[/caption]
With her most recent drive of 482 feet (146.8 meters) on June 1, 2011 (Sol 2614), NASA’s Opportunity Mars Rover has zoomed past the unimaginable 30 kilometer (18,64 miles) mark in total odometry since safely landing on Mars nearly seven and one half years ago on Jan 24, 2004. That’s 50 times beyond the roughly quarter mile of roving distance initially forseen.
Opportunity is now 88 months into the original 3 month mission “warranty” planned by NASA and the rover team. That’s over 29 times beyond the original design lifetime and an achievement that no one on the rover teams ever expected to observe.
And Opportunity is still going strong, in good health and has abundant solar power as she continues driving on her ambitious overland trek across the martian plains of Meridiani Planum. She is heading to the giant Endeavour crater, some 22 km (14 miles) in diameter.
At this point Endeavour is barely 2 miles (3.5 km) away since Opportunity departed from Santa Maria Crater in March 2011. Landfall at Endeavour is expected sometime later this year.
Endeavour is a long awaited and long sought science target because it is loaded with phyllosilicate clay minerals. These clays have never before been studied and analyzed first hand on the red planets surface.
Phyllosilicate clays formed in neutral watery environments, which are much more conducive to the formation of life compared to the highly acidic environments studied up to now by Spirit and Opportunity. NASA’s Curiosity rover is due to land on Mars in 2012 at a site the science team believes is rich in Phyllosilicates.
In recent weeks, Opportunity has passed by a series and small young craters as she speeds to Endeavour as fast as possible. One such crater is named “Skylab”, in honor of America’s first manned Space Station, launched in 1973.
Now whip out your 3 D glasses and check out NASA’s newly released stereo images of “Skylab” and another named “Freedom 7” in honor of Alan Shepard’s flight as the first American in space. Be sure to also view Opportunity’s dance steps in 3 D performed to aid backwards driving maneuvers on the Red planet
“Skylab” is about 9 meters (30 feet) in diameter. The positions of the scattered rocks relative to sand ripples suggest that Skylab is young for a Martian crater. Researchers estimate it was excavated by an impact within the past 100,000 years.
“Freedom 7” crater is about 25 meters (82 feet) in diameter. During her long overland expedition, Opportunity is examining many craters of diverse ages at distant locales to learn more about the past history of Mars and how impact craters have changed over time.
Opportunity was just positioned at a newly found rock outcrop named “Valdivia” and analyzing it with the robotic arm instruments including the Microscopic Imager and the Alpha Particle X-ray Spectrometer (APXS).
Opportunity made landfall at the western edge of Santa Maria on Dec. 15, 2010 (Sol 2450) after a long and arduous journey of some 19 kilometers since departing from Victoria Crater nearly two and one half years ago in September 2008. Santa Maria is the largest crater that the rover will encounter on the epic trek between Victoria and Endeavour.
The science team decided that Santa Maria would be the best location for an intermediate stop as well as permit a focused science investigation because of the detection of attractive deposits of hydrated minerals. The stadium sized and oval shaped crater is some 80 to 90 meters wide (295 feet) and about nine meters in depth.
Opportunity has since been carefully driven around the lip of the steep walled crater in a counterclockwise direction to reach the very interesting hydrated sulfates on the other side. The rover made several stops along the way to collect long baseline high resolution stereo images creating 3 D digital elevation maps and investigate several rocks in depth.
Opportunity was directed to Santa Maria based on data gathered from Mars orbit by the mineral mapping CRISM spectrometer – onboard the Mars Reconnaissance Orbiter (MRO) – which indicated the presence of exposures of water bearing sulfate deposits at the southeast rim of the crater.
“Santa Maria is a relatively fresh impact crater. It’s geologically very young, hardly eroded at all, and hard to date quantitatively,” said Ray Arvidson from Washington University in St. Louis. Arvidson is the deputy principal investigator for the Spirit and Opportunity rovers.
The rover had to take a pause anyway in its sojourn to Endeavour because of a restrictive period of solar conjunction. Conjunction is the period when the Sun is directly in between the Earth and Mars and results in a temporary period of communications disruptions and blackouts.
During conjunction – which lasted from Jan. 28 to Feb. 12 – the rover remained stationary. No commands were uplinked to Opportunity out of caution that a command transmission could be disrupted and potentially have an adverse effect.
Advantageously, the pause in movement also allows the researchers to do a long-integration assessment of the composition of a selected target which they might not otherwise have conducted.
By mid-January 2011, Opportunity had reached the location – dubbed ‘Yuma’ – at the southeast rim of the crater where water bearing sulfate deposits had been detected. A study of these minerals will help inform researchers about the potential for habitability at this location on the surface of Mars.
The rover turned a few degrees to achieve a better position for deploying Opportunity’s robotic arm, formally known as the instrument deployment device or IDD, to a target within reach of the arms science instruments.
“Opportunity is sitting at the southeast rim of Santa Maria,” Arvidson told me. “We used Opportunity’s Rock Abrasion Tool (RAT) to brush a selected target and the Moessbauer spectrometer was placed on the brushed outcrop. That spot was named ‘Luis De Torres’, said Arvidson.
‘Luis De Torres’ was chosen based on the bright, extensive outcrop in the region in which CRISM sees evidence of a hydrated sulfate signature.”
Opportunity successfully analyzed ‘Luis De Torres’ with all the instruments located at the end of the robotic arm; including the Microscopic Imager (MI), the alpha particle X-ray spectrometer (APXS) and then the Moessbauer spectrometer (MB) for a multi-week integration of data collection.
After emerging in fine health from the conjunction, the rover performed a 3-millimeter deep grind on ‘Luis De Torres’ with the RAT in mid-February 2011 to learn more about the rocks interior composition. Opportunity then snapped a series of microscopic images and collected spectra with the APXS spectrometer.
The rover then continued its counterclockwise path along the eastern edge of the crater, driving northwards some 30 meters along the crater rim to a new exposed rock target – informally named ‘Ruiz Garcia’ to collect more APXS spectra and microscopic images. See our mosaic showing “Ruiz Garcia” at the lip of the crater (above).
Opportunity finished up the exploration of the eastern side of Santa Maria in March by snapping a few more high resolution panoramas before resuming the drive to Endeavour crater which lies some 6.5 kilometers (4 miles) away.
Endeavour is Opportunity’s ultimate target in the trek across the Martian dunes because it possesses exposures of a hitherto unexplored type of even more ancient hydrated minerals, known as phyllosilicates, that form in neutral water more conducive to the formation of life.
Another great shot by the HiRISE camera on the Mars Reconnaissance Orbiter: this one of the Opportunity rover sitting on the edge of Santa Maria Crater. The High Resolution Imaging Science Experiment took this image on March 1, 2011, and also visible are the tracks in the Martian soil that Oppy created as she made her way to the crater.
“Opportunity has been studying this relatively fresh 90-meter diameter crater to better understand how crater excavation occurred during the impact and how it has been modified by weathering and erosion since,” said Matt Golombeck, a research geologist at the Jet Propulsion Laboratory, and part of the rover team. “Note the surrounding bright blocks and rays of ejecta.”
You can see a non-annotated image here. March 1 on Earth is the 2,524th Martian day, or sol, of Opportunity’s work on Mars.
By the way, MRO celebrates its 5th anniversary of being in orbit of Mars on March 10. Wow, 5 years already? But its been 5 years of great images and discoveries, with wishes from all of us for many more!
Today, Jan. 24, 2011 marks the 7th anniversary of the safe landing of the Opportunity Mars Exploration Rover (MER). Opportunity will soon celebrate another remarkable milestone – 2500 Sols, or Martian days, roving the red planet. Together with her twin sister Spirit, the NASA rovers surely rank as one of the greatest feats in the annals of space exploration.
“No one expected Spirit or Opportunity to go on this long,” says Ray Arvidson in an interview from Washington University in St. Louis. Arvidson is the deputy principal investigator for the Spirit and Opportunity rovers.
7 Years ago today on Jan. 24, 2004, NASA’s Opportunity rover daringly smashed into the Martian atmosphere at about 12,000 MPH on a one shot, do or die mission with no certainty as to the outcome. Thus began “The Six Minutes of Terror” as the plummeting probes heat shield endured temperatures exceeding 1400°C (2600 F) during the fiery entry, descent and landing phase (EDL).
The spectacular plunge was slowed by atmospheric friction on the heat shield and a complex pre-programmed combination of parachutes and retro rockets, and in the last moments by inflatable airbags designed to allow the robot to bounce about two dozen times and gently and gradually roll to a complete stop.
Ultimately, Opportunity survived intact just like her twin sister Spirit who landed safely three weeks earlier on Jan. 3, 2004. EDL was the culmination of a seven month interplanetary cruise of over 250 million miles from Earth. Both rovers were launched from Cape Canaveral, Florida in the summer of 2003 on board Delta 2 rockets. The dynamic duo landed on opposite sides of the Red planet.
Opportunity is now 84 months into the 3 month mission – still alive and blazing a trail of Exploration and Discovery across the Meridiani Planum region of Mars.
The amazing Martian robot has driven more than 16.5 miles (26.7 km) and snapped over 148,000 pictures. She has suffered remarkable few mechanical failures and they have only minimally impaired her ability to traverse across the surface and conduct science operations.
Both rovers survived far beyond the mere 3 month “warranty” proclaimed by NASA as the mission began with high hopes following the nail biting “Six Minutes of Terror”. At the time, team members and NASA officials hoped they might function a few months longer.
“The rovers are our priceless assets” says Steve Squyres, of Cornell University who is the Principal Scientific Investigator for the mission. Squyres and the entire rover team treat every day with a “sense of urgency” and as “a gift to science”.
Since 2004, the rover’s longevity has surpassed all expectations and nobody on the science and engineering teams that built and operate the twins can believe they lasted so long and produced so much science.
“We have a new Opportunity overview article publishing shortly in the Journal of Geophysical Research (JGR). The Spirit overview paper appeared recently. In addition, there will be about 24 new scientific papers coming out in the new few months as JGR special issues covering more of the MER results. ”
The incredible longevity is “way beyond the wildest expectations of even the people who built the twin sisters” according to fellow Cornell University Professor Jim Bell. “To say the rovers have surpassed expectations is an understatement. We’ve blown them out of the water”. Bell is the lead scientist responsible for the rovers’ high resolution color imaging system called Pancam.
“After 7 years it is still very exciting,“ Arvidson told me. “I am delighted to come to work every day. It’s great to work on the engineering plan for driving and operating the rovers and then see the results the next day.”
Spirit and Opportunity have accomplished a remarkable series of scientific breakthroughs, far surpassing the wildest dreams of all the researchers and NASA officials. Indeed both Mars rovers are currently stationed at scientific goldmines.
Santa Maria is just 6 km from the western rim of Endeavour which shows spectral signatures of phyllosilicates, or clay bearing minerals, which formed in water about 4 billion years ago and have never before been directly analyzed on the Martian surface.
Phyllosilicates form in neutral aqueous conditions that could have been more habitable and conducive to the formation of life than the later Martian episodes of more harshly acidic conditions in which the sulfates formed that Opportunity has already been exploring during her 7 year long overland expedition.
Since the moment she landed inside ‘Eagle’ crater, Opportunity has been on a Martian crater tour her entire lifetime.
Opportunity “scored a 300-million mile interplanetary hole in one,” Steve Squyres said at that time, by improbably rolling to a stop smack inside the small 66 foot wide ‘Eagle’ crater (see map) after bouncing across the virtually flat and featureless dusty plains of Meridiani. She has been a lucky princess from the moment of her birth, spying layered sedimentary rocks in a bedrock outcrop from first light in her cameras a mere 26 feet or so away. That’s unlike any previous lander.
Seven days later she drove off the landing pad, drilled into the outcrops and collected the “ground truth” science data to prove that hematite was present and liquid water had indeed flowed at Meridiani as a lake or shallow sea on ancient Mars.
After completing her science campaign, she climbed up and over the rim, departed ‘Eagle’ and arrived at ‘Endurance’ about 3 months after landing day.
After numerous tests, Opportunity was commanded to slowly crawl down into the crater. She gradually descending about 30 vertical feet, frequently drilling into the sedimentary rocks and layers to reveal Mars watery past in unprecedented scientific detail for about six months.
In Dec. 2004, Opportunity departed for “Victoria” crater, which many believed would be her final destination. The robot nearly perished in a sand trap at Purgatory along the way during a nearly two year drive across the treacherous martian sand dunes.
Opportunity arrived in Sept. 2006 to unveil Victoria’s Secrets in color. The rover actually wound up spending two years driving to different vantage points around the rim of and then inside the half mile wide crater before departing in Sept 2008 for the unimaginable goal of giant ‘Endeavour’ crater.
The rover team hopes to reach the slopes of Endeavour sometime later in 2011 if all goes well – before her 8th anniversary !
See below some of the best images taken by Opportunity during her 7 Year Martian Trek
The Opportunity rover’s latest accomplishments? Cinematographer. Two new movies created by images taken by the long-lasting rover show a blue-tinted Martian sunset, while another clip shows the Mars’ moon Phobos passing in front of the sun. “These visualizations of an alien sunset show what it must have looked like for Opportunity, in a way we rarely get to see, with motion,” said rover science team member Mark Lemmon of Texas A&M University. Dust particles make the Martian sky appear reddish and create a bluish glow around the sun. Continue reading “Rover Captures Sunset, Eclipse on Mars”
NASA’s Opportunity Mars rover arrived today (Dec .15) at Santa Maria crater on Sol 2450. She sits just 20 meters from the crater rim. A multitude of inviting rocks and boulders are strewn about the 80 meter diameter crater, making this a Martian geologists dream.
And so it goes too for a Martian photographer with lots to shoot and with the giant 14 km wide Endeavour crater serving as backdrop and coming into ever clearer focus.
Santa Maria is just 6 km from the western rim of Endeavour (see panoramic mosaics above and below).
The rover team is planning for an extensive and multi week science campaign at Santa Maria using all the instruments and cameras at their disposal.
Opportunity will spend the holiday season and the upcoming Solar conjunction exploring around Santa Maria according to Matt Golembek, Mars Exploration Program Landing Site Scientist at the Jet Propulsion Laboratory (JPL), Pasadena, Calif.
There will be no uplink commanding to the spacecraft around the actual conjunction period from Jan. 28 to Feb. 12 (UTC) out of caution that the command transmission could be disrupted.
The team plans a sophisticated wide-baseline stereo-imaging survey of Santa Maria by having Opportunity drive to several positions halfway around the crater. A mineral survey will be carried out using the spectrometers, microscope and drill – known as the RAT or rock abrasion tool – located at the terminus of the rover’s robotic arm.
See several additional amateur mosaics below – including 3 D images – from all of us at unmannedspaceflight .com.
The rover is now at the two thirds mark of a 19 km (12 mile) journey from Victoria crater on the road to reach the rim of the scientifically rich environs of Endeavour crater sometime later in 2011. Opportunity explored the rim and interior of Victoria from mid-2006 to mid-2008.
Santa Maria is the largest feature that Opportunity will explore between Victoria and Endeavour craters. The team assigns informal names to craters visited by Opportunity based on the names of historic ships of exploration in human history. See Opportunity traverse maps below.
The Opportunity rover has done it again — found another strange-looking rock sitting on Meridiani Planum, and it looks like another meteorite. “The dark color, rounded texture and the way it is perched on the surface all make it look like an iron meteorite,” said Matt Golombek from the MER science team. Unofficially named “Oileán Ruaidh” (pronounced ay-lan ruah), which is the Gaelic name (translated: Red Island) for an island off the coast of northwestern Ireland. The rock is about the size of a toaster: 45 centimeters (18 inches) wide from the angle at which it was first seen. Stu Atkinson has posted some enhanced images of the rock on his website, Road to Endeavour, which I have nabbed and posted here. Thanks Stu! The 3-D version above looks awesome with the red/green glasses. And look for more detailed images of the rock on his site soon, as Opportunity comes in for a closer look. UPDATE: As promised, Stu has provided an enhanced close-up of this rock, below.
Here’s an extreme close-up of Oileán Ruaidh, and it certainly has that “iron meteorite” look about it. It almost looks like the head of a craggy old snapping turtle!
The Opportunity rover has captured an image of a dust devil, and surprisingly, this is the first one ever that Oppy has spied. Spirit has seen dozens of dust devils over on the other side of the planet in Gusev Crater, and even the Phoenix lander’s camera captured several of these whirling dust dervishes during its short four-and-a-half month life. Plus the different orbiting spacecraft have seen evidence of plenty of dust devils by using their eyes from the skies. But this is the first one Oppy’s cameras have managed to shoot. This tall column of swirling dust appeared in a routine image that Opportunity took with its panoramic camera on July 15, 2010. The rover took the image in the drive direction, east-southeastward, right after a drive of about 70 meters (230 feet), and was taken for use in planning the next drive.
But obviously, over the years, Opportunity has benefited from dust devils – or perhaps just gusts of wind – as she has had a series of unexpected boosts in electrical power when the pervasive Martian dust gets cleaned off her solar panels. And just one day before Opportunity captured this dust devil image, wind cleaned some of the dust off the rover’s solar array, increasing electricity output from the array by more than 10 percent. These unexpected – but welcome – Martian “car washes” have helped extend the life of both rovers.
“That might have just been a coincidence, but there could be a connection” between the cleaning event and the dust devil in the image, said Mark Lemmon of the rover team from Texas A&M University. The team is resuming systematic checks for afternoon dust devils with Opportunity’s navigation camera, for the first time in about three years.
Lemmon said that Spirit’s location inside Gusev Crater, is rougher in ground texture, and dustier, than the area where Opportunity is working in the Meridiani Planum region. Those factors at Gusev allow vortices of wind to form more readily and raise more dust, compared to conditions at Meridiani. Orbiters have photographed tracks left by dust devils near Opportunity, but the tracks are scarcer there than near Spirit. Swirling winds at Meridiani may be more common than visible signs of them, if the winds occur where there is no loose dust to disturb.
Either some little Martians came by and gave the Opportunity rover a quick once-over cleaning, or a recent gust of wind blew layers of dust off her solar panels. The image above (supplied by our favorite photo- whiz Stu Atkinson), shows Oppy’s solar panels on sol 2274 and 2299 (approximately June 18 and July 12 here on Earth) with a marked difference in the amount of dust on the panels. Yesterday, the Twitter account for the rovers, @marsrovers Tweeted: “Love those Martian dust busters! A recent wind gust cleaned Oppy’s solar panels giving her a little power boost for the road.” And on the road she is, heading earnestly for Endeavour Crater, with several recent drives of around 70 meters (230 feet) per sol. But she now has some new autonomous software the rover team is trying out, and with her new greater power capacity, she should be able to keep on truckin’. Mars rover driver Scott Maxwell reported on Twitter this week that Opportunity is 40% of the way from Victoria Crater to Endeavour.
And what’s the latest news about Spirit – still silent?
According to Maxwell (again on Twitter), the power models for sunlight hitting Gusev Crater say the very earliest we could possibly hear from Spirit could be sometime late this week. But he added that more likely would be hearing from Spirit by around mid-November.
But catching Spirit awake is complicated, with timing being everything. “Even if Spirit’s waking up (soon), we’ll have a hard time catching her during one of her wakeups,” Maxwell said. “This will take some luck as well as skill,” having the Mars Reconnaissance Orbiter or Mars Odyssey overhead and listening at the very moment Spirit is talking. Maxwell added that the team is working on how to locate Spirit if she’s had a Mission Clock fault and doesn’t know how to send communications to Earth.
It is very likely that Spirit has experienced a low-power fault and has turned off all sub-systems, including communication and gone into a deep sleep. While sleeping, the rover will use the available solar array energy to recharge her batteries. When the batteries recover to a sufficient state of charge, and if the Mission Clock hasn’t gone completely bonkers, Spirit will wake up and begin to communicate.
Spirit’s odometry remains at 7,730.50 meters (4.80 miles).
But meanwhile, Oppy’s total odometry is 21,550.77 meters (21.55 kilometers, or 13.99 miles), and she’ll be putting on more as she heads towards Endeavour Crater. Maxwell later said he has an idea to speed up the rover’s drives as much as 30%, so that will be interesting to find out more about his idea. “A 30% speedup would shave 2-3 months off our trip to Endeavour — maybe even more than that. Worth a try! Phyllosilicates, here we come!,” he tweeted, referring to the water-based minerals that scientists are hoping to find within the crater. That would mean water helped form the rocks in Mars’ early history.
Speaking of Endeavour, recently, NASA and JPL released an image showing the newly-given names of different points on Oppy’s next destination, and there’s a push by some people in Australia for one additional feature to be named “Nobby’s Head.”
The rover team is using the theme of names of places visited by British Royal Navy Capt. James Cook in his 1769-1771 Pacific voyage in command of H.M.S. Endeavour. My friend Col Maybury from radio station 2NUR in Newcastle, New South Wales, Australia is helping to promulgate this request to NASA, with the support of the Minister of Tourism and Newcastle’s Lord Mayor. “Hopefully we will get a favourable reply soon,” Col wrote me.
Cook first came to this location in May of 1770. At midnight by moonlight he saw an island jutting up from the sea and wrote in his journal: “A small round rock or Island, laying close under the land, bore South 82 degrees West, distance 3 or 4 Leagues.”
Now called Nobby Head, it is the entrance of Newcastle Harbour, formed by the Hunter River, a great coal port of New South Wales. The feature on Mars is the same shape as Nobby Head on Earth. Wish Col and the people of Newcastle good luck in their “endeavour” to name this feature! (Anyone from the rover team naming committee reading this?!)
Mars rover team members have begun informally naming features around the rim of Endeavour Crater, as they develop plans to investigate that destination when NASA’s Opportunity rover arrives there after many more months of driving. A new, super-resolution view of a portion of Endeavour’s rim reveals details that were not discernible in earlier images from the rover. Several high points along the rim can be correlated with points discernible from orbit.
Super-resolution is an imaging technique combining information from multiple pictures of the same target to generate an image with a higher resolution than any of the individual images.
Endeavour has been the team’s long-term destination for Opportunity since the summer of 2008, when the rover finished two years of studying Victoria Crater. By the spring of 2010, Opportunity had covered more than a third of the charted, 19-kilometer (12-mile) route from Victoria to Endeavour and reached an area with a gradual, southward slope offering a view of Endeavour’s elevated rim.
After the rover team chose Endeavour as a long-term destination, the goal became even more alluring when observations with the Compact Reconnaissance Imaging Spectrometer for Mars, on NASA’s Mars Reconnaissance Orbiter, found clay minerals exposed at Endeavour. Clay minerals, which form under wet conditions, have been found extensively on Mars from orbit, but have not been examined on the surface. Additional observations with that spectrometer are helping the rover team choose which part of Endeavour’s rim to visit first with Opportunity.
The team is using the theme of names of places visited by British Royal Navy Capt. James Cook in his 1769-1771 Pacific voyage in command of H.M.S. Endeavour for informal names of sites at Endeavour Crater. Points visible in the super-resolution view from May 12 include “Cape Tribulation” and “Cape Dromedary.”
See more images and info on the names of the different features at Stu Atkinson’s “Road to Endeavour” blog.