Hubble and Spitzer Team up to Find a Pair of Waterworld Exoplanets

Artist’s impression of a water world, where half of its mass consists of water. Just like our Moon, the planet is bound to its star by tidal forces and always shows the same face to its host star. Credit: Pilar Montañés

As of December 19th, 2022, 5,227 extrasolar planets have been confirmed in 3,908 systems, with over 9,000 more awaiting confirmation. While most of these planets are Jupiter- or Neptune-sized gas giants or rocky planets many times the size of Earth (Super-Earths), a statistically significant number have been planets where water makes up a significant part of their mass fraction – aka. “water worlds.” These planets are unlike anything we’ve seen in the Solar System and raise several questions about planet formation in our galaxy.

In a recent study, an international team led by researchers from the University of Montreal’s Institute for Research on Exoplanets (iREx) found evidence of two water worlds in a single planetary system located about 218 light-years away in the constellation Lyra. Based on their densities, the team determined that these exoplanets (Kepler-138c and Kepler-138d) are lighter than rocky “Earth-like” ones but heavier than gas-dominated ones. The discovery was made using data from NASA’s now-retired Spitzer Space Telescope and the venerable Hubble Space Telescope.

Continue reading “Hubble and Spitzer Team up to Find a Pair of Waterworld Exoplanets”

NASA has Built a Collection of Instruments That Will Search for Life Inside Europa and Enceladus

Counterclockwise from top: California’s Mono Lake was the site of a field test for JPL’s Ocean Worlds Life Surveyor. A suite of eight instruments designed to detect life in liquid samples from icy moons, OWLS can autonomously track lifelike movement in water flowing past its microscopes. Credit: NASA/JPL-Caltech

One of the most exciting aspects of space exploration today is how the field of astrobiology – the search for life in our Universe – has become so prominent. In the coming years, many robotic and even crewed missions will be bound for Mars that will aid in the ongoing search for life there. Beyond Mars, missions are planned for the outer Solar System that will explore satellites and bodies with icy exteriors and interior oceans – otherwise known as “Ocean Worlds.” These include the Jovian satellites Europa and Ganymede and Saturn’s moons Titan and Enceladus.

Similar to how missions to Mars have analyzed soil and rock samples for evidence of past life, the proposed missions will analyze liquid samples for the chemical signatures that we associate with life and biological processes (aka. “biosignatures”). To aid in this search, scientists at NASA’s Jet Propulsion Laboratory have designed the Ocean Worlds Life Surveyor (OWLS), a suite of eight scientific instruments designed to sniff out biosignatures. In the coming decades, this suite could be used by robotic probes bound for “Ocean Worlds” all across the Solar System to search for signs of life.

Continue reading “NASA has Built a Collection of Instruments That Will Search for Life Inside Europa and Enceladus”

A Swarm of Swimming Robots to Search for Life Under the Ice on Europa

An artist’s interpretation of liquid water on the surface of the Europa pooling beneath chaos terrain. Credit: : NASA/JPL-Caltech

When Galileo pointed his telescope at Jupiter 400 years ago, he saw three blobs of light around the giant planet, which he at first thought were fixed stars. He kept looking, and eventually, he spotted a fourth blob and noticed the blobs were moving. Galileo’s discovery of objects orbiting something other than Earth—which we call the Galilean moons in his honour—struck a blow to the Ptolemaic (geocentric) worldview of the time.

Galileo couldn’t have foreseen the age of space exploration that we’re living in now. Fast forward 400 years, and here we are. We know the Earth doesn’t occupy any central point. We’ve discovered thousands of other planets, and many of them will have their own moons. Galileo would be amazed at this.

What would he think about robotic missions to explore one of the blobs of light he spotted?

Continue reading “A Swarm of Swimming Robots to Search for Life Under the Ice on Europa”

Micrometeorites Churn up the Surface of Europa. If you Want to Find Life, You’ll Need to dig Down a Meter or So

An artist's rendering of Europa and Jupiter based on images sent by visiting spacecraft. Credit: NASA/JPL-Caltech

In the coming decade, NASA and the ESA will be sending two dedicated missions that will explore Jupiter’s moon Europa. These missions are known as the Europa Clipper and the JUpiter ICy moons Explorer (JUICE) missions, which will fulfill a dream that has been decades in the making – searching for possible evidence of life inside Europa. Since the 1970s, astronomers have theorized that this satellite contains a warm-water ocean that could support life.

The case for life in Europa has only been bolstered thanks to multiple flybys and observation campaigns that have been mounted since. According to new research led by the University of Hawaii at Manoa, the best way to look for potential signs of life (aka. biosignatures) would be to analyze small impact craters on Europa’s surface. These patches of exposed subsurface ice could point the way towards life that might exist deeper in the moon’s interior.

Continue reading “Micrometeorites Churn up the Surface of Europa. If you Want to Find Life, You’ll Need to dig Down a Meter or So”

There Might be Volcanoes at the Bottom of Europa’s sub-ice Oceans

Artist's concept of a Europa Clipper mission. Credit: NASA/JPL

In about three years, NASA plans to launch a robotic orbiter that will study Jupiter’s mysterious moon Europa. It’s called the Europa Clipper mission, which will spend four years orbiting Europa to learn more about its ice sheet, interior structure, chemical composition, and plume activity. In the process, NASA hopes to find evidence that will help resolve the ongoing debate as to whether or not Europa harbors life in its interior.

Naturally, scientists are especially curious about what the Clipper mission might find, especially in Europa’s interior. According to new research and modeling supported by NASA, it’s possible that volcanic activity occurred on the seafloor in the recent past – which could be happening still. This research is the most detailed and thorough 3D modeling on how internal heat is produced and transferred and what effect this will have on a moon.

Continue reading “There Might be Volcanoes at the Bottom of Europa’s sub-ice Oceans”

How Salty is Enceladus’ Ocean Under the ice?

An icy satellite of Saturn, Enceladus, has been a subject of increasing interest in recent years since Cassini captured jets of water and other material being ejected out of the south pole of the moon.  One particularly tantalizing hypothesis supported by the sample composition is that there might be life in the oceans under the ice shells of Enceladus. To evaluate Enceladus’ habitability and to figure out the best way to probe this icy moon, scientists need to better understand the chemical composition and dynamics of Enceladus’ ocean.

Continue reading “How Salty is Enceladus’ Ocean Under the ice?”

The Same Technology Could Search for Microbes in Mars Rocks or Under the ice on Europa

Credit: NASA/JPL-Caltech

Ever since it landed in the Jezero Crater on Feb. 18th, 2021, the Perseverance rover has been prepping its scientific instruments to begin searching for signs of past life on the Red Planet. These include spectrometers that will scan Martian rocks for organics and minerals that form in the presence of water and a caching system that will store samples of Martian soil and rock for retrieval by a future mission.

These telltale indicators could be signs of past life, which would most likely take the form of fossilized microbes. In the near future, a similar instrument could be used to search for present-day extraterrestrial life. It’s known as the Wireline Analysis Tool for the Subsurface Observation of Northern ice sheets (WATSON), and could be used to find evidence of life inside “ocean worlds” like Europa, Enceladus, and Titan.

Continue reading “The Same Technology Could Search for Microbes in Mars Rocks or Under the ice on Europa”

Beyond “Fermi’s Paradox” XIII: What is the “Ocean Worlds” Hypothesis?

The "ocean worlds" of the Solar System. Credit: NASA/JPL

Welcome back to our Fermi Paradox series, where we take a look at possible resolutions to Enrico Fermi’s famous question, “Where Is Everybody?” Today, we examine the possibility that the reason for the Great Silence is that most life out there exists in warm water oceans under sheets of ice!

In 1950, Italian-American physicist Enrico Fermi sat down to lunch with some of his colleagues at the Los Alamos National Laboratory, where he had worked five years prior as part of the Manhattan Project. According to various accounts, the conversation turned to aliens and the recent spate of UFOs. Into this, Fermi issued a statement that would go down in the annals of history: “Where is everybody?

This became the basis of the Fermi Paradox, which refers to the disparity between high probability estimates for the existence of extraterrestrial intelligence (ETI) and the apparent lack of evidence. Since Fermi’s time, there have been several proposed resolutions to his question, which include the possibility that Oceans Worlds (and not rocky planets) might be the best candidates for finding life.

Continue reading “Beyond “Fermi’s Paradox” XIII: What is the “Ocean Worlds” Hypothesis?”

Planets With Large Oceans are Probably Common in the Milky Way

The "ocean worlds" of the Solar System. Credit: NASA/JPL

Within our Solar Systems, there are several moons where astronomers believe life could be found. This includes Ceres, Callisto, Europa, Ganymede, Enceladus, Titan, and maybe Dione, Mimas, Triton, and the dwarf planet Pluto. These “ocean worlds” are believed to have abundant liquid water in their interiors, as well as organic molecules and tidal heating – the basic ingredients for life.

Which raises the all-important question: are similar moons to be found in other star systems? This is the question NASA planetary scientist Dr. Lynnae C. Quick and her team from NASA’s Goddard Space Flight Center sought to address. In a recent study, Quick and her colleagues examined a sample of exoplanet systems and found that ocean worlds are likely to be very common in our galaxy.

Continue reading “Planets With Large Oceans are Probably Common in the Milky Way”

An Insulating Layer of Gas Could Keep a Liquid Ocean Inside Pluto

New Horizons view of Pluto
The heart-shaped region of Pluto's surface was formed at least in part by a cataclysmic "splat," scientists say. (Credit: NASA / JHUAPL / SwRI)

In July of 2015, NASA’s New Horizons mission made history by becoming the first spacecraft to ever conduct a flyby with Pluto. In addition to providing the world with the first up-close images of this distant world, New Horizons‘ suite of scientific instruments also provided scientists with a wealth of information about Pluto – including its surface features, composition, and atmosphere.

The images the spacecraft took of the surface also revealed unexpected features like the basin named Sputnik Planitia – which scientists saw as an indication of a subsurface ocean. In a new study led by researchers from the University of Hokkaido, the presence of a thin layer of clathrate hydrates at the base of Pluto’s ice shell would ensure that this world could support an ocean.

Continue reading “An Insulating Layer of Gas Could Keep a Liquid Ocean Inside Pluto”