite coverage of SpaceX Zuma, KoreaSat-5A & SES-11, ULA NROL-52 and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Learn more about the upcoming SpaceX Falcon 9 Zuma launch on Nov 16, 2017, upcoming Falcon Heavy and CRS-13 resupply launches, NASA missions, ULA Atlas & Delta launches, SpySats and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:
Nov 17: “SpaceX Falcon 9 Zuma launch, ULA Atlas NRO NROL-52 spysat launch, SpaceX SES-11, CRS-13 resupply launches to the ISS, Intelsat35e, BulgariaSat 1 and NRO Spysat, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
Aerospace giant Northrop Grumman will acquire Orbital ATK for approximately $9.2 billion, in a deal the companies announced Monday and they say will “expand capability” is largely “complementary” and involves “little overlap.”
Orbital ATK specializes in a wide variety of launch vehicles, satellites, missiles and munitions that Northrop believes will significantly enhance capabilities it lacks while offering Orbital significantly more technical and financial resources to grow sales and business opportunities.
Under the terms of the huge deal West Falls Church, Virginia based Northrop will dole out approximately $7.8 billion in cash to buy Dulles, Virginia based Orbital ATK and assume $1.4 billion in net debt. Orbital ATK shareholders will receive all-cash consideration of $134.50 per share, which is about a 20% premium above the stock’s price of $110 per share at the close of trading Friday, Sept. 15.
Rumors of the deal first appeared on Sunday.
The final purchase is expected to take place around mid-2018, subject to approval by government regulators and Orbital ATK shareholders.
The Boards of Directors of both companies have already given unanimous approval to the mega buyout.
“Our two companies represent a very complementary fit,” Wes Bush, chief executive officer and president of Northrop Grumman said in a conference call on Monday, Sept. 18.
“We have very little overlap, and we fully expect our combined portfolios of leading technologies, along with our aligned and innovation-focused cultures, to yield significant value creation through revenue, cost and operational synergies, accelerating our profitable growth trajectory.”
Northrop indicated that Orbital ATK will operate as a separate fourth unit – at least initially – and that Orbital programs will benefit from the increased financial resources available from Northrup.
“Upon completion of the acquisition, Northrop Grumman plans to establish Orbital ATK as a new, fourth business sector to ensure a strong focus on operating performance and a smooth transition into Northrop Grumman.”
For his part Orbital ATK CEO David Thompson was very pleased with the buyout and future opportunities.
“The agreement reflects the tremendous value that Orbital ATK has created for our customers, our shareholders and our employees,” David Thompson, Orbital ATK president and chief executive officer said at the conference call.
“The combination will allow our team as a new business sector within Northrop Grumman to maintain strong operational performance on existing customer programs and to pursue new opportunities that require greater technical and financial resources than we currently possess.”
“Our collective customers should benefit from the expanded capabilities for innovation, increased speed of delivery and improved affordability of production resulting from the combination.”
“The combination of our companies and human capital will also significantly benefit our customers,” Bush elaborated. “Together, we can offer our customers enhanced mission capabilities and more competitive offerings in areas such as space, missiles and strategic deterrents.
“Our shareholders can expect revenue synergies from these new business opportunities.”
Northrop Grumman sales for 2017 amount to about $25 billion vs. about $4.5 billion for Orbital ATK
Orbital ATK itself is the product of a very recent merger in 2015 of Orbital Sciences and ATK.
The company employs over 13,000 people including over 4,200 scientists and engineers. It holds a heft backlog of contracts worth more than $15 billion.
Northrop Grumman employs over 68,000 people and is the fifth largest defense contractor.
“The agreement will also provide expanded career options for our employees as part of a larger, more diverse aerospace and defense company,” said Thompson.
It will also benefit stockholders.
“The transaction represents a truly compelling financial proposition for our shareholders, valuing the enterprise at about $9.2 billion and providing our investors with more than 120% total return over the 3-year period from the completion of the Orbital ATK merger in early 2015 to the expected closing in the first half of 2018.”
Orbital ATK launchers run the gamut from small to medium to large.
The rockets include the massive solid rocket boosters for NASA’s Space Launch System (SLS) heavy lift rocket under development, the Antares liquid fueled booster used to launch Cygnus cargo freighters to the International Space Station for NASA, the Minotaur family of medium class solid rocket launchers, as well as sounding rockets for a variety of low weight science missions.
The most recent Orbital ATK launch took place on Aug. 26 when a Minotaur 4 rocket (a retired Peacekeeper ICBM) lifted off from Cape Canaveral with a USAF surveillance satellite.
Orbital ATK also has a thriving satellite manufacturing business building NASA science, commercial, government and military satellites.
The purchase is also estimated to result in $150 million in annual cost savings by 2020.
“We believe that this combination represents a compelling value creation opportunity for the customers, shareholders and employees of both our companies,” stated Bush. “Through our combination, all of our stakeholders will benefit from expanded capabilities, accelerated innovation and greater competitiveness in critical global security domains.”
Watch for Ken’s continuing onsite NASA mission and launch reports direct from the Kennedy Space Center, and Cape Canaveral Air Force Station, Florida, and NASA Wallops Flight Facility, Va.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.