In the coming years, NASA has some bold plans to build on the success of the New Horizons mission. Not only did this spacecraft make history by conducting the first-ever flyby of Pluto in 2015, it has since followed up on that by making the first encounter in history with a Kuiper Belt Object (KBO) – 2014 MU69 (aka. Ultima Thule).
Given the wealth of data and stunning images that resulted from these events (which NASA scientists are still processing), other similarly-ambitious missions to explore the outer Solar System are being considered. For example, there is the proposal for the Trident spacecraft, a Discovery-class mission that would reveal things about Neptune’s largest moon, Triton.
For decades, scientists have believed that there could be life beneath the icy surface of Jupiter’s moon Europa. Since that time, multiple lines of evidence have emerged that suggest that it is not alone. Indeed, within the Solar System, there are many “ocean worlds” that could potentially host life, including Ceres, Ganymede, Enceladus, Titan, Dione, Triton, and maybe even Pluto.
But what if the elements for life as we know it are not abundant enough on these worlds? In a new study, two researchers from the Harvard Smithsonian Center of Astrophysics (CfA) sought to determine if there could in fact be a scarcity of bioessential elements on ocean worlds. Their conclusions could have wide-ranging implications for the existence of life in the Solar System and beyond, not to mention our ability to study it.
In previous studies, questions on the habitability of moons and other planets have tended to focus on the existence of water. This has been true when it comes to the study of planets and moons within the Solar System, and especially true when it comes the study of extra-solar planets. When they have found new exoplanets, astronomers have paid close attention to whether or not the planet in question orbits within its star’s habitable zone.
This is key to determining whether or not the planet can support liquid water on its surface. In addition, astronomers have attempted to obtain spectra from around rocky exoplanets to determine if water loss is taking place from its atmosphere, as evidenced by the presence of hydrogen gas. Meanwhile, other studies have attempted to determine the presence of energy sources, since this is also essential to life as we know it.
In contrast, Dr. Lingam and Prof. Loeb considered how the existence of life on ocean planets could be dependent on the availability of limiting nutrients (LN). For some time, there has been considerable debate as to which nutrients would be essential to extra-terrestrial life, since these elements could vary from place to place and over timescales. As Lingam told Universe Today via email:
“The mostly commonly accepted list of elements necessary for life as we know it comprises of hydrogen, oxygen, carbon, nitrogen and sulphur. In addition, certain trace metals (e.g. iron and molybdenum) may also be valuable for life as we know it, but the list of bioessential trace metals is subject to a higher degree of uncertainty and variability.”
For their purposes, Dr. Lingam and Prof. Loeb created a model using Earth’s oceans to determine how the sources and sinks – i.e. the factors that add or deplete LN elements into oceans, respectively – could be similar to those on ocean worlds. On Earth, the sources of these nutrients include fluvial (from rivers), atmospheric and glacial sources, with energy being provided by sunlight.
Of these nutrients, they determined that the most important would be phosphorus, and examined how abundant this and other elements could be on ocean worlds, where conditions as vastly different. As Dr. Lingam explained, it is reasonable to assume that on these worlds, the potential existence of life would also come down to a balance between the net inflow (sources) and net outflow (sinks).
“If the sinks are much more dominant than the sources, it could indicate that the elements would be depleted relatively quickly. In other to estimate the magnitudes of the sources and sinks, we drew upon our knowledge of the Earth and coupled it with other basic parameters of these ocean worlds such as the pH of the ocean, the size of the world, etc. known from observations/theoretical models.”
While atmospheric sources would not be available to interior oceans, Dr. Lingam and Prof. Loeb considered the contribution played by hydrothermal vents. Already, there is abundant evidence that these exist on Europa, Enceladus, and other ocean worlds. They also considered abiotic sources, which consist of minerals leached from rocks by rain on Earth, but would consist of the weathering of rocks by these moons’ interior oceans.
Ultimately, what they found was that, unlike water and energy, limiting nutrients might be in limited supply when it comes to ocean worlds in our Solar System:
“We found that, as per the assumptions in our model, phosphorus, which is one of the bioessential elements, is depleted over fast timescales (by geological standards) on ocean worlds whose oceans are neutral or alkaline in nature, and which possess hydrothermal activity (i.e. hydrothermal vent systems at the ocean floor). Hence, our work suggests that life may exist in low concentrations globally in these ocean worlds (or be present only in local patches), and may therefore not be easily detectable.”
This naturally has implications for missions destined for Europa and other moons in the outer Solar System. These include the NASA Europa Clipper mission, which is currently scheduled to launch between 2022 and 2025. Through a series of flybys of Europa, this probe will attempt to measure biomarkers in the plume activity coming from the moon’s surface.
Similar missions have been proposed for Enceladus, and NASA is also considering a “Dragonfly” mission to explore Titan’s atmosphere, surface and methane lakes. However, if Dr. Lingam and Prof. Loeb’s study is correct, then the chances of these missions finding any signs of life on an ocean world in the Solar System are rather slim. Nevertheless, as Lingam indicated, they still believe that such missions should be mounted.
“Although our model predicts that future space missions to these worlds might have low chances of success in terms of detecting extraterrestrial life, we believe that such missions are still worthy of being pursued,” he said. “This is because they will offer an excellent opportunity to: (i) test and/or falsify the key predictions of our model, and (ii) collect more data and improve our understanding of ocean worlds and their biogeochemical cycles.”
In addition, as Prof. Loeb indicated via email, this study was focused on “life as we know it”. If a mission to these worlds did find sources of extra-terrestrial life, then it would indicate that life can arise from conditions and elements that we are not familiar with. As such, the exploration of Europa and other ocean worlds is not only advisable, but necessary.
“Our paper shows that elements that are essential for the ‘chemistry-of-life-as-we-know-it’, such as phosphorous, are depleted in subsurface oceans,” he said. “As a result, life would be challenging in the oceans suspected to exist under the surface ice of Europa or Enceladus. If future missions confirm the depleted level of phosphorous but nevertheless find life in these oceans, then we would know of a new chemical path for life other than the one on Earth.”
In the end, scientists are forced to take the “low-hanging fruit” approach when it comes to searching for life in the Universe . Until such time that we find life beyond Earth, all of our educated guesses will be based on life as it exists here. I can’t imagine a better reason to get out there and explore the Universe than this!
For decades, scientists have been speculating that life could exist in beneath the icy surface of Jupiter’s moon Europa. Thanks to more recent missions (like the Cassini spacecraft), other moons and bodies have been added to this list as well – including Titan, Enceladus, Dione, Triton, Ceres and Pluto. In all cases, it is believed that this life would exist in interior oceans, most likely around hydrorthermal vents located at the core-mantle boundary.
One problem with this theory is that in such undersea environments, life might have a hard time getting some of the key ingredients it would need to thrive. However, in a recent study – which was supported by the NASA Astrobiology Institute (NAI) – a team of researchers ventured that in the outer Solar System, the combination of high-radiation environments, interior oceans and hydrothermal activity could be a recipe for life.
For the sake of their study, Dr. Russell and his colleagues considered how the interaction between alkaline hydrothermal springs and sea water is often considered to be how the key building blocks for life emerged here on Earth. However, they emphasize that this process was also dependent on energy provided by our Sun. The same process could have happened on moon’s like Europa, but in a different way. As they state in their paper:
“[T]he significance of the proton and electron flux must also be appreciated, since those processes are at the root of life’s role in free energy transfer and transformation. Here, we suggest that life may have emerged on irradiated icy worlds such as Europa, in part as a result of the chemistry available within the ice shell, and that it may be sustained still, immediately beneath that shell.”
In the case of moon’s like Europa, hydrothermal springs would be responsible for churning up all the necessary energy and ingredients for organic chemistry to take place. Ionic gradients, such as oxyhydroxides and sulfides, could drive the key chemical processes – where carbon dioxide and methane are hydrogenated and oxidized, respectively – which could lead to the creation of early microbial life and nutrients.
At the same time, the heat from hydrothermal vents would push these microbes and nutrients upwards towards the icy crust. This crust is regularly bombarded by high-energy electrons created by Jupiter’s powerful magnetic field, a process which creates oxidants. As scientists have known for some time from surveying Europa’s crust, there is a process of exchange between the moon’s interior ocean and its surface.
As Dr. Russell and his colleagues indicate, this action would most likely involve the plume activity that has been observed on Europa’s surface, and could lead to a network of ecosystems on the underside of Europa’s icy crust:
“Models for transport of material within Europa’s ocean indicate that hydrothermal plumes could be well constrained within the ocean (primarily by the Coriolis force and thermal gradients), leading to effective delivery through the ocean to the ice-water interface. Organisms fortuitously transported from hydrothermal systems to the ice-water interface along with unspent fuels could potentially access a larger abundance of oxidants directly from the ice. Importantly, oxidants might only be available where the ice surface has been driven to the base of the ice shell.”
As Dr. Russel indicated in an interview with Astrobiology Magazine, microbes on Europa could reach densities similar to what has been observed around hydrothermal vents here on Earth, and may bolster the theory that life on Earth also emerged around such vents. “All the ingredients and free energy required for life are all focused in one place,” he said. “If we were to find life on Europa, then that would strongly support the submarine alkaline vent theory.”
This study is also significant when it comes to mounting future missions to Europa. If microbial ecosystems exist on the undersides of Europa’s icy crust, then they could be explored by robots that are able to penetrate the surface, ideally by traveling down a plume tunnel. Alternately, a lander could simply position itself near an active plume and search for signs of oxidants and microbes coming up from the interior.
Similar missions could also be mounted to Enceladus, where the presence of hydrothermal vents has already been confirmed thanks to the extensive plume activity observed around its southern polar region. Here too, a robotic tunneler could enter surface fissures and explore the interior to see if ecosystems exist on the underside of the moon’s icy crust. Or a lander could position itself near the plumes and examine what is being ejected.
Such missions would be simpler and less likely to cause contamination than robotic submarines designed to explore Europa’s deep ocean environment. But regardless of what form a future mission to Europa, Enceladus, or other such bodies takes, it is encouraging to know that any life that may exist there could be accessible. And if these missions can sniff it out, we will finally know that life in the Solar System evolved in places other than Earth!
For decades, ever since the Pioneer and Voyager missions passed through the outer Solar System, scientists have speculated that life might exist within icy bodies like Jupiter’s moon Europa. However, thanks the Cassinimission, scientists now believe that other moons in the outer Solar System – such as Saturn’s moon Enceladus – could possibly harbor life as well.
For instance, Cassini observed plume activity coming from Enceladus’ southern polar region that indicated the presence of hydrothermal activity inside. What’s more, these plumes contained organic molecules and hydrated minerals, which are potential indications of life. To see if life could thrive inside this moon, a team of scientists conducted a test where strains of Earth bacteria were subjected to conditions similar to what is found inside Enceladus.
The study which details their findings recently appeared in the journal Nature Communications under the title “Biological methane production under putative Enceladus-like conditions“. The study was led by Ruth-Sophie Taubner from the University of Vienna, and included members from the Johannes Kepler University Linz, Ecotechnology Austria, the University of Bremen, and the University of Hamburg.
For the sake of their study, the team chose to work with three strains of methanogenic archaea known as methanothermococcus okinawensis. This type of microorganism thrives in low-oxygen environments and consumes chemical products known to exist on Enceladus – such as methane (CH4), carbon dioxide (CO2) and molecular hydrogen (H2) – and emit methane as a metabolic byproduct. As they state:
“To investigate growth of methanogens under Enceladus-like conditions, three thermophilic and methanogenic strains, Methanothermococcus okinawensis (65 °C), Methanothermobacter marburgensis (65 °C), and Methanococcus villosus (80 °C), all able to fix carbon and gain energy through the reduction of CO2 with H2 to form CH4, were investigated regarding growth and biological CH4 production under different headspace gas compositions…”
These strains were selected because of their ability to grow in a temperature range that is characteristic of the vicinity around hydrothermal vents, in a chemically defined medium, and at low partial pressures of molecular hydrogen. This is consistent with what has been observed in Enceladus’ plumes and what is believed to exist within the moon’s interior.
These types of archaea can still be found on Earth today, lingering in deep-see fissures and around hydrothermal vents. In particular, the strain of M. okinawensis has been determined to exist in only one location around the deep-sea hydrothermal vent field at Iheya Ridge in the Okinawa Trough near Japan. Since this vent is located at a depth of 972 m (3189 ft) below sea level, this suggests that this strain has a tolerance toward high pressure.
For many years, scientists have suspected that Earth’s hydrothermal vents played a vital role in the emergence of life, and that similar vents could exist within the interior of moons like Europa, Ganymede, Titan, Enceladus, and other bodies in the outer Solar System. As a result, the research team believed that methanogenic archaea could also exist within these bodies.
After subjecting the strains to Enceladus-like temperature, pressure and chemical conditions in a laboratory environment, they found that one of the three strains was able to flourish and produce methane. The strain even managed to survive after the team introduced harsh chemicals that are present on Enceladus, and which are known to inhibit the growth of microbes. As they conclude in their study:
“In this study, we show that the methanogenic strain M. okinawensis is able to propagate and/or to produce CH4 under putative Enceladus-like conditions. M. okinawensis was cultivated under high-pressure (up to 50 bar) conditions in defined growth medium and gas phase, including several potential inhibitors that were detected in Enceladus’ plume.”
From this, they determined that some of the methane found in Enceladus’ plumes were likely produced by the presence of methanogenic microbes. As Simon Rittmann, a microbiologist at the University of Vienna and lead author of the study, explained in an interview with The Verge. “It’s likely this organism could be living on other planetary bodies,” he said. “And it could be really interesting to investigate in future missions.”
In the coming decades, NASA and other space agencies plan to send multiple mission to the Jupiter and Saturn systems to investigate their “ocean worlds” for potential signs of life. In the case of Enceladus, this will most likely involve a lander that will set down around the southern polar region and collect samples from the surface to determine the presence of biosignatures.
Alternately, an orbiter mission may be developed that will fly through Enceladus’ plumes and collect bioreadings directly from the moon’s ejecta, thus picking up where Cassini left off. Whatever form the mission takes, the discoveries are expected to be a major breakthrough. At long last, we may finally have proof that Earth is not the only place in the Solar System where live can exist.
Be sure to check out John Michael Godier’s video titled “Encedalus and the Conditions for Life” as well:
Some truly interesting and ambitious missions have been proposed by NASA and other space agencies for the coming decades. Of these, perhaps the most ambitious include missions to explore the “Ocean Worlds” of the Solar System. Within these bodies, which include Jupiter’s moon Europa and Saturn’s moon Enceladus, scientists have theorized that life could exist in warm-water interior oceans.
By the 2020s and 2030s, robotic missions are expected to reach these worlds and set down on them, sampling ice and exploring their plumes for signs of biomarkers. But according to a new study by an international team of scientists, the surfaces of these moons may have extremely low-density surfaces. In other words, the surface ice of Europa and Enceladus could be too soft to land on.
For the sake of their study, the team sought to explain the unusual negative polarization behavior at low phase angles that has been observed for decades when studying atmosphereless bodies. This polarization behavior is thought to be the result of extremely fine-grained bright particles. To simulate these surfaces, the team used thirteen samples of aluminum oxide powder (Al²O³).
Aluminum oxide is considered to be an excellent analog for regolith found on high aldebo Airless Solar System Bodies (ASSB), which include Europa and Encedalus as well as eucritic asteroids like 44 Nysa and 64 Angelina. The team then subjected these samples to photopolarimetric examinations using the goniometric photopolarimeter at Mt. San Antonio College.
What they found was that the bright grains that make up the surfaces of Europa and Enceladus would measure about a fraction of a micron and have a void space of about 95%. This corresponds to material that is less dense than freshly-fallen snow, which would seem to indicate that these moon’s have very soft surfaces. Naturally, this does not bode well for any missions that would attempt to set down on Europa or Enceladus’ surface.
But as Nelson explained in PSI press release, this is not necessarily bad news, and such fears have been raised before:
“Of course, before the landing of the Luna 2 robotic spacecraft in 1959, there was concern that the Moon might be covered in low density dust into which any future astronauts might sink. However, we must keep in mind that remote visible-wavelength observations of objects like Europa are only probing the outermost microns of the surface.”
So while Europa and Enceladus may have surfaces with a layer of low-density ice particles, it does not rule out that their outer shells are solid. In the end, landers may be forced to contend with nothing more than a thin sheet of snow when setting down on these worlds. What’s more, if these particles are the result of plume activity or action between the interior and the surface, they could hold the very biomarkers the probes are looking for.
Of course, further studies are needed before any robotic landers are sent to bodies like Europa and Enceladus. In the coming years, the James Webb Space Telescope will be conducting studies of these and other moons during its first five months in service. This will include producing maps of the Galilean Moons, revealing things about their thermal and atmospheric structure, and searching their surfaces for signs of plumes.
The data the JWST obtains with its advanced suite of spectroscopic and near-infrared instruments will also provide additional constraints on their surface conditions. And with other missions like the ESA’s proposed Europa Clipper conducting flybys of these moons, there’s no shortage to what we can learn from them.
Beyond being significant to any future missions to ASSBs, the results of this study are also likely to be of value when it comes to the field of terrestrial geo-engineering. Essentially, scientists have suggested that anthropogenic climate change could be mitigated by introducing aluminum oxide into the atmosphere, thus offsetting the radiation absorbed by greenhouse gas emissions in the upper atmosphere. By examining the properties of these grains, this study could help inform future attempts to mitigate climate change.
This study was made possible thanks in part to a contract provided by NASA’s Jet Propulsion Laboratory to the PSI. This contract was issued in support of the NASA Cassini Saturn Orbiter Visual and Infrared Mapping Spectrometer instrument team.
In the hunt for extra-terrestrial life, scientists tend to take what is known as the “low-hanging fruit approach”. This consists of looking for conditions similar to what we experience here on Earth, which include at oxygen, organic molecules, and plenty of liquid water. Interestingly enough, some of the places where these ingredients are present in abundance include the interiors of icy moons like Europa, Ganymede, Enceladus and Titan.
Whereas there is only one terrestrial planet in our Solar System that is capable of supporting life (Earth), there are multiple “Ocean Worlds” like these moons. Taking this a step further, a team of researchers from the Harvard Smithsonian Center for Astrophysics (CfA) conducted a study that showed how potentially-habitable icy moons with interior oceans are far more likely than terrestrial planets in the Universe.
To begin, Lingam and Loeb address the tendency to confuse habitable zones (HZs) with habitability, or to treat the two concepts as interchangeable. For instance, planets that are located within an HZ are not necessarily capable of supporting life – in this respect, Mars and Venus are perfect examples. Whereas Mars is too cold and it’s atmosphere too thin to support life, Venus suffered a runaway greenhouse effect that caused it to become a hot, hellish place.
On the other hand, bodies that are located beyond HZs have been found to be capable of having liquid water and the necessary ingredients to give rise to life. In this case, the moons of Europa, Ganymede, Enceladus, Dione, Titan, and several others serve as perfect examples. Thanks to the prevalence of water and geothermal heating caused by tidal forces, these moons all have interior oceans that could very well support life.
As Lingam, a post-doctoral researcher at the ITC and CfA and the lead author on the study, told Universe Today via email:
“The conventional notion of planetary habitability is the habitable zone (HZ), namely the concept that the “planet” must be situated at the right distance from the star such that it may be capable of having liquid water on its surface. However, this definition assumes that life is: (a) surface-based, (b) on a planet orbiting a star, and (c) based on liquid water (as the solvent) and carbon compounds. In contrast, our work relaxes assumptions (a) and (b), although we still retain (c).”
As such, Lingam and Loeb widen their consideration of habitability to include worlds that could have subsurface biospheres. Such environments go beyond icy moons such as Europa and Enceladus and could include many other types deep subterranean environments. On top of that, it has also been speculated that life could exist in Titan’s methane lakes (i.e. methanogenic organisms). However, Lingam and Loeb chose to focus on icy moons instead.
“Even though we consider life in subsurface oceans under ice/rock envelopes, life could also exist in hydrated rocks (i.e. with water) beneath the surface; the latter is sometimes referred to as subterranean life,” said Lingam. “We did not delve into the second possibility since many of the conclusions (but not all of them) for subsurface oceans are also applicable to these worlds. Similarly, as noted above, we do not consider lifeforms based on exotic chemistries and solvents, since it is not easy to predict their properties.”
Ultimately, Lingam and Loeb chose to focus on worlds that would orbit stars and likely contain subsurface life humanity would be capable of recognizing. They then went about assessing the likelihood that such bodies are habitable, what advantages and challenges life will have to deal with in these environments, and the likelihood of such worlds existing beyond our Solar System (compared to potentially-habitable terrestrial planets).
For starters, “Ocean Worlds” have several advantages when it comes to supporting life. Within the Jovian system (Jupiter and its moons) radiation is a major problem, which is the result of charged particles becoming trapped in the gas giants powerful magnetic field. Between that and the moon’s tenuous atmospheres, life would have a very hard time surviving on the surface, but life dwelling beneath the ice would fare far better.
“One major advantage that icy worlds have is that the subsurface oceans are mostly sealed off from the surface,” said Lingam. “Hence, UV radiation and cosmic rays (energetic particles), which are typically detrimental to surface-based life in high doses, are unlikely to affect putative life in these subsurface oceans.”
“On the negative side,’ he continued, “the absence of sunlight as a plentiful energy source could lead to a biosphere that has far less organisms (per unit volume) than Earth. In addition, most organisms in these biospheres are likely to be microbial, and the probability of complex life evolving may be low compared to Earth. Another issue is the potential availability of nutrients (e.g. phosphorus) necessary for life; we suggest that these nutrients might be available only in lower concentrations than Earth on these worlds.”
In the end, Lingam and Loeb determined that a wide range of worlds with ice shells of moderate thickness may exist in a wide range of habitats throughout the cosmos. Based on how statistically likely such worlds are, they concluded that “Ocean Worlds” like Europa, Enceladus, and others like them are about 1000 times more common than rocky planets that exist within the HZs of stars.
These findings have some drastic implications for the search for extra-terrestrial and extra-solar life. It also has significant implications for how life may be distributed through the Universe. As Lingam summarized:
“We conclude that life on these worlds will undoubtedly face noteworthy challenges. However, on the other hand, there is no definitive factor that prevents life (especially microbial life) from evolving on these planets and moons. In terms of panspermia, we considered the possibility that a free-floating planet containing subsurface exolife could be temporarily “captured” by a star, and that it may perhaps seed other planets (orbiting that star) with life. As there are many variables involved, not all of them can be quantified accurately.”
Professor Leob – the Frank B. Baird Jr. Professor of Science at Harvard University, the director of the ITC, and the study’s co-author – added that finding examples of this life presents its own share of challenges. As he told Universe Today via email:
“It is very difficult to detect sub-surface life remotely (from a large distance) using telescopes. One could search for excess heat but that can result from natural sources, such as volcanos. The most reliable way to find sub-surface life is to land on such a planet or moon and drill through the surface ice sheet. This is the approach contemplated for a future NASA mission to Europa in the solar system.”
Exploring the implications for panspermia further, Lingam and Loeb also considered what might happen if a planet like Earth were ever ejected from the Solar System. As they note in their study, previous research has indicated how planets with thick atmospheres or subsurface oceans could still support life while floating in interstellar space. As Loeb explained, they also considered what would happen if this ever happened with Earth someday:
“An interesting question is what would happen to the Earth if it was ejected from the solar system into cold space without being warmed by the Sun. We have found that the oceans would freeze down to a depth of 4.4 kilometers but pockets of liquid water would survive in the deepest regions of the Earth’s ocean, such as the Mariana Trench, and life could survive in these remaining sub-surface lakes. This implies that sub-surface life could be transferred between planetary systems.”
This study also serves as a reminder that as humanity explores more of the Solar System (largely for the sake of finding extra-terrestrial life) what we find also has implications in the hunt for life in the rest of the Universe. This is one of the benefits of the “low-hanging fruit” approach. What we don’t know is informed but what we do, and what we find helps inform our expectations of what else we might find.
And of course, it’s a very vast Universe out there. What we may find is likely to go far beyond what we are currently capable of recognizing!
In October of 2018, the James Webb Space Telescope (JWST) will be launched into orbit. As part of NASA’s Next Generation Space Telescope program, the JWST will spend the coming years studying every phase of cosmic history. This will involve probing the first light of the Universe (caused by the Big Bang), the first galaxies to form, and extra-solar planets in nearby star systems.
In addition to all of that, the JWST will also be dedicated to studying our Solar System. As NASA recently announced, the telescope will use its infrared capabilities to study two “Ocean Worlds” in our Solar System – Jupiter’s moon Europa and Saturn’s moon Enceladus. In so doing, it will add to observations previously made by NASA’s Galileo and Cassini orbiters and help guide future missions to these icy moons.
The moons were chosen by scientist who helped to develop the telescope (aka. guaranteed time observers) and are therefore given the privilege of being among the first to use it. Europa and Enceladus were added to the telescope’s list of targets since one of the primary goals of the telescope is to study the origins of life in the Universe. In addition to looking for habitable exoplanets, NASA also wants to study objects within our own Solar System.
One of the main focuses will be on the plumes of water that have been observed breaking through the icy surfaces of Enceladus and Europa. Since 2005, scientists have known that Enceladus has plumes that periodically erupt from its southern polar region, spewing water and organic chemicals that replenish Saturn’s E-Ring. It has since discovered that these plumes reach all the way into the interior ocean that exists beneath Enceladus’ icy surface.
In 2012, astronomers using the Hubble Space Telescope detected similar plumes coming from Europa. These plumes were spotted coming from the moon’s southern hemisphere, and were estimated to reach up to 200 km (125 miles) into space. Subsequent studies indicated that these plumes were intermittent, and presumably rained water and organic materials from the interior back onto the surface.
These observations were especially intriguing since they bolstered the case for Europa and Enceladus having interior, warm-water oceans that could harbor life. These oceans are believed to be the result of geological activity in the interior that is caused by tidal flexing. Based on the evidence gathered by the Galileo and Cassini orbiters, scientists have theorized that these surface plumes are the result of these same geological processes.
The presence of this activity could also means that these moons have hydrothermal vents located at their core-mantle boundaries. On Earth, hydrothermal vents (located on the ocean floor) are believed to have played a major role in the emergence of life. As such, their existence on other bodies within the Solar System is viewed as a possible indication of extra-terrestrial life.
The effort to study these “Ocean Worlds” will be led by Geronimo Villanueva, a planetary scientist at NASA’s Goddard Space Flight Center. As he explained in a recent NASA press statement, he and his team will be addressing certain fundamental questions:
“Are they made of water ice? Is hot water vapor being released? What is the temperature of the active regions and the emitted water? Webb telescope’s measurements will allow us to address these questions with unprecedented accuracy and precision.”
Villanueva’s team is part of a larger effort to study the Solar System, which is being led by Heidi Hammel – the executive VP of the Association of Universities for Research in Astronomy (AURA). As she described the JWST’s “Ocean World” campaign to Universe Today via email:
“We will be seeking signatures of plume activity on these ocean worlds as well as active spots. With the near-infrared camera of NIRCAM, we will have just enough spatial resolution to distinguish general regions of the moons that could be “active” (creating plumes). We will also use spectroscopy (examining specific colors of light) to sense the presence of water, methane and several other organic species in plume material.”
To study Europa, Villanueva and his colleagues will take high-resolution imagery of Europa using the JWST’s near-infrared camera (NIRCam). These will be used to study the moon’s surface and search for hot spots that are indicative of plumes and geological activity. Once a plume is located, the team will determine its composition using Webb’s near-infrared spectrograph (NIRSpec) and mid-infrared instrument (MIRI).
For Enceladus, the team will be analyze the molecular composition of its plumes and perform a broad analysis of its surface features. Due to its small size, high-resolution of the surface will not be possible, but this should not be a problem since the Cassini orbiter already mapped much of its surface terrain. All told, Cassini has spent the past 13 years studying the Saturn system and will conclude the “Grande Finale” phase of its mission this September 15th.
These surveys, it is hoped, will find evidence of organic signatures in the plumes, such as methane, ethanol and ethane. To be fair, there are no guarantees that the JWST’s observations will coincide with plumes coming from these moons, or that the emissions will have enough organic molecules in them to be detectable. Moreover, these indicators could also be caused by geological processes.
Nevertheless, the JWST is sure to provide evidence that will allow scientists to better characterize the active regions of these moons. It is also anticipated that it will be able to pinpoint locations that will be of interest for future missions, such as NASA’s Europa Clipper mission. Consisting of an orbiter and lander, this mission – which is expected to launch sometime in the 2020s – will attempt to determine if Europa is habitable.
As Dr. Hammel explained, the study of these two “Ocean Moons” is also intended to advance our understanding about the origins of life in the Universe:
“These two ocean moons are thought to provide environments that may harbor water-based life as we know it. At this point, the issue of life elsewhere is completely unknown, though there is much speculation. JWST can move us closer to understanding these potentially habitable environments, complementing robotic spacecraft missions that are currently in development (Europa Clipper) and may be planned for the future. At the same time, JWST will be examining the far more distant potentially habitable environments of planets around other stars. These two lines of exploration – local and distant – allow us to make significant advances in the search for life elsewhere.”
Once deployed, the JWST will be the most powerful space telescope ever built, relying on eighteen segmented mirrors and a suite of instruments to study the infrared Universe. While it is not meant to replace the Hubble Space Telescope, it is in many ways the natural heir to this historic mission. And it is certainly expected to expand on many of Hubble’s greatest discoveries, not the least of which are here in the Solar System.
Be sure to check out this video on the kinds of spectrographic data the JWST will provide in the coming years, courtesy of NASA:
Between the Europa Clipper and the proposed Europa Lander, NASA has made it clear that it intends to send a mission to this icy moon of Jupiter in the coming decade. Ever since the Voyager 1 and 2 probes conducted their historic flybys of the moon in 1973 and 1974 – which offered the first indications of a warm-water ocean in the moon’s interior – scientists have been eager to peak beneath the surface and see what is there.
Towards this end, NASA has issued a grant to a team of researchers from Arizona State University to build and test a specially-designed seismometer that the lander would use to listen to Europa’s interior. Known as the Seismometer for Exploring the Subsurface of Europa (SESE), this device will help scientists determine if the interior of Europa is conducive to life.
According to the profile for the Europa Lander, this microphone would be mounted to the robotic probe. Once it reached the surface of the moon, the seismometer would begin collecting information on Europa’s subsurface environment. This would include data on its natural tides and movements within the shell, which would determine the icy surface’s thickness.
It would also determine if the surface has pockets of water – i.e. subsurface lakes – and see how often water rises to the surface. For some time, scientists have suspected that Europa’s “chaos terrain” would be the ideal place to search for evidence of life. These features, which are basically a jumbled mess of ridges, cracks, and plains, are believed to be spots where the subsurface ocean is interacting with the icy crust.
As such, any evidence of organic molecules or biological organisms would be easiest to find there. In addition, astronomers have also detected water plumes coming from Europa’s surface. These are also considered to be one of the best bets for finding evidence of life in the interior. But before they can be explored directly, determining where reservoirs of water reside beneath the ice and if they are connected to the interior ocean is paramount.
And this is where instruments like the SESE would come into play. Hongyu Yu is an exploration system engineer from ASU’s School of Earth and Space Exploration and the leader of the SESE team. As he stated in a recent article by ASU Now, “We want to hear what Europa has to tell us. And that means putting a sensitive ‘ear’ on Europa’s surface.”
While the idea of a Europa Lander is still in the concept-development stage, NASA is working to develop all the necessary components for such a mission. As such, they have provided the ASU team with a grant to develop and test their miniature seismometer, which measures no more than 10 cm (4 inches) on a side and could easily be fitted aboard a robotic lander.
More importantly, their seismometer differs from conventional designs in that it does not rely on a mass-and-spring sensor. Such a design would be ill-suited for a mission to another body in our Solar System since it needs to be positioned upright, which requires that it be carefully planted and not disturbed. What’s more, the sensor needs to be placed within a complete vacuum to ensure accurate measurements.
By using a micro-electrical system with a liquid electrolyte for a sensor, Yu and his team have created a seismometer that can operate under a wider range of conditions. “Our design avoids all these problems,” he said. “This design has a high sensitivity to a wide range of vibrations, and it can operate at any angle to the surface. And if necessary, they can hit the ground hard on landing.”
As Lenore Dai – a chemical engineer and the director of the ASU’s School for Engineering of Matter, Transport and Energy – explained, the design also makes the SESE well suited for exploring extreme environments – like Europa’s icy surface. “We’re excited at the opportunity to develop electrolytes and polymers beyond their traditional temperature limits,” she said. “This project also exemplifies collaboration across disciplines.”
The SESE can also take a beating without compromising its sensor readings, which was tested when the team struck it with a sledgehammer and found that it still worked afterwards. According to seismologist Edward Garnero, who is also a member of the SESE team, this will come in handy. Landers typically have six to eight legs, he claims, which could be mated with seismometers to turn them into scientific instruments.
Having this many sensors on the lander would give scientists the ability to combine data, allowing them to overcome the issue of variable seismic vibrations recorded by each. As such, ensuring that they are rugged is a must.
“Seismometers need to connect with the solid ground to operate most effectively. If each leg carries a seismometer, these could be pushed into the surface on landing, making good contact with the ground. We can also sort out high frequency signals from longer wavelength ones. For example, small meteorites hitting the surface not too far away would produce high frequency waves, and tides of gravitational tugs from Jupiter and Europa’s neighbor moons would make long, slow waves.”
Such a device could also prove crucial to missions other “ocean worlds” within the Solar System, which include Ceres, Ganymede,Callisto,Enceladus, Titan and others. On these bodies as well, it is believed that life could very well exist in warm-water oceans that lie beneath the surface. As such, a compact, rugged seismometer that is capable of working in extreme-temperature environments would be ideal for studying their interiors.
What’s more, missions of this kind would be able to reveal where the ice sheets on these bodies are thinnest, and hence where the interior oceans are most accessible. Once that’s done, NASA and other space agencies will know exactly where to send in the probe (or possibly the robotic submarine). Though we might have to wait a few decades on that one!
Special Guest:
This week’s special guest is Brad Peterson. Brad is a returning guest, and since his last appearance, he has been asked by NASA to serve as a community co-chair, with Debra Fischer of Yale, for the Science and Technology Definition Team for the Large Ultraviolet, Optical, and Infrared Surveyor (LUVOIR).
Brad has carried out research on active galactic nuclei for his entire career. He has been developing the technique of reverberation mapping for over 25 years. He is currently on appointment at STScI as Distinguished Visiting Astronomer, after retiring from the faculty of The Ohio State University in 2015 with 35 years of service, the last nine as chair of the Department of Astronomy. He is also a member of the NASA Advisory Council, for which he chairs the Science Committee. He was recently named chair-elect for the Astronomy Section of the AAAS.
We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!
Announcements:
On Friday, May 12, the WSH will welcome authors Michael Summers and James Trefil to the show to discuss their new book, Exoplanets: Diamond Worlds, Super Earths, Pulsar Planets and the New Search for Life Beyond Our Solar System. In anticipation of their appearance, the WSH Crew is pleased to offer our viewers a chance to win one of two hard cover copies of Exoplanets. Two winners will be drawn live by @fraser during our show on May 12th. To enter for a chance to win a copy of Exoplanets, send an email to: [email protected] with the Subject: Exoplanets. Be sure to include your name and email address in the body of your message so that we can contact the winners afterward. All entries must be electronically postmarked by 23:59 EST on May 10, 2017, in order to be eligible. No purchase necessary. Two winners will be selected at random from all eligible entries. Good luck!
If you’d like to join Fraser and Paul Matt Sutter on their tour to Iceland in February 2018, you can find the information at astrotouring.com.
If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site linked above and sign up!
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!
We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page<
In the past few decades, astronomers and geophysicists have benefited immensely from the study of planetary magnetic fields. Dedicated to mapping patterns of magnetism on other astronomical bodies, this field has grown thanks to missions ranging from the Voyager probes to the more recent Mars Atmosphere and Volatile EvolutioN (MAVEN) mission.
Looking ahead, it is clear that this field of study will play a vital role in the exploration of the Solar System and beyond. As Jared Espley of NASA’s Goddard Space Flight Center outlined during a presentation at NASA’s Planetary Science Vision 2050 Workshop, these goals include advancing human exploration of the cosmos and the search for extraterrestrial life.