How Far Away is Fusion? Unlocking the Power of the Sun

Best Energy?
Best Energy?


I’d like to think we’re smarter than the Sun.

Let’s compare and contrast. Humans, on the one hand, have made enormous advances in science and technology, built cities, cars, computers, and phones. We have split the atom for war and for energy.

What has the Sun done? It’s a massive ball of plasma, made up of mostly hydrogen and helium. It just, kind of, sits there. Every now and then it burps up hydrogen gas into a coronal mass ejection. It’s not a stretch to say that the Sun, and all inanimate material in the Universe, isn’t the sharpest knife in the drawer.

And yet, the Sun has mastered a form of energy that we just can’t seem to wrap our minds around: fusion. It’s really infuriating, seeing the Sun, just sitting there, effortlessly doing something our finest minds have struggled with for half a century.

Why can’t we make fusion work? How long until we can finally catch up technologically with a sphere of ionized gas?

Our Sun in all its intense, energetic glory. When life appeared on Earth, the Sun would have been much different than it is now; a more intense, energetic neighbor. Image: NASA/SDO.
Our Sun in all its intense, energetic glory. Credit: NASA/SDO.

The trick to the Sun’s ability to generate power through nuclear fusion, of course, comes from its enormous mass. The Sun contains 1.989 x 10^30 kilograms of mostly hydrogen and helium, and this mass pushes inward, creating a core heated to 15 million degrees C, with 150 times the density of water.

It’s at this core that the Sun does its work, mashing atoms of hydrogen into helium. This process of fusion is an exothermic reaction, which means that every time a new atom of helium is created, photons in the form of gamma radiation are also released.

The only thing the Sun uses this energy for is light pressure, to counteract the gravity pulling everything inward. Its photons slowly make their way up through the Sun and then they’re released into space. So wasteful.

How can we replicate this on Earth?

Now gathering together a Sun’s mass of hydrogen here on Earth is one option, but it’s really impractical. Where would we put all that hydrogen. The better solution will be to use our technology to simulate the conditions at the core of the Sun.

If we can make a fusion reactor where the temperatures and pressures are high enough for atoms of hydrogen to merge into helium, we can harness those sweet sweet photons of gamma radiation.

Tokamak
Inside a Tokamak. Credit: Princeton Plasma Physics Laboratory

The main technology developed to do this is called a tokamak reactor; it’s a based on a Russian acronym for: “toroidal chamber with magnetic coils”, and the first prototypes were created in the 1960s. There are many different reactors in development, but the method is essentially the same.

A vacuum chamber is filled with hydrogen fuel. Then an enormous amount of electricity is run through the chamber, heating up the hydrogen into a plasma state. They might also use lasers and other methods to get the plasma up to 150 to 300 million degrees Celsius (10 to 20 times hotter than the Sun’s core).

Superconducting magnets surround the fusion chamber, containing the plasma and keeping it away from the chamber walls, which would melt otherwise.

Once the temperatures and pressures are high enough, atoms of hydrogen are crushed together into helium just like in the Sun. This releases photons which heat up the plasma, keeping the reaction going without any addition energy input.

Excess heat reaches the chamber walls, and can be extracted to do work.

The spherical tokamak MAST at the Culham Centre for Fusion Energy (UK). Photo: CCFE

The challenge has always been that heating up the chamber and constraining the plasma uses up more energy than gets produced in the reactor. We can make fusion work, we just haven’t been able to extract surplus energy from the system… yet.

Compared to other forms of energy production, fusion should be clean and safe. The fuel source is water, and the byproduct is helium (which the world is actually starting to run out of). If there’s a problem with the reactor, it would cool down and the fusion reaction would stop.

The high energy photons released in the fusion reaction will be a problem, however. They’ll stream into the surrounding fusion reactor and make the whole thing radioactive. The fusion chamber will be deadly for about 50 years, but its rapid half-life will make it as radioactive as coal ash after 500 years.

External view of Princeton’s Tokamak Fusion Test Reactor which operated from 1982 to 1997. Credit: Princeton Plasma Physics Laboratory (CC BY 3.0)

Now you know what fusion power is and how it works, what’s the current state, and how long until fusion plants give us unlimited cheap safe power, if ever?

Fusion experiments are measured by the amount of energy they produce compared to the amount of energy you put into them. For example, if a fusion plant required 100MW of electrical energy to produce 10 MW of output, it would have an energy ratio of 0.1. You want at least a ratio of 1. That means energy in equals energy out, and so far, no experiment has ever reached that ratio. But we’re close.

The EAST facility’s tokamak reactor, part of the Institute of Physical Science in Hefei. Credit: ipp.cas.cn

The Chinese are building the Experimental Advanced Superconducting Tokamak, or EAST. In 2016, engineers reported that they had run the facility for 102 seconds, achieving temperatures of 50 million C. If true, this is an enormous advancement, and puts China ahead in the race to create stable fusion. That said, this hasn’t been independently verified, and they only published a single scientific paper on the milestone.

Karlsruhe Institute of Technology’s Wendelstein 7-X (W7X) stellarator. Credit: Max-Planck-Institut für Plasmaphysik, Tino Schulz (CC BY-SA 3.0)

Researchers at the Karlsruhe Institute of Technology (KIT) in Germany recently announced that their Wendelstein 7-X (W7X) stellarator (I love that name), heated hydrogen gas to 80 million C for only a quarter of a second. Hot but short. A stellarator works differently than a tokamak. It uses twisted rings and external magnets to confine the plasma, so it’s good to know we have more options.

The biggest, most elaborate fusion experiment going on in the world right now is in Europe, at the French research center of Cadarache. It’s called ITER, which stands for the International Thermonuclear Experimental Reactor, and it hopes to cross that magic ratio.

The ITER Tokamak Fusion Reactor. Credits: ITER, Illus. T.Reyes

ITER is enormous, measuring 30 meters across and high. And its fusion chamber is so large that it should be able to create a self-sustaining fusion reaction. The energy released by the fusing hydrogen keeps the fuel hot enough to keep reacting. There will still be energy required to run the electric magnets that contain the plasma, but not to keep the plasma hot.

And if all goes well, ITER will have a ratio of 10. In other words, for every 10 MW of energy pumped in, it’ll generate 100 MW of usable power.

ITER is still under construction, and as of June 2015, the total construction costs had reached $14 billion. The facility is expected to be complete by 2021, and the first fusion tests will begin in 2025.

So, if ITER works as planned, we are now about 8 years away from positive energy output from fusion. Of course, ITER will just be an experiment, not an actual powerplant, so if it even works, an actual fusion-based energy grid will be decades after that.

At this point, I’d say we’re about a decade away from someone demonstrating that a self-sustaining fusion reaction that generates more power than it consumes is feasible. And then probably another 2 decades away from them supplying electricity to the power grid. By that point, our smug Sun will need to find a new job.

NASA Invests In Radical Game-Changing Concepts For Exploration

Artist's concept of some of the Phase I winners of the 2016 NIAC program. Credit: NASA

Every year, the NASA Innovative Advanced Concepts (NIAC) program puts out the call to the general public, hoping to find better or entirely new aerospace architectures, systems, or mission ideas. As part of the Space Technology Mission Directorate, this program has been in operation since 1998, serving as a high-level entry point to entrepreneurs, innovators and researchers who want to contribute to human space exploration.

This year, thirteen concepts were chosen for Phase I of the NIAC program, ranging from reprogrammed microorganisms for Mars, a two-dimensional spacecraft that could de-orbit space debris, an analog rover for extreme environments, a robot that turn asteroids into spacecraft, and a next-generation exoplanet hunter. These proposals were awarded $100,000 each for a nine month period to assess the feasibility of their concept.

Continue reading “NASA Invests In Radical Game-Changing Concepts For Exploration”

How Does The Sun Produce Energy?

The Sun provides energy for life here on Earth through light and heat. Credit: NASA Goddard Space Flight Center

There is a reason life that Earth is the only place in the Solar System where life is known to be able to live and thrive. Granted, scientists believe that there may be microbial or even aquatic life forms living beneath the icy surfaces of Europa and Enceladus, or in the methane lakes on Titan. But for the time being, Earth remains the only place that we know of that has all the right conditions for life to exist.

One of the reasons for this is because the Earth lies within our Sun’s Habitable Zone (aka. “Goldilocks Zone”). This means that it is in right spot (neither too close nor too far) to receive the Sun’s abundant energy, which includes the light and heat that is essential for chemical reactions. But how exactly does our Sun go about producing this energy? What steps are involved, and how does it get to us here on planet Earth?

Continue reading “How Does The Sun Produce Energy?”

When Did the First Stars Form?

When Did the First Stars Form?

Shortly after the Big Bang, the Universe had cooled to the point that the first stars could form out of the primordial hydrogen. How long did it take, and what did these first stars like?

Hydrogen soup. Doesn’t that sound delicious? Perhaps not for humans, but certainly for the first stars!

Early in the Universe, in a spectacular show of stellar soupification, clouds of hydrogen atoms gathered together. They combined with one another. The collected mass got bigger and bigger, and after a time, ignition. The first stars were alive!

Well, alive in the sense that they were burning – not that they had feelings or knew what was going on, or had opinions, or were beginning to write would what would eventually become the first Onion article or anything.

But where did all that gas come from, and can we spot the evidence of those long-ago stars today? As you know, the Big Bang got our Universe off to a speedy start of expansion. It then took 400,000 years for us to see any light at all. Protons and electrons and other small particles were floating around, but it was far too hot for them to interact.

Once the power of the Big Bang finally faded, those protons and electrons paired up and created hydrogen. This is called, rather uninventively, “recombination”. I’d rather just call it hydrogen soup. We’ve got energy. But what is the secret ingredient that sparked these stars? It was just that soup clumping together over time.

A map of the faint microwave radiation left over after the big bang shows superclusters (red circles) and supervoids (blue circles). Credit: B. Granett, M. Neyrinck, I. Szapudi
A map of the faint microwave radiation left over after the big bang shows superclusters (red circles) and supervoids (blue circles). Credit: B. Granett, M. Neyrinck, I. Szapudi

We can’t say to the minute when the first stars formed, but we have a pretty good idea. The Wilkinson Microwave Anisotropy Probe, aka WMAP examined what happened when these clouds of hydrogen molecules got together, creating tiny temperature differences of only a millionth of a degree.

Over time, gravity began to yank matter from spots of lower density into the higher-density regions, making the clumps even bigger. Fantastically bigger. So big that about 200 million years after the clumps were formed, it was possible for these hydrogen molecules to ram into each other at very high speeds.

This process is called nuclear fusion. On Earth, it’s a way to produce energy. Same goes for a star. With enough nuclear reactions happening, the cloud of gas compresses and creates a glow. And these stars weren’t tiny – they were monsters! NASA says the first stars were 30 to 300 times as massive as the sun, shining millions of times brighter.

The supernova that produced the Crab Nebula was detected by naked-eye observers around the world in 1054 A.D. This composite image uses data from NASA’s Great Observatories, Chandra, Hubble, and Spitzer, to show that a superdense neutron star is energizing the expanding Nebula by spewing out magnetic fields and a blizzard of extremely high-energy particles. The Chandra X-ray image is shown in light blue, the Hubble Space Telescope optical images are in green and dark blue, and the Spitzer Space Telescope’s infrared image is in red. The size of the X-ray image is smaller than the others because ultrahigh-energy X-ray emitting electrons radiate away their energy more quickly than the lower-energy electrons emitting optical and infrared light. The neutron star is the bright white dot in the center of the image.
The supernova that produced the Crab Nebula was detected by naked-eye observers around the world in 1054 A.D. This composite image uses data from NASA’s Great Observatories, Chandra, Hubble, and Spitzer.

But this flashy behavior came at a price, because in only a few million years, the stars grew unstable and exploded into supernovae. These stars weren’t only exploding. They were also altering the soup around them. They were big emitters of ultraviolet light. It’s a very energetic wavelength, best known for causing skin cancer.

So, this UV light struck the hydrogen surrounding the stars. This split the atoms apart into electrons and protons again, leaving quite the mess in space. But it’s through this process that we can learn more about these earliest stars.The stars are long gone, but like a criminal fleeing the scene, they left a pile of evidence behind for their existence. Splitting these atoms was their evidence. This re-ionization is one key piece of understanding how these stars came to be.

So it was an action-packed time for the universe, with the Big Bang, then the emergence of soup and then the first stars. It’s quite an exciting start for our galactic history.

What do you think the first stars looked like?

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

Nuclear Fusion Power Closer to Reality Say Two Separate Teams

Nuclear Physics
Nuclear fusion. Credit: Lancaster University

[/caption]

For years, scientists have been trying to replicate the type of nuclear fusion that occurs naturally in stars in laboratories here on Earth in order to develop a clean and almost limitless source of energy. This week, two different research teams report significant headway in achieving inertial fusion ignition—a strategy to heat and compress a fuel that might allow scientists to harness the intense energy of nuclear fusion. One team used a massive laser system to test the possibility of heating heavy hydrogen atoms to ignite. The second team used a giant levitating magnet to bring matter to extremely high densities — a necessary step for nuclear fusion.

Unlike nuclear fission, which tears apart atoms to release energy and highly radioactive by-products, fusion involves putting immense pressure, or “squeezing” two heavy hydrogen atoms, called deuterium and tritium together so they fuse. This produces harmless helium and vast amounts of energy.

Recent experiments at the National Ignition Facility in Livermore, California used a massive laser system the size of three football fields. Siegfried Glenzer and his team aimed 192 intense laser beams at a small capsule—the size needed to store a mixture of deuterium and tritium, which upon implosion, can trigger burning fusion plasmas and an outpouring of usable energy. The researchers heated the capsule to 3.3 million Kelvin, and in doing so, paved the way for the next big step: igniting and imploding a fuel-filled capsule.

In a second report released earlier this week, researchers used a Levitated Dipole Experiment, or LDX, and suspended a giant donut-shaped magnet weighing about a half a ton in midair using an electromagnetic field. The researchers used the magnet to control the motion of an extremely hot gas of charged particles, called a plasma, contained within its outer chamber.

The donut magnet creates a turbulence called “pinching” that causes the plasma to condense, instead of spreading out, which usually happens with turbulence. This is the first time the “pinching” has been created in a laboratory. It has been seen in plasma in the magnetic fields of Earth and Jupiter.
A much bigger ma LDX would have to be built to reach the density levels needed for fusion, the scientists said.

Paper: Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies

Sources: Science Magazine, LiveScience