In 2019, amateur astronomer Gennadiy Borisov discovered a comet, which now bears his name. There’s a long history of amateur astronomers discovering comets, as they approach our inner Solar System on their elongated orbits. But this one was different: it was moving much too fast to be gravitationally bound to the Sun.
It was an interstellar comet. And now, it looks like it has split into two chunks.
Comets hide their central engines well. From Earth, we see a bright, fuzzy coma and a tail or two. But the nucleus, the source of all the hubbub, remains deeply camouflaged by dust, at best appearing like a blurry star.
To see one up close, you need to send a spacecraft right into the comet’s coma and risk getting. Or you can do the job much more cheaply by bouncing radio waves off the nucleus and studying the returning echoes to create a shadowy image.
Although crude compared to optical photos of moons and planets, radar images reveal much about an asteroid including surface details like mountains, craters, shape and rotation rate. They’re also far superior to what optical telescopes can resolve when it comes to asteroids, which, as their name implies, appear star-like or nearly so in even large professional telescopes.
On Feb. 11, green-glowing comet 45P/Honda-Mrkos-Pajdusakova, made an unusually close pass of Earth, zipping just 7.7 million miles away. Astronomers made the most of the encounter by pressing the huge 1,000-foot-wide (305 meters) Arecibo radio dish into service to image the comet’s nucleus during and after closest approach.
“The Arecibo Observatory planetary radar system can pierce through the comet’s coma and allows us to study the surface properties, size, shape, rotation, and geology of the comet nucleus”, said Dr. Patrick Taylor, USRA Scientist and Group Lead for Planetary Radar at Arecibo.
Does the shape ring a bell? Remember Rubber Ducky? It doesn’t take a rocket scientist to see that the comet’s heart resembles the twin-lobed comet 67P/Churyumov-Gerasimenko orbited by ESA’s Rosetta spacecraft. Using the dish, astronomers have seen bright regions and structures on the comet; they also discovered that the nucleus is a little larger than expected with a diameter of 0.8 mile (1.3 km) and rotates about once every 7.6 hours. Go to bed at 10 and wake up at 6 and the comet will have made one complete turn.
Radio observations of 45P/H-M-P will continue through Feb. 17. Right now, the comet is happily back in the evening sky and still visible with 10×50 or larger binoculars around 10-11 p.m. local time in the east. I spotted it low in Bootes last night about 15 minutes before moonrise under excellent, dark sky conditions. It looked like a faint, smoky ball nearly as big as the full moon or about 30 arc minutes across.
This week, the pale green blob (the green’s from fluorescing carbon), vaults upward from Bootes, crosses Canes Venatici and zooms into Coma Berenices. For maps to help you track and find it night by night, please click here. I suggest larger binoculars 50mm and up or a 6-inch or larger telescope. Be sure to use low power — the comet’s so big, you need a wide field of view to get dark sky around it in order to see it more clearly.
Very few comets pass near Earth compared to the number of asteroids that routinely do. That’s one reason 45P is only the seventh imaged using radar; rarely are we treated to such detailed views!
Have you ever taken a look at a piece of firewood and said to yourself, “gee, I wonder how much energy it would take to split that thing apart”? Chances are, no you haven’t, few people do. But for physicists, asking how much energy is needed to separate something into its component pieces is actually a pretty important question.
In the field of physics, this is what is known as binding energy, or the amount of mechanical energy it would take to disassemble an atom into its separate parts. This concept is used by scientists on many different levels, which includes the atomic level, the nuclear level, and in astrophysics and chemistry.
Nuclear Force:
As anyone who remembers their basic chemistry or physics surely knows, atoms are composed of subatomic particles known as nucleons. These consist of positively-charged particles (protons) and neutral particles (neutrons) that are arranged in the center (in the nucleus). These are surrounded by electrons which orbit the nucleus and are arranged in different energy levels.
The reason why subatomic particles that have fundamentally different charges are able to exist so close together is because of the presence of Strong Nuclear Force – a fundamental force of the universe that allows subatomic particles to be attracted at short distances. It is this force that counteracts the repulsive force (known as the Coulomb Force) that causes particles to repel each other.
Therefore, any attempt to divide the nucleus into the same number of free unbound neutrons and protons – so that they are far/distant enough from each other that the strong nuclear force can no longer cause the particles to interact – will require enough energy to break these nuclear bonds.
Thus, binding energy is not only the amount of energy required to break strong nuclear force bonds, it is also a measure of the strength of the bonds holding the nucleons together.
Nuclear Fission and Fusion:
In order to separate nucleons, energy must be supplied to the nucleus, which is usually accomplished by bombarding the nucleus with high energy particles. In the case of bombarding heavy atomic nuclei (like uranium or plutonium atoms) with protons, this is known as nuclear fission.
However, binding energy also plays a role in nuclear fusion, where light nuclei together (such as hydrogen atoms), are bound together under high energy states. If the binding energy for the products is higher when light nuclei fuse, or when heavy nuclei split, either of these processes will result in a release of the “extra” binding energy. This energy is referred to as nuclear energy, or loosely as nuclear power.
It is observed that the mass of any nucleus is always less than the sum of the masses of the individual constituent nucleons which make it up. The “loss” of mass which results when nucleons are split to form smaller nucleus, or merge to form a larger nucleus, is also attributed to a binding energy. This missing mass may be lost during the process in the form of heat or light.
Once the system cools to normal temperatures and returns to ground states in terms of energy levels, there is less mass remaining in the system. In that case, the removed heat represents exactly the mass “deficit”, and the heat itself retains the mass which was lost (from the point of view of the initial system). This mass appears in any other system which absorbs the heat and gains thermal energy.
Types of Binding Energy:
Strictly speaking, there are several different types of binding energy, which is based on the particular field of study. When it comes to particle physics, binding energy refers to the energy an atom derives from electromagnetic interaction, and is also the amount of energy required to disassemble an atom into free nucleons.
In the case of removing electrons from an atom, a molecule, or an ion, the energy required is known as “electron binding energy” (aka. ionization potential). In general, the binding energy of a single proton or neutron in a nucleus is approximately a million times greater than the binding energy of a single electron in an atom.
In astrophysics, scientists employ the term “gravitational binding energy” to refer to the amount of energy it would take to pull apart (to infinity) an object held together by gravity alone – i.e. any stellar object like a star, a planet, or a comet. It also refers to the amount of energy that is liberated (usually in the form of heat) during the accretion of such an object from material falling from infinity.
Finally, there is what is known as “bond” energy, which is a measure of the bond strength in chemical bonds, and is also the amount of energy (heat) it would take to break a chemical compound down into its constituent atoms. Basically, binding energy is the very thing that binds our Universe together. And when various parts of it are broken apart, it is the amount of energy needed to carry it out.
The study of binding energy has numerous applications, not the least of which are nuclear power, electricity, and chemical manufacture. And in the coming years and decades, it will be intrinsic in the development of nuclear fusion!
We’ve subsisted for months on morsels of information coming from ESA’s mission to Comet 67P/Churyumov-Gerasimenko. Now, a series of scientific papers in journal Science offers a much more complete, if preliminary, look at Rosetta’s comet. And what a wonderful and complex world it is.
Each of the papers describes a different aspect of the comet from the size and density of dust particles jetting from the nucleus, organic materials found on its surface and the diverse geology of its bizarre landscapes. Surprises include finding no firm evidence yet of ice on the comet’s nucleus. There’s no question water and other ices compose much of 67P’s 10 billion ton mass, but much of it’s buried under a thick layer of dust.
Despite its solid appearance, 67P is highly porous with a density similar to wood or cork and orbited by a cloud of approximately 100,000 “grains” of material larger than 2 inches (5 cm) across stranded there after the comet’s previous perihelion passage. Thousands of tiny comet-lets! Continue reading “Latest Research Reveals a Bizarre and Vibrant Rosetta’s Comet”
Comet Q2 Lovejoy passed closest to Earth on January 7th and has been putting on a great show this past week. Glowing at magnitude +4 with a bluish coma nearly as big as the Full Moon, the comet’s easy to see with the naked eye from the right location if you know exactly where to look. I wish I could say just tilt your head back and look up and bam! there it would be, but it’ll take a little more effort than that. But just a little, I promise.
Last night, under a dark rural sky, once I spotted the comet and noticed its position in relation to nearby bright stars, I could look up and see it anytime. Finding anything other than the Moon or a bright planet in the night sky often requires a good map. I normally create a star-chart style map but thought, why not make a photographic version? So last night I snapped a few guided images of Lovejoy as it glimmered in the wilds of southern Taurus and then cloned the comet’s nightly position through onto the image. Maybe you’ll find this useful, maybe not. If not, the regular map is also included.
To see Comet Lovejoy with the naked eye you’ll need reasonably dark skies. It should be faintly visible from outer ring suburbs, but country skies will guarantee a sighting. I’ve been using bright stars in Orion and Taurus to guide binoculars – and then my eye – to the comet. Pick a couple bright stars like Aldebaran and Betelgeuse and extend a line from each to form a triangle with Lovejoy at one of the corners. If you then point binoculars at that spot in the sky, the comet should pop out. If you don’t find it immediately, sweep around the position a bit. After you find it, lower the binoculars and try to spot it with the naked eye.
This week, as Lovejoy continues trekking north, you can use bright orangey Aldebaran in Taurus and the Pleiades, also called the Seven Sisters star cluster, to “triangulate” your way to the comet. Look for a glowing fuzzball. In 10×50 and 8×40 binoculars, it’s obviously different from a star — all puffed up with a brighter center. The 50mm glass even shows a hint of the coma’s blue color caused by carbon molecules fluorescing in ultraviolet sunlight and a faint, streak-like tail extending to the northeast. With the naked eye, at first you might think it’s just a dim star; closer scrutiny reveals the star has a hazy appearance, pegging it as a comet.
Through a telescope the coma is a HUGE pale blue tiki lamp of a thing with a small, much brighter nuclear region. The rays of the ion tail, so beautifully shown in photographs, are indistinct but visible with patience and a moderate-sized telescope under dark skies. At low magnification, the nucleus – the false nucleus actually, since the real comet nucleus is hidden by a shroud of dust and gas – looks like a misty star of about magnitude +9. On close inspection at high magnification (250x and up), you penetrate more deeply into the nuclear zone and the star-like center shrinks and dims to around magnitude +13.
If the seeing is good and comet active, high magnification will often reveal jets or fans of dust in the sunward direction, in this case west of nucleus. I’ve been studying the comet the past couple nights and am almost convinced I can see a short, very low contrast plume poking to the south of center. Generally, plumes and jets are subtle, low-contrast features. Challenging? Yes, but with Lovejoy as close as it’s going to get, now’s the time to seek them.
Just before Christmas, fluctuations in the solar wind snapped off Comet Lovejoy’s tail. Guess what? It happened again on January 8th as recorded in dramatic fashion by astrophotographer Rolando Ligustri. An ion or gas tail like the one in the photo forms when cometary gases, primarily carbon monoxide, are ionized by solar radiation and lose an electron to become positively charged. Once “electrified”, they can be twisted, kinked and even snapped off by magnetic fields embedded in the Sun’s particle wind.
Of course, the comet didn’t miss a breath but grew another tail immediately. Look closely at the photo and you see another faint streak of light pointing beyond the coma below and left of the bright nuclear region. This may be Lovejoy’s dust tail. Most comets sport both types of tails – gas and dust – since they release both materials as the Sun heats and vaporizes their ices.
Lovejoy’s been a thrill to watch because it’s doing all the cool stuff that makes them so fun to follow. Gianluca Masi, an Italian astrophysicist and lover of all things cometary, will offer a live feed of the comet on Monday January 12th starting at 1 p.m. CST (7 p.m. UT). May your skies be clear tonight!
Rosetta’s “rubber duckie” comet appears to be wearing a collar! New images of Comet 67P/Churyumov-Gerasimenko from the spacecraft, which is speeding towards an orbit of the comet next month, show that the “neck” region of the nucleus appears to be brighter than the rest.
Last week, images from the spacecraft revealed that the comet likely has a “contact binary” nucleus, meaning that there are two parts of the nucleus that are just barely joined together under low gravity. There are many theories for why this happened, but it will take a closer examination to begin to come up with answers. The shape of the nucleus reminds many of a rubber duckie.
As for why the “neck” region appears brighter, that’s not known right now. There could be different grains in that region of the nucleus, or it could be some feature of the surface. Or perhaps it is a different type of material there. The scientists plan to get more spectral information from this region in the coming weeks, which could reveal what elements are there.
“Even though the images taken from a distance of 5500 kilometers are still not highly resolved, the scientists feel remotely reminded of comet 103P/Hartley,” stated the Max Planck Institute for Solar System Research.
“This body was visited in a flyby by NASA’s EPOXI mission in 2010. While Hartley’s ends show a rather rough surface, its middle is much smoother. Scientists believe this waist to be a gravitational low: since it contains the body’s center of mass, emitted material that cannot leave the comet’s gravitational field is most likely to be re-deposited there.”
Rosetta is expected to arrive at the comet on August 6, and to send out its spider-like lander (Philae) in November. The spacecraft will remain with the comet through its closest approach to the sun in 2015, between the orbits of Earth and Mars.
This is really getting exciting! ESA’s Rosetta spacecraft (and the piggybacked Philae lander) are in the home stretch to arrive at Comet 67P/Churyumov-Gerasimenko in 34 days and the comet is showing up quite nicely in Rosetta’s narrow-angle camera. The animation above, assembled from 36 NAC images acquired last week, shows 67P/C-G rotating over a total elapsed time of 12.4 hours. No longer just an extra-bright pixel, it looks like a thing now!
The animation, although fascinating, only hints at the “true” shape of the comet’s nucleus. Reflected light does create a bloom effect in the imaging sensor, especially at such small resolutions, expanding the apparent size of the comet beyond its 4-by-4-pixel size. But rest assured that much, much better images are on the way as Rosetta gets closer and closer.
The spacecraft was about 86,000 km (53,440 miles) from 67P/C-G when the images were acquired. Since that time it has cut that distance in half, and by this weekend it will be less than 36,000 km (22,370 miles) from the comet. After more than a decade of traveling around the inner Solar System Rosetta is finally arriving at its goal! Click here to see where Rosetta is now.
Stay tuned for more exciting updates from Rosetta, and learn more about the mission below:
Wonderful photos of Comets ISON and Lovejoy with their swollen comas and developing tails have appeared on these pages, but recently, amateur and professional astronomers have probed deeper to discover fascinating dust structures emanating from their very cores. Most comets possess a fuzzy, starlike pseudo-nucleus glowing near the center of the coma. Hidden within this minute luminous cocoon of haze and gas lies the true comet nucleus, a dark, icy body that typically spans from a few to 10 kilometers wide. Comet ISON’s nucleus could be as large as several kilometers and hefty enough (we hope!) to survive its close call with the sun on Nov. 28.
Last Wednesday morning Nov. 13 when calm air allowed a sharp view inside Comet Lovejoy’s large, 15-arc-minute-wide coma I noticed something odd about the false nucleus at low magnification, so I upped the power to 287x for a closer look. Extending from the fuzzy core in the sunward direction was a small cone or fountain-shaped structure of denser, brighter dust shaped like a miniature comet. It stretched eastward from the center and wrapped slightly to the south. Usually it’s harder than heck to see any details within the fuzzy, low-contrast environment of a comet’s coma unless that comet is close to Earth and actively spewing dust and ice. Lovejoy scored on both.
By good fortune, Dr. P. Clay Sherrodof the Arkansas Sky Observatories, USA, and Luc Arnold of Saint-Michel-l’Observatoire, France, shared images they’d made at high magnification of the identical feature right at the same time as my own observation. There’s no doubt that what we saw was a jet or combined jets of dust and vapor blasting from Lovejoy’s true nucleus. Jets are linear or fan-shaped features and carry ice, dust and even snowballs from inside the nucleus out into space. They typically form where freshly-exposed ice from breaks or fissures in the comet’s crust vaporizes in the sun’s heat.
What I wouldn’t give to see one up close. Wait – we can. Take a look at the photo of Comet 103P/Hartleymade during NASA’s EPOXI flyby mission in November 2010. Notice that most of Hartley’s crust appears intact with the jets being the main contributors to the dust and gas that form the coma and tail.
Spotting a jet usually requires good seeing (low atmospheric turbulence) and high magnification. They’re low-contrast features but worth searching for in any bright comet. Jets often point toward the sun for good reason – the sunward side of the comet is where the heating is happening. Activity dies back as the comet rotates to face away from the sun during the night and early morning hours. By studying the material streaming away from a comet via jets, astronomers can determine the rotation period of the nucleus.
Sometimes material sprayed by jets expands into a curved parabolic hood within the coma. This may explain the wing-shaped structures poking out from Comet ISON’s coma seen in recent photos. Possibly the Nov. 13-14 outburst released a great deal of fresh dust that’s now being pushed back toward the tail by the ever-increasing pressure of sunlight as the comet approaches perihelion.
The inner coma of Comet Hale-Bopp developed a striking series of hoods in March 1997 when a dust jet spewed material night after night from the comet’s rotating nucleus. The animation captures garden sprinkler effect beautifully. Since the nucleus spun around every 11 hours 46 minutes, multiple spiraling waves passed through the coma in the sunward direction. To the delight of amateur astronomers at the time, they were plainly visible through the telescope.
When examining a comet, I start at low magnification and note coma shape, compactness and color as well as tail form and length and details like the presence of streamers or knots. Then I crank up the power and carefully study the area around the nucleus. Surprises may await your careful gaze. If Comet ISON does break up, the first sign of it happening might be an elongation or stretching of the false nucleus. If it’s no longer a small, star-like disk or if you notice a fainter, second nucleus tailward of the main, the comet’s days may be numbered.
Wow – what an image! Michael Jaeger’s photo of Comet C/2011 L4 PANSTARRS on March 19 resembles those taken by the orbiting Stereo-B spacecraft. Check out this video (and the one below) to see what I mean. Most observers using binoculars and telescopes are seeing the comet’s head, bright false nucleus and a single plume-like tail.
Careful photography like Jaeger’s reveals so much more – two bright, broad dust tails and three shorter spikes. One of the dust tails peels off to the left of the comet’s head, the other extends upward feather-like before splitting into two separate streamers. There are also several narrow, spike-like tails due to various excited elements and gas emissions from the comet’s icy nucleus.
Video of Comet PANSTARRS made from pictures taken by NASA’s STEREO-B spacecraft on March 13, one of two spacecraft that orbit ahead and behind Earth monitoring solar activity on the sun’s farside.
Michael Jaeger of Austria has been shooting pictures of comets since 1982. His images always reveal details that entice visual observers to go out and look for more than what first meets the eye. Last night I got my first look at the comet through a telescope and was delighted at the sight of its smooth, luminous tail and brilliant yellow false-nucleus. The false nucleus is the bright spot visible in the center of the PANSTARRS’ head; in 10×50 binoculars it looks like a star. Through a telescope it’s a fuzzy, yellow pea. Buried deep within the false nucleus is the icy comet nucleus itself, vaporizing in the sun’s heat and shrouded by its own dust.
The comet has faded in the past week or two from 1st magnitude – equal to some of the brightest stars – to about magnitude 2.5 or somewhat fainter than the stars of the Big Dipper. In very clear skies, it was still dimly visible with the naked eye about 40 minutes after sunset low in the northwestern sky. I only knew where to look after first finding the comet in 10×50 binoculars. The tail points straight up and stretches nearly 2 degrees in length once the sky gets dark enough to increase contrast and before PANSTARRS sinks too low. I kept it in view for nearly an hour from a wind-whipped location north of Duluth, Minn.
Through the telescope the nucleus blazed yellow from sunlit dust. Set inside the comet’s sleek, smooth head it reminded me of a lighthouse beacon shining through the mist. Gorgeous! The tail trailed bent back to the northeast with a slight arc. I highly recommend setting up your telescope for a look at PANSTARRS, if for no other reason than to see the beauty of the false-nucleus within the finger-like tail.
You can use the chart to help you find the comet for the remainder of the month. It shows the comet’s position every 3 days now through March 31 from mid-northern latitudes, specially 42 degrees north (Chicago, Ill.). If you live in the northern U.S., the comet will be in approximately the same positions but slightly higher in the sky; in the southern U.S. it will be a little lower. Notice the “15 degree” altitude line. If you set the bottom of your fist flat on the horizon, the 15 degree line is a fist and a half above that level.
Time lapse video made by Patrick Cullis showing Comet PANSTARRS setting behind the Flatirons of Boulder, Col. on March 19. As you watch, notice how the comet appears against the sky background and the direction it moves toward the horizon – both clues to help you find it.
The map compensates for the sun rising later each night and shows the comet’s height above the horizon when the sun is 7.5 degrees below the horizon. 7.5 degrees corresponds to about 30 minutes after sunset. Notice that the sun moves northward (to the right) just like the comet does over the next couple weeks but more slowly.
See those yellow numbers along the map’s horizon? Those are compass bearings called azimuths. If you have a compass, dig it out and give it a look. Every compass is marked in degrees of azimuth. 270 degrees is due west, 285 degrees is a fist and a half to the right of due west, 315 degrees is exactly halfway between due west and due north. North can be either 360 degrees or 0 degrees. Azimuths are simple way to subdivide directions to make them more precise.
The next time it’s clear, bring your binoculars and a compass (if needed) and find a location with a great view of the western sky preferably down to the horizon. Use the map along with the compass bearings to guide your eyes in the right direction. You can also use the sun’s position below the horizon to point you to the comet by angling up from the lingering glow at the sunset point. Remember to first focus your binoculars on the moon, cloud bank or star before attempting to find PANSTARRS. There’s nothing more frustrating than sweeping for a fuzzy comet with an out-of-focus instrument.