The search for life has to be one of the most talked about questions in science. The question is, what do you look for? The Odysseus lunar lander has recently detected signs of a technologically advanced civilisation…on Earth! The lander is equipped with an instrument called ROLSES which has probed the radio emissions from Earth as if it was an exoplanet to se if it could detect signs of life!
Continue reading “Moon Lander Detects Technosignatures Coming from Earth”Against all Odds. Japan’s SLIM Lander Survived a Second Lunar Night Upside Down
You might remember the SLIM lunar lander that managed to land upside-down! The probe from the Japanese Space Agency has survived its second night on the Moon and returns a new photograph. Despite the solar panels pointing away from the Sun during the day it was still able to capture the image and transmit to Earth. All that while surviving the harsh -130C lunar night.
Continue reading “Against all Odds. Japan’s SLIM Lander Survived a Second Lunar Night Upside Down”An Epic Crater Called Odysseus
On June 28 NASA’s Cassini spacecraft passed by Tethys, a 1,062-kilometer (662-mile) -wide moon of Saturn that’s made almost entirely of ice. Tethys is covered in craters of all sizes but by far the most dramatic of all is the enormous Odysseus crater, which spans an impressive 450 kilometers (280 miles) of the moon’s northern hemisphere — nearly two-fifths of its entire diameter!
In fact, whatever struck Tethys in the distant past probably should have shattered it into pieces… but didn’t.
Tethys likely held itself together because when the impact occurred that formed Odysseus, the moon was still partially molten. It was able to absorb some of the energy of the impact and thus avoid disintegration — although it was left with a quite the battle scar as an eternal reminder.
The images below are raw images from Cassini’s latest pass of Tethys, showing the moon’s rugged terrain and portions of Odysseus from a distance of 68,521 kilometers (42,577 miles).
The central peak of Odysseus has collapsed, leaving a depression — another indication that the moon wasn’t entirely solid at the time of impact.
Tethys orbits Saturn at a distance of 294,660 kilometers (183,100 miles), about 62,000 miles closer than the Moon is from Earth. Such a close proximity to Saturn subjects Tethys to tidal forces, the frictional heating of which likely helped keep it from cooling and solidifying longer than more distant moons. As a result Tethys appears somewhat less cratered than sister moons Rhea and Dione, which still bear the marks of their earliest impacts… although looking at the region south of Odysseus it’s hard to image a more extensively-cratered place.
Tethys is just another reminder of the violent place our solar system can be. Find out more about Tethys on the Cassini mission site here.
Image credits: NASA/JPL/Space Science Institute. Edited by J. Major. Images have not been calibrated or validated, and each has been level-adjusted and sharpened to bring out surface detail, and in some areas deinterlacing was used to remove linear raw image artifacts.