How to Not Die While Stargazing in the Cold

Orion steps above towering spruce on a January evening. Credit: Bob King

Bitter cold lies ahead for many skywatchers in the U.S. and Canada in the coming week as the polar vortex swoops down from Santa’s village for round two this season. Will that stop you from going out to enjoy the winter wonders of Jupiter, the M82 supernova and Orion? It needn’t if you take the proper precautions.

In all honesty, you’ll probably still get cold if you attempt to observe on windy, subzero nights, but if you follow these helpful hints, you won’t get as cold. That said, there are two key ingredients to a successful and happy night under the winter sky: dressing well and planning in advance what you want to see.

I know it looks like an alien an abduction with only clothes left behind, but consider this an illustration of good nighttime winterwear. Credit: Bob King
I know it looks like an alien abduction with only the clothes left behind, but consider this an illustration of good nighttime winterwear. Credit: Bob King

Dressing well means having to accept the fact that even though you still feel warm walking out the door, 10 minutes later you won’t be. Always layer to the hilt. Insulated pack boots like those made by Sorrel or LaCrosse will keep your feet toasty for at least an hour of standing in place at the telescope.

I still wear blue jeans during winter, but when out getting a winter star tan, I pull on a pair of insulated snow pants.  To keep heat from escaping the rest of the body, a flannel shirt, thick sweater and some kind of down or insulated coat will provide protection right up to your neck. Some folks like the all-in-one approach and don a snowmobile suit. Add a scarf, a bomber cap with furry ear flaps for the head region and lined mittens or gloves for your digits, and you’re almost ready to do battle. Assuming you still have energy left after building a fortress around your person.

Chemical heating packets are VERY helpful tucked inside your gloves or boots if your feet have a tendency to get cold. Open them up 10 minutes beforehand and be sure enough air circulates around them. It makes them more effective. Credit: Bob King
Tuck chemical hand warmer packets inside your gloves or boots. Credit: Bob King

About gloves. I use lined deerskin gloves with chemical hand-warmers nestled in each palm. It’s so nice to have something warm to push your fingers into when they get chilled. Others prefer the wiser dual-glove approach – wearing a pair of thin gloves inside mittens that Velcro open across the palm. That way you use your fingers to adjust focus or check a chart and then safely tuck your hands back into the mittens.

On super-cold nights I’ll set the telescope up right outside the house so I can bail when necessary, but on exceptional nights when it might be well below zero but not windy, I’ll make the drive to the country for darker skies and set up on the proverbial road in the middle of nowhere.

I limit my observing to two hours maximum. Not because I have any control over time; that’s as much as this body can take when it’s -20 F. One little trick I’ve employed over the years to survive astronomical cold is to keep moving. I check charts constantly, set eyepieces down in the trunk of the car, then return to pick up a different eyepiece, take a short walk and even run in place. Hey, only the wolves are watching, so who cares? All this to keep the body moving to generate heat.

On very cold nights it's a good idea to make a concise observing plan to efficiently use your time at the telescope. I grab a few charts and often take brief notes outside using a red flashlight. Credit: Bob King
On very cold nights it’s a good idea to make a concise observing plan to efficiently use your time at the telescope. I grab a few charts and often take brief notes outside using a red flashlight. Credit: Bob King

If I do freeze, the car provides some solace. A typical drive home will find me steering with my inner arms, my crabbed hands straining to absorb every molecules of hot air blasting from the vents

The second key ingredient to a successful, soulful, subzero night is planning. If you prepare a short list either on paper or mentally of winter sky gems before you walk out the door, you’ll spend your stellar minutes more efficiently and return indoors a happy camper.

I keep it simple. If there’s a bright planet out, that’s always on my list. With Jupiter shining so enticingly these nights, how can you not go out to see what the weather’s doing on the solar system’s biggest planet? Relish the thought that the cloud tops you’re seeing are cold enough at -230 F (-145 C) to snow ammonia flakes. Makes 20 below almost seem like shirtsleeve weather.

The well-dressed stargazer does not fear the winter night. Credit: Bob King
A well-dressed stargazer relishes a night under the winter stars. Credit: Bob King

Add in a few variable stars, a supernova, maybe a comet and two or three deep sky objects and I feel a sense of connection and accomplishment by the time I return inside to what now feels like a Hawaiian vacation in my living room. Total time elapsed: maybe an hour. Too much? 15 minutes for a pretty double star and a current planet will do. Astronomy photos, articles and book are great, but we all need the real thing from time to time; there’s no substitute for a direct connection to the cosmic wilderness.

One crucial tip on doing astronomy in winter. Make sure your telescope is COLD. A spare meat locker for storage would be ideal. Barring that, place the scope outside and let it cool down before you begin your observing session. If it comes directly from the house, 45 minutes to an hour should be enough, depending on the temperature and aperture size. If you store it in a garage or shed, 20 minutes should do the trick.

A brilliant moonlit night in January with the Big Dipper rising in the northeastern sky. Credit: Bob King
A brilliant moonlit night in January with the Big Dipper rising in the northeastern sky. Credit: Bob King

Ready to zip up? Go for it! I ran into a woman a couple weeks back who told me she loved winter because the cold made her feel alive. Man, she hit it right on the head. I’ll leave you with a quote from one of my favorite old-time authors, Joseph Elgie, an English amateur astronomer who wrote about the pleasures of the sky no matter the season in a book titled The Night Skies of a Year. This entry is from February about the year 1907:

“Shortly after nine o’clock Procyon could be seen through the openings in the flying clouds, not far from the meridian. The sky resembled a vast snow-field in swift motion – a snow field showing fleeting patches of blue, which were studded with sparklets of silver, and Procyon was one of those sparklets. In the sou’west too, I could discern a coppery gleam on the pale blue background of the sky. It was Betelgeuse. What pictures of tender loveliness were these!”

Weekly SkyWatcher’s Forecast – February 12-18, 2012

Spirograph Nebula Courtesy of the Hubble Space Telescope

[/caption]

Greetings, fellow SkyWatchers! As the Moon fades away, dark sky studies return and so do we as we take a look at a great collection of nebulae this week and expand your Herschel studies. Get out your binoculars and telescopes, because here’s what’s up!

Sunday, February 12 – Today is the anniversary (2001) of NEAR landing on asteroid Eros. The Near Earth Asteroid Rendezvous (NEAR) mission was the first to ever orbit an asteroid, successfully sending back thousands of images. Although it was not designed to land on Eros, it survived the low speed impact and continued to send back data. Would you like to view Eros for yourself? It will be visible a few hours after sky dark. At somewhere between magnitude 11 and 12, Eros will require at least a mid-sized telescope, but is very viewable to both hemispheres along the Hydra/Crater border… and about a handspan southwest of Mars! Be sure to check resources for a planetarium program or on-line service which will give you a precise location for your time and area.

Tonight we’ll continue onward with our studies of Lepus as we head for two more of the coveted Herschel 400 objects. Our hop starts with beautiful Gamma and NGC 2073. Located less than a fingerwidth northeast of Gamma (RA 05 45 53.90 Dec -21 59 59.0), NGC 2073 might be magnitude 12.4, but its small size makes it anything but easy. Even if it does have some highly studied molecular cloud structure, be prepared to see nothing but a tiny, egg-shaped contrast change in the elliptical Herschel 241.

Continue northeast a little more than 2 degrees (RA 05 54 52.30 Dec -20 05 03.0) to encounter Herschel 225 – NGC 2124. Although it is slightly fainter, we are at least picking up something with more recognizable structure. Oriented north/south, Herschel 225 is an inclined spiral with a bright nucleus. Set in a wonderfully rich star field, it’s difficult to spot at first with low power, but its slim structure holds up well to magnification. This one is really a pleasure.

Monday, February 13 – Today is the birthday of J.L.E. Dreyer. Born in 1852, the Danish-Irish Dreyer came to fame as the astronomer who compiled the New General Catalogue (NGC) published in 1878. Even with a wealth of astronomical catalogs to chose from, the NGC objects and Dreyer’s abbreviated list of descriptions still remain the most widely used today.

Tonight let’s make Dreyer proud as we finish up our Herschel 400 studies for Herschel 267. At magnitude 13, NGC 2076 (Right Ascension: 5 : 46.8 – Declination: -16 : 46 ) is a lot less forgiving of scope size and sky conditions than some galaxies, but if aperture and sky cooperate, you are in for a real treat! Although it is fairly small and somewhat faint, NGC 2076 is an edge-on that will show indications of a dark dustlane across its brighter nucleus, when using aversion. The lane itself has been highly studied for dust extinction and star forming properties and as recently as 2003 a supernova event was reported just south of the nucleus.

Now let’s drop south about one degree and pick up Herschel 270! Far brighter at magnitude 11.9, don’t let the ordinary elliptical NGC 2089 (Right Ascension: 5 : 47.8 – Declination: -17 : 36) fool you. What would appear to be a stellar nucleus is indeed stellar. Studies done by AAVSO have shown that the bright point of light is actually a line of sight star. Congratulations on your studies and be sure to write down your Herschel “homework!”

Tuesday, February 14 – Happy Valentine’s Day! Today is the birthday of Fritz Zwicky. Born in 1898, Zwicky was the first astronomer to identify supernovae as a separate class of objects. His insights also proposed the possibility of neutron stars. Among his many achievements, Zwicky also catalogued galaxy clusters and designed jet engines.

In mythology, Lepus the Hare is hiding in the grass at Orion’s feet. As we have seen, there are many objects of beauty hidden within what seems to be a very ordinary constellation. Before we leave the “Rabbit” for this year, there is one last object that is worthy of attention. If you look to the feet of Orion and the brightest star of Lepus, you will see that they make a triangle in the sky. Tonight we are headed towards the center of that triangle for a singular object – the Spirograph Nebula.

Shown in all its glory through the eye of the Hubble Telescope, the light you see tonight from the IC 408 (Right Ascension: 5 : 17.9 – Declination: -25 : 05) planetary nebula left in the year 7 AD. Its central star, much like our own Sol, was in the final stages of its life at that time, and but a few thousand years earlier was a red giant. As it shed its layers off into about a tenth of a light-year of space, only its superheated core remained – its ultraviolet radiation lighting up the expelled gas. Perhaps in several thousand years the nebula will have faded away, and in several billion years more the central star will have become a white dwarf – a fate that also awaits our own Sun.

At magnitude 11, it is well within reach of a small to mid-size telescope. Like all planetary nebulae, the more magnification – the better the view. The central star is easily seen against a slightly elongated shell and larger telescopes bring an “edge” to this nebula that makes it very worthwhile studying. Spend some quality time with this object. With larger scopes, there is no doubt a texture to this planetary that will delight the eye…and touch the heart!

Wednesday, February 15 – Born on this day in 1564 was the man who fathered modern astronomy – Galileo Galilei. Two and a half centuries ago, he became first scientist to use a telescope for astronomical observation and his first target was the Moon. Just before dawn this morning you will have the opportunity to observe the waning crescent and the tiny crater named for Galileo. Almost central along the terminator and caught near the edge of Oceanus Procellarum, you will see a small, bright ring. This is Reiner Gamma and you will find Galileo just a short hop to the northwest as a tiny, circular crater. What a shame the cartographers did not pick a more vivid feature to name after the great Galileo!

With absence of the Moon in our favor tonight, it’s time to learn the constellation of Monoceros as the skies darken and Orion begins to head west. By using the red giant Betelgeuse, diamond-bright Sirius and the beacon of Procyon, we can see these three stars form a triangle in the sky with Sirius pointing towards the south. The “Unicorn” is not a bright constellation, and most of its stars fall inside this area with its Alpha star almost a handspan south of Procyon.

Using the belt of Orion as a guide, look a handspan east, this is Delta. A fistwidth away to the southeast is Gamma; with Beta about two fingerwidths further along. About a palmwidth southeast of Betelguese is Epsilon. Although this might seem simplistic, knowing these stars will help you find many wonderful objects. Let’s start our journey tonight two fingerwidths northwest of Epsilon… NGC 2186 (Right Ascension: 6 : 12.2 – Declination: +05 : 2) is a triangular open cluster of stars set in a rich field that can be spotted with binoculars and reveals as many as 30 or more stars to even a small telescope. Not only is this a Herschel 400 object that can be spotted with simple equipment, but a highly studied galactic cluster that contains circumstellar discs!

Thursday, February 16 – On this day in 1948, Gerard Kuiper was celebrating his discovery of Miranda – one of Uranus’ moons. Just 42 years earlier on this day, both Kopff and Metcalf were also busy – discovering asteroids! Today is the birthday of Francois Arago. Born in 1786, Arago became the pioneer scientist in the wave nature of light. His achievements were many and he is also credited as the inventor of the polarimeter and other optical devices.

Tonight let’s celebrate Arago’s achievements in polarization as we return again to Epsilon Monocerotis. Our destination is around a fingerwidth east as we seek out another star cluster that has an interesting companion – a nebula!

NGC 2244 (Right Ascension: 6 : 32.4 – Declination: +04 : 52) is a star cluster embroiled in a reflection nebula spanning 55 light-years and most commonly called “The Rosette.” Located about 2500 light-years away, the cluster heats the gas within the nebula to nearly 18,000 degrees Fahrenheit, causing it to emit light in a process similar to that of a fluorescent tube. A huge percentage of this light is hydrogen-alpha, which is scattered back from its dusty shell and becomes polarized.

While you won’t see any red hues in visible light, a large pair of binoculars from a dark sky site can make out a vague nebulosity associated with this open cluster. Even if you can’t, it is still a wonderful cluster of stars crowned by the yellow jewel of 12 Monocerotis. With good seeing, small telescopes can easily spot the broken, patchy wreath of nebulosity around a well-resolved symmetrical concentration of stars. Larger scopes, and those with filters, will make out separate areas of the nebula which also bear their own distinctive NGC labels. No matter how you view it, the entire region is one of the best for winter skies.

Friday, February 17 – Tonight is a good time for us to go hunting some obscure objects that will require the darkest of skies. Once again, we’ll use our guide star Epsilon and tonight we’ll be heading about three fingerwidths northeast for a vast complex of nebulae and star clusters.

To the unaided eye, 4th magnitude S Monocerotis is easily visible and to small binoculars so are the beginnings of a rich cluster surrounding it. This is NGC 2264 (Right Ascension: 6 : 41.1 – Declination: +09 : 53). Larger binoculars and small telescopes will easily pick out a distinct wedge of stars. This is most commonly known as the “Christmas Tree Cluster,” its name given by Lowell Observatory astronomer Carl Lampland. With its peak pointing due south, this triangular group is believed to be around 2600 light-years away and spans about 20 light-years. Look closely at its brightest star – S Monocerotis is not only a variable, but also has an 8th magnitude companion. The group itself is believed to be almost 2 million years old.

The nebulosity is beyond the reach of a small telescope, but the brightest portion illuminated by one of its stars is the home of the Cone Nebula. Larger telescopes can see a visible V-like thread of nebulosity in this area which completes the outer edge of the dark cone. To the north is a photographic only region known as the Foxfur Nebula, part of a vast complex of nebulae that extends from Gemini to Orion.

Northwest of the complex are several regions of bright nebulae, such as NGC 2247, NGC 2245, IC 446 and IC 2169. Of these regions, the one most suited to the average scope is NGC 2245 (Right Ascension: 6 : 32.7 – Declination: +10 : 10), which is fairly large, but faint, and accompanies an 11th magnitude star. NGC 2247 (Right Ascension: 6 : 33.2 – Declination: +10 : 20) is a circular patch of nebulosity around an 8th magnitude star, and it will appear much like a slight fog. IC 446 is indeed a smile to larger aperture, for it will appear much like a small comet with the nebulosity fanning away to the southwest. IC 2169 is the most difficult of all. Even with a large scope a “hint” is all!

Enjoy your nebula quest…

Saturday, February 18 – On this day in 1930, a young man named Clyde Tombaugh was very busy checking out some photographic search plates taken with the Lowell Observatory’s 13″ telescope. His reward? The discovery of Pluto! And just where is the planet that isn’t a planet any more? You can find it before dawn! The little rascal is hiding out in a very stellar field just east of M25 and a couple of degrees northwest of the slender crescent Moon. How do you know which faint “star” is Pluto? Well, if you set a computerized telescope to RA 18h 24m 59s – Dec 19°18’44”, it will be precisely in the center of the field if you are perfectly polar aligned. If you are using a manual telescope, you will need to sketch the field and return over a period of several days to see which “star” moves. It would be a great lesson – since early astronomers did it that way!

This evening let us return to the realm of binoculars and small telescopes as we head now for Beta Monocerotis and a little more than a fingerwidth north for NGC 2232 (Right Ascension: 6 : 26.6 – Declination: -04 : 45). This wonderful collection of stars sparkles with chains and various magnitudes – the brightest of which is 5th magnitude 10 Monocerotis. Well resolved with a small telescope, its apparent size of about a full moon-width makes it a true delight and it can even be spotted unaided from a dark sky site. Be sure to note it, because it is on many open cluster study lists.

Now head back to Beta and about the same distance west for Class D cluster NGC 2215 (Right Ascension: 6 : 21.0 – Declination: -07 : 17). At magnitude 8, it is still within the realm of binoculars, but will look like a small fuzzy patch beyond resolution. Try this one with a telescope! Set in a rich field, the compressed area of near equal magnitude stars isn’t the most colorful in the sky, but you can add another to your Herschel hits!

Until next week, may all your journeys be at light speed!